Supplementary Figure Legends

Supplementary Figure S1. sacB-mediated counter-selection used to construct *H. pylori* type IIrestriction endonuclease-deficient mutants. HP1366 (hpyAII), the target restrictionendonuclease gene of the wild type 26695 strain, was first replaced by a sacB-cat cassette togenerate a chloramphenicol-resistant (Cm^R)/sucrose-sensitive (Suc^S) mutant strain bytransformation and following selection on Cm-containing media. The sacB-cat cassette then wasdeleted from the locus by transformation with a plasmid carrying a 2.1Kb PCR-product withHP1365 and HP1367 sequences and no intervening ORF, and following counter-selection with

10 Supplementary Figure S2. Growth of *H. pylori* wild type and the type II restriction endonucleasedeficient mutants. The wild type strain 26695 and the series of the type II restriction endonuclease-deficient mutants [KO-1, KO-2, KO-3, and KO-4 (26695-REd)] exhibit similar growth during a 5-day incubation in Brucella broth (with 10% NBCS) medium. The experiments were performed independently in triplicate.

sucrose-containing media, resulting Δhpy AII (KO-1).

- Supplementary Figure S3. Survival of *H. pylori* wild type and the type II restriction endonucleasedeficient mutants after UV exposure. *H. pylori* cells on TSA plates were subject to a range of UV exposures and surviving proportions were determined. The series of the type II restriction endonuclease-deficient mutants [KO-1, KO-2, KO-3, and KO-4 (26695-REd)] exhibit similar survival to the wild type strain 26695. The experiments were performed independently in triplicate.
 - Supplementary Figure S4. Spontaneous mutation frequency of *H. pylori* mutants by evaluating the frequency of an *rpoB* point mutation which confers resistance to rifampin. The series of the type II restriction endonuclease-deficient mutants [KO-1, KO-2, KO-3, and KO-4 (26695-REd)] exhibit Rif^R spontaneous mutation rates similar to the wild type strain 26695. The experiments were performed independently in triplicate.

Zhang, et al.

5

25

1

Supplementary Figure S1.

Supplementary Figure S2.

Supplementary Figure S3.

Supplementary Figure S4.

Plasmid or strain	Relevant characteristics*	Source or reference
pGEM-T easy	Vector to construct gene mutations, Ap ^R	Promega
p801R	pGEM-T easy, 801 bp <i>H. pylori rpsL</i> fragment with A128G point mutation. Ap ^R	This work
nCTB8·Km	nGEM-T easy H pylori vacA core anhA An ^R Km ^R	(11)
nAD1-Cat	PGEM T easy H pylori ureA constrait AnR CmR	(11) (27)
pADI-Cat	Chuttle resurid Kar ^R	(27)
pheis	Snutte plasmid, Km	(20)
pKSF	Contains a <i>kan-sacB</i> cassette, Km ^R	(10)
pXZ016	pGEM-T easy, <i>hpy</i> AV upstream flanking region directly fused with <i>hpy</i> AV downstream flanking region, Ap ^R	This work
pXZ017	pGEM-T easy, <i>hpy</i> AII upstream flanking region directly fused with <i>hpy</i> AII downstream flanking region, Ap ^R	This work
pXZ032	pXZ016, <i>sacB-cat</i> cassette inserted between <i>hpy</i> AV upstream and downstream flanking region to construct Δhpy AV:: <i>sacB-cat</i> mutation, Ap ^R , Cm ^R , Suc ^S	This work
pXZ033	pXZ017, <i>sacB-cat</i> cassette inserted between <i>hpy</i> AII upstream and downstream flanking region to construct Δhpy AII:: <i>sacB-cat</i> mutation, Ap ^R , Cm ^R , Suc ^S	This work
pXZ144	pGEM-T easy, hpy AIII upstream flanking region directly fused with hpy AIII downstream flanking region, Ap^{R}	This work
pXZ145	pGEM-T easy, hpy AIV upstream flanking region directly fused with hpy AIV downstream flanking region. Ap ^R	This work
pXZ146	pXZ144, sacB-cat cassette inserted between hpy AIII upstream and downstream flanking region to construct Λhpv AIII. sacB-cat mutation Λp^{R} Cm ^R Suc ^S	This work
pXZ147	pXZ145, <i>sacB-cat</i> cassette inserted between <i>hpy</i> AIV upstream and downstream flanking region to construct Δhpv AIV: <i>sacB-cat</i> mutation. Ap ^R , Cm ^R , Suc ^S	This work
E. coli		
XI 1 - blue	Host for cloning plasmid	Stratagene
H mylori	Tiost for croning prasma	Strutugene
11. pyton 26605	UK origin isolata (ganamia gaguanaa datarminad)	(55)
20095	UK-ongin isolate (genomic sequence determined)	(33)
199	USA-origin isolate (genomic sequence determined)	(1)
JP26	Japan-origin isolate (genomic sequence determined)	(3)
J166	USA-origin isolate	(61)
60190	American Type Culture Collection 49503, genome DNA sequence is used as template for pCTB8:Km and pAD1-Cat constructions	(11)
HPXZ285	KO-1, 26695 Δ <i>hpy</i> AII	This work
HPXZ347	26695 vacA::aphA, 26695 transformed with pCTB8:Km, Km ^R	This work
HPXZ379	26695 <i>ureA::cat</i> , 26695 transformed with pAD1-Cat, Cm ^R	This work
HPXZ490	KO-2, 26695 Δhpy AII Δhpy AV	This work
HPXZ560	KO-3, 26695 Δhpy AII Δhpy AV Δhpy AIII	This work
HPXZ566	KO-4, 26695 Δhpy AII Δhpy AV Δhpy AIII Δhpy AIV (26695-REd)	This work
HPXZ621	KO-4 <i>ureA</i> :: <i>cat</i> , HPXZ566 transformed with pAD1-Cat, Cm ^K	This work
HPXZ623	JP26 vacA::aphA, JP26 transformed with pCTB8:Km, Km ^K	This work
HPXZ624	JP26 <i>ureA</i> :: <i>cat</i> , JP26 transformed with pAD1-Cat, Cm ^K	This work
HPXZ626	J99 vacA::aphA, J99 transformed with pCTB8:Km, Km ^A	This work
HPXZ627	J99 <i>ureA</i> :: <i>cat</i> , J99 transformed with pAD1-Cat, Cm ^A	This work
HPXZ629	J166 vacA::aphA, J166 transformed with pCTB8:Km, Km [*]	This work
HPXZ630	J106 <i>ureA</i> :: <i>cat</i> , J166 transformed with pADI-Cat, Cm [*]	This work
ПРАZ041	KU-4 <i>ureA</i> :: <i>cat rpsL</i> (Str ^{R}), HPXZ621 transformed with p8U1K, Cm ^{r} , Str ^{r}	I nis work
ПГАД048 UDV7640	JF 20 vacAaprA $rpsL(Str^R)$ HPXZ625 transformed with p801R, Km ⁻⁷ , Str ⁻¹	This work
111 AZ049 HPX7650	177 vuchupith 1psL(Su), 117 AL020 transformed with p801R, KIII, Str 1166 vacAaphA rpsL(Str ^R) HPX7679 transformed with p801P Km ^R Str ^R	This work
111 AL030	JIOO VUCAupita rpst(Su), III ALO23 utilisioiiiidu witii pouta, Alli , Su	THIS WOLK

Supplementary	Table S1:	Plasmids	and bacterial	strains	used in this study.	,
---------------	-----------	----------	---------------	---------	---------------------	---

HPXZ660	HPXZ626 strain with a spontaneous Rif ^R mutation, Km ^R , Rif ^R	This work
HPXZ696	26695 vacA::aphA rpsL(Str ^R), HPXZ347 transformed with p801R, Km ^R , Str ^R	This work
HPXZ698	26695 ureA::cat rpsL(Str ^R), HPXZ379 transformed with p801R, Cm ^R , Str ^R	This work
*An ^R Cm ^R	Kun ^R Sta ^R Dif ^R and Sus ^S appropriate annialling aggister to history hereiged aggister to	Iran amarain na aistand

*Ap^R, Cm^R, Km^R, Str^R, Rif^R, and Suc^S represent ampicillin-resistant, chloramphenicol-resistant, kanamycin-resistant, streptomycin-resistant, rifampin-resistant, and sucrose-sensitive, respectively.

Oligonucleotide	Primer sequence $(5' \rightarrow 3')^*$
SC-F-XbaI	GC <u>TCTAGA</u> TATAAGCCCATTTTCATGCTCC
SC-R-XbaI	GC <u>TCTAGA</u> CTCGAGGCGTGATATAGATTGAAAAGTG
S-R-PstI	CCCAAA <u>CTGCAG</u> GTTAGCCATTTGCCTGC
C-R-PstI	CCC <u>CTGCAG</u> CACTACTCTCGACAGAGAGTATA
VacA-F	GTGAAAGCGAAAAACAAG
VacA-R	AAGAGAAGCTTTAAACCCTCC
Ure-F	<u>TCAAGTCCAGTCGTGGCCAC</u>
Ure-R	<u>GTTGTCTGCTTGCCTATCAA</u>
IIL-F-SacII	TCC <u>CCGCGG</u> CGCTCAATAGGTAATACTCTC
IIL-R-SpeI	GG <u>ACTAGT</u> TGATAAAATAAAGCGGTGTCTT
IIR-F-SpeI	GG <u>ACTAGT</u> GTCAAATATCCTTTTTTATTCGC
IIR-R-PstI	AAA <u>CTGCAG</u> ATGCCGGCTGAATTAGCAAGG
VL-F-SacII	TCC <u>CCGCGG</u> CGTTGAAAGGCGATAAAGA
VL-R-SpeI	GG <u>ACTAGT</u> TAAGTTTTATTGAAACTGGCTAT
VR-F-SpeI	GG <u>ACTAGT</u> GCTCTTTCATAAGCTACTCCTT
VR-R-PstI	AAA <u>CTGCAG</u> GAAATAGCGAAGTTATTGCCA
IIIL-F-SacII	TCC <u>CCGCGG</u> CTCTCATAGAATGATTTCCCCATTCC
IIIL-R-SpeI	GG <u>ACTAGT</u> TTTTGCTCCGCTTTAATGTTTTTCTTTATT
IIIR-F-SpeI	GG <u>ACTAGT</u> ATGGTAATCGCGCATTCTAATGAAAT
IIIR-R-PstI	AAA <u>CTGCAG</u> CCTCTTCAAAAGATTAGCCGCAATG
IVL-F-SacII	TCC <u>CCGCGG</u> GACAGAGGGGAGTTTAATGATGTCTC
IVL-R-SpeI	GG <u>ACTAGT</u> AGGCTCTAAAGTAAGCCCCATTTCT
IVR-F-SpeI	GG <u>ACTAGT</u> GTCCATTAAGAGTCCTTTTGGCAGAT
IVR-R-PstI	AAA <u>CTGCAG</u> GAAGTACCTCAATAACGACAAACA
catup	TGGATGAATTACAAGACT
catdown	TCAATCTTTGTGAATTGC
ureAB-R-1	CGTGGTGGATTATGTGTATTATCATTATGG
ureAB-R-2	CTAGAAATCCGCCATTTGATCCGTTATAGCGGC
ureAB-R-3	CATTTGAATTTACAGAGTTTAAGGATCGTGC
ureAB-R-4	CATCATTGACAGCAACGGCTTCACGCACGG
ureAB-R-5	CAAATCCGCATAACGGCAATACGCCTTAAAC
ureAB-R-6	TTAGTAATGGTCTTATTCAAACTGGCTTTG
ureAB-R-7	GTGCGGGTGGTGTTTTGGTTTTCTAAATTA
ureAB-L-1	GCCAGGCTCAAACCTTACCGCTGTCCCGCT
ureAB-L-2	GATAGTAGTCGCATTAGTGCCATCAGCAGG
ureAB-L-3	GTTATCGCCTTTTTCTTCTTCAAGCGGCC
ureAB-L-4	CAACATATAACAATACAAGTCCTAGCATTGC
ureAB-L-5	CCTCGTTTCAAACCATTCCAAATCCACATG
ureAB-L-6	CCGTGTAAAGGAACTGGCTAGAGAGATTGG
ureAB-L-7	GCCGTGTGCGGACAGCCTCCTGTTTCTACGC

Supplementary Table S2. Oligonucleotides used in this study.

* Restriction sites underlined; XbaI (TCTAGA), SacII (CCGCGG), SpeI (ACTAGT), PstI (CTGCAG).

Strain	Genotype	MIC Levofloxacin (µg/mL)		
26695	Wild type	0.074 ± 0.017		
HPXZ285	KO-1 (Δhpy AII)	0.079 ± 0.017		
HPXZ490	KO-2 (Δhpy AII Δhpy AV)	0.072 ± 0.015		
HPXZ560	KO-3 (Δhpy AII Δhpy AV Δhpy AIII)	0.072 ± 0.015		
HPXZ566 ^b	KO-4 (Δhpy AII Δhpy AV Δhpy AIII Δhpy AIV)	0.079 ± 0.017		
^a Each experiment was repeated ≥ 3 times. ^b Also named as 26695-REd				

Supplementary Table S3. Susceptibility of *H. pylori* wild type and mutant strains to levofloxacin^a.

5