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Empirical Methods. Ethics statement. The data collection protocol
was approved by the Emory University Institutional Animal Care
and Use Committee and all data were collected in accordance
with its guidelines for the ethical treatment of nonhuman study
subjects.

Study system. The data were collected from a large group of cap-
tive pigtailed macaques (Macaca nemestrina) socially housed at
the Yerkes National Primate Center in Lawrenceville, Georgia.
Pigtailed macaques are indigenous to south East Asia and live
in multi-male, multi-female societies characterized by female
matrilines and male group transfer upon onset of puberty (1).
Pigtailed macaques breed all year. Females develop swellings
when inŒstrus. Macaque societies more generally are character-
ized by social learning at the individual level, social structures
that arise from nonlinear processes and feedback to influence in-
dividual behavior, frequent non-kin interactions and multiplayer
conflict interactions, the cost and benefits of which can be quan-
tified at the individual and social network levels (2–7).

The study group contained 48 socially mature individuals and
84 individuals in total. Our analyses used only 47 of the 48 socially
mature individuals. One individual (Ud) was excluded because
she died during the study period. Socially mature males were at
least 48 mo and socially mature females were at least 36 mo by
study start. These thresholds correspond to approximate onset of
social maturity in pigtailed macaques. The study group had a de-
mographic structure approximating wild populations and suba-
dult and adult males were regularly removed to mimic emigration
occurring in wild populations. All individuals, except eight (four
males, four females), were either natal to the group or had been
in the group since formation. The group was housed in an indoor-
outdoor facility, the outdoor compound of which was 125 × 65 ft.

Pigtailed macaques have frequent conflict and employ targeted
intervention and repair strategies for managing conflict (6). Data
on social dynamics and conflict were collected from this group
over a stable, four-month period. Operational definitions are pro-
vided below.

Operational definitions. Fight: includes any interaction in which
one individual threatens or aggresses a second individual. A fight
was considered terminated if no aggression or withdrawal re-
sponse (fleeing, crouching, screaming, running away, submission
signals) was exhibited by any of the fight participants for two
minutes from the last such event. A fight can involve multiple in-
dividuals. Third parties can become involved in pair-wise fights
through intervention or redirection, or when a family member
of a fight participant attacks a fourth-party. Fights in this data
set ranged in size from 1 to 30 individuals, counting only the so-
cially-mature animals (excluding the animal who died; see above).
Fights can be represented as small networks that grow and shrink
as pair-wise and triadic interactions become active or terminate,
until there are no more individuals fighting under the above de-
scribed two-minute criterion. In addition to aggressors, a fight can
include individuals who show no aggression or submission (e.g.,
third-parties who simply approach the fight or show affiliative/
submissive behavior upon approaching and recipients of aggres-
sion—typically threats—who show no response). Because fights
involve multiple actors, two or more individuals can participate in
the same fight but not interact directly.

In this study only information about fight composition (which
individuals were involved) is used. We do not consider any inter-

nal aspects of the fight, such as who does what to whom. Time
data were collected on fight onset and termination but are not
used in these analyses.

Alpha Female: the female with the highest power score (see
below) in the group. This female (Fp) did not give subordination
signals to any other female (see below). She was the second most
powerful individual (males and females) in the study group.

Kin: Maternal and paternal relatedness data were available for
all subadult and adult animals.

Matriline: an adult female and her daughters. In our study
group, all females in a matriline were biologically related through
the maternal line.

Power: the degree of consensus among individuals in the group
about whether an individual is capable of using force successfully.
We quantified consensus by taking into account the total number
of subordination signals an individual receives and multiplying
this quantity by a measure of the diversity of signals received from
its population of signalers (quantified by computing the Shannon
entropy of the vector of signals received by individual i) (3). In
pigtailed macaque societies, the subordination signal is the silent
bared teeth display (2) emitted outside the conflict context during
pass-byes and affiliative interactions. The distribution of power in
our study group is heavy tailed.

Policing: A policing intervention is an impartial intervention
performed by a third party into an ongoing conflict (6). Three
males and one female preform the majority of effective policing
interventions but only the three males (Eo, Qs, Fo) specialize on
policing (8). These four individuals occupy the top four spots in
the power structure and sit towards the tail of the distribution.

Data collection protocol. During observations all individuals were
confined to the outdoor portion of the compound and were visi-
ble to the observer, J.F. The approximately 150 h of observations
occurred for up to eight hours daily between 1,100 and 2,000 h
over a 20-wk period, comprising roughly 122 d from June through
October 1998, and were evenly distributed over the day. Conflict
and signaling data were collected using all-occurrence sampling.

Provisioning occurred before observations and once during ob-
servations at the same time each day. The group was stable during
the data collection period (defined as no reversals in status sig-
naling interactions resulting in a change to an individual’s power
score; see ref. 3).

The data were collected by a trained observer (J. C. Flack).
The observer spent roughly 100 h prior to data collection learning
to recognize individuals and accurately code their behavior from
the observation tower above the monkey compound. Accuracy
was validated by a second trained observer (F.B.M. de Waal).
J.C.F. further refined data collection skills and evaluated accuracy
using video playback of macaque behavior. Coding accuracy was
nearly 100%.We note, however, that there is no way to be sure we
have the “true time series,” because there is no way to get around
the fact that the data were collected by a human observer—auto-
mated collection is not yet possible for this type of data. In theory,
if the observers are incorporating their own sparse descriptions
on the data, then the observations could already be biased toward
regular and predictable individuals. Although this is highly unli-
kely given the observer training protocol, we feel it should none-
theless be acknowledged.

Descriptive conflict data. The data set includes 1,078 fights with
one or more mature individuals. Within these, there are 888
distinct fights involving unique sets of individuals. The average
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number of mature participants in a fight is 3.3, the median is 3
mature participants, and the largest fight involved 30 mature par-
ticipants. We remove fights involving none of the 47, and each
remaining fight involves between 1 and 30 of the selected indivi-
duals. Fig. S1 illustrates the data we analyze, displaying the first
30 fights in the time series. Fig. S2 shows the distribution of ap-
pearance frequency over individuals; the least frequent individual
(Mv) appears 31 times, and the most frequent (Eo) appears
227 times.

Paper Figures: Additional Details. Figure 2.As shown in Fig. S5B, we
tested two variants of regularization for the spin-glass model:
retaining individuals who appeared in pairs with either largest
covariance or most significant covariance. The covariance for
any pair in our data is equal to the deviation of observed co-
occurrences from that predicted by the frequency model:

covarianceðxi; xjÞ ¼ hðxi − hxiiÞðxj − hxjiÞi ¼ hxixji − hxiihxji;
[S1]

where h·i indicates average value. We measure the significance of
each covariance using a bootstrapped p value, the probability that
the covariance would change sign in another sample given the
number of observed co-occurrences, assuming a binomial distri-
bution. We find that large covariances tend to be more significant
(as expected since large covariances come from frequently occur-
ring pairs, implying smaller fluctuations), such that the two reg-
ularization methods are similar in performance. The best average
performance (used in Fig. 2) was found using significance order-
ing, and the best performance using small numbers of individuals
(used in Fig. 4A) was found using covariance ordering.

R2
0 indicates the reconstruction error with the sparse recon-

struction set to zero: R2
0 ¼ ∑fi;jg Xfijg.

Figure 3. We compare the fight size distributions from models fit
to in-sample data to the fight size distribution of the full data set
(including both in- and out-of-sample data) in order to simplify
the presentation of Fig. 3. Results do not change significantly
when comparing to only out-of-sample data.

The goodness-of-fit for the fight size distribution is measured
using the Kullback-Leibler divergenceDKL, listed in the legend of
Fig. 3. Because some large fight sizes were observed in the data
but not observed in the models (most notably in the frequency
model, which produced no fights of size 13 or larger in 105 sam-
ples), we compute DKL including only fights of size 12 and smal-
ler. This excludes less than 2% of observed fights.

Figure 4. To measure the entropy required to remember a given
model, we first quantize the elements that specify the model (hi
for the frequency model, Jij for the spin-glass model, and Bij for
the sparse coding model) by splitting the range of element values
into N levels segments and changing each element’s value to the
midpoint of the segment in which it falls. The entropy of the re-
sulting quantized distribution is estimated using the NSB algo-
rithm described below; the total entropy is the entropy of this
distribution multiplied by the number of elements that must
be remembered.

Our first method for reducing the amount of entropy is to vary
N levels; the solid lines in Fig. 4A vary N levels from 2 to 29. We find
that performance saturates in each model at or below N levels ¼
29. For the two remaining methods, we fix N levels ¼ 29.

Our second method is to regularize and refit the model. For
the spin-glass model, this involves limiting the model to fit only
individuals who appear in high-covariance pairs, as in Fig. S5B
(circles). For the sparse coding model, changing the regulariza-
tion corresponds to changing λ; we therefore test two other smal-

ler λ values (λ ¼ 10−1 and λ ¼ 10−1.5), which decreases the
average size of groups in the model.

Our third method is simply to change the elements smallest in
magnitude to zero, “forgetting” them. This works well for the
sparse coding model because many elements are already near
zero. It is not surprising that this has a larger effect on the spin-
glass model, because zeroing any specific Jij value can change the
frequencies and covariances of all individuals in a nontrivial way.

Horizontal error bars are � one standard deviation of the es-
timated entropies (the uncertainties in the individual entropies
due to sample size are much smaller), and vertical error bars are
� one standard deviation of the success rate.

In Fig. 4B, we plot the Pareto front, indicating the maximum
prediction performance attainable using a given amount of entro-
py (or less). In the calculation of the front, we also include all
other model variations we have tested. This includes the regular-
ization of the spin-glass model using the most significant covar-
iances (Fig. S5B squares). We also include variations inN levels for
some regularized spin-glass models and zeroed sparse models,
which in some cases slightly expands the Pareto front; that is, it
is sometimes slightly more efficient to both forget some elements
entirely and substantially quantize the remaining elements. Spe-
cifically, we include variations of N levels from 2 to 29 for regular-
ized spin-glass models limited to 31, 12, and 4 individuals as well
as sparse coding models limited to 20 and 10 nonzero elements.

The Space of Metastable Sparse Bases. We can look at similarities
between pairs of bases by defining the group structure of the basis
as the unordered set of groups present in the basis. In Fig. S6, we
represent sets of metastable bases with the same group structure
as nodes and link two nodes with an edge when the group struc-
tures in the two bases differ by a single group. Group structures
that have large basins of attraction (and are therefore more fre-
quently sampled) are themselves nearby to many other solutions.

We can check that the clustering seen in the basis-space net-
work in Fig. S6 results from common structure within frequent
bases and not simply from the statistics of frequent groups. We
compare the original set of 500 bases to 500 random bases com-
posed of collections of groups (basis vectors) chosen randomly
from all those seen in the original 500 bases. (We do not allow
a random basis to contain more than one copy of the same group,
and we constrain each random basis to contain n ¼ 25 nonzero
elements because bases with different n would be less likely to
have matching structure.) The analogous network, shown in
Fig. S7, has many fewer connections and no identical group struc-
tures, showing that there is shared structure in the original bases
beyond what can be explained by random collections of basis
vectors.

Additional Tests for Generative Models. In this section, we compare
the goodness of fit of the generative models for other coarse-
grained statistics over the data. Specifically, we measure the cor-
relation (using Pearson’s coefficient and Spearman’s rank coeffi-
cient) between sets of statistics observed in the data and those
produced by the generative model. We analyze four statistics: the
probability of observing each individual in a given fight [PðAÞ];
the probability of observing each pair of individuals in a given
fight, corrected by their expected probability based on individual
frequencies [PcðABÞ, equal to the covariance of A and B]; the
average fight size for fights involving each individual [n̄ðAÞ]; and
the average fight size for fights involving each pair [n̄ðABÞ]. The
results are given in Tables S1 and S2. For comparison, we include
data from an inductive game theory (IGT) model (9) and corre-
lations between in- and out-of-sample data.

Comparing rank correlations computed using out-of-sample
data, the spin-glass model performs best, with significant correla-
tions for all four statistics. Sparse coding performs slightly worse,
without significant correlation for n̄ðAÞ.
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In Fig. S4, we show the values of frequencies and covariances
in each of the models plotted against their observed values, for
both in- and out-of-sample observed data.

Calculations on Subsets of the Data. We can explore the effect of
limited data and calculate more statistical properties of the data
by splitting it into smaller parts; here, we split the 47 individuals
into groups based on their frequencies of participation in fights.

The maximum predictability of time series data is related to
the information contained in its correlations, which can be quan-
tified using differences in entropies. The total possible entropy
(47 bits∕fight for 47 individuals) is significantly reduced first
due to the small average fight size. Knowing that the average fight
size is a, the remaining entropy is*

S0 ¼ a log2

�
ℓ

a

�
þ ðℓ − aÞ log2

�
ℓ

ℓ − a

�
; [S2]

where ℓ is the number of individuals. Considering all 47 indivi-
duals, S0 ¼ 17.4 bits∕fight, such that knowing the average fight
size carries 47 − 17.4 ¼ 29.6 bits∕fight of information. Yet this
information does not help in predicting individual withheld iden-
tities, because for each prediction we already know that some
individual was involved. Knowing the frequencies with which in-
dividuals appear does help us, however, and so does knowing any
higher order correlations. Thus to characterize the information in
the data useful for predicting withheld identities, we measure re-
ductions in entropy below S0.

For instance, the information contained in the frequency dis-
tribution that is useful for predicting withheld identities is

I1 ¼ S0 − S1; [S3]

where Si for i > 0 is the entropy of the maximum entropy distri-
bution over fights that matches i-wise correlations. Analogously,
I2 ¼ S0 − S2 is the useful information captured by the spin-glass
model, and IN ¼ S0 − SN represents all frequency and interac-
tion information of all orders†.

We use the NSB method (10, 11) to estimate these entropies in
our data. This method provides reliable estimates for the entropy
when the number of samples is much more than 2ℓ∕2, where ℓ is
the dimensionality of the data. With about 103 fight samples,
we cannot calculate the entropy including all individuals
(247∕2 ≈ 107), but we can calculate entropies for subsets of indi-
viduals (eg. 212∕2 ¼ 64). We therefore divide the 47 individuals
into four groups based on their frequency in fights (12 individuals
in quartiles 1–3, and 11 individuals in quartile 4). See Fig. S3.
Total entropy SN is measured using all 1,078 fights, S2 is mea-
sured using 105 samples from a spin-glass model fit to all fights,
and S1 and S0 are calculated analytically using

S1 ¼ −∑
i

f i log2 f i þ ð1 − f iÞ log2ð1 − f iÞ [S4]

and Eq. S2, where individual frequencies f i and average fight size
a are calculated over all fights.

Sparse Groups are Socially Meaningful. To determine to what extent
our sparse bases consist of socially meaningful groups, we calcu-
late the mean proportion of groups in each basis that match one
of three criteria: The group contains a policer, the group is made
entirely of one or more groups of related individuals, or the group
is made entirely of the alpha female or the alpha female plus one
or more groups of related individuals. As shown in Fig. S8, we
find that these combinations make up, on average, 72� 8% of
the groups in each sparse basis. Comparing to null sets of bases
that retain the same distribution of group sizes but replace indi-
vidual identities either at random (“random replacement”) or at
the same frequency at which individuals appear in fights (“fre-
quency replacement”), we find for both nulls significantly fewer
groups that match known kinship groups or contain the alpha
female and kinship groups and significantly fewer groups that
contain a policer for random replacement only. Thus frequency
models can provide information about critical social roles played
by individuals (e.g. policing), but sparse coding can additionally
extract higher-order structures (e.g., kinship ties).
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Fig. S1. The first 30 fights in the dataset, including only the 47 mature individuals (without Ud).

Fig. S2. Distribution of appearance frequency for the 47 mature adults in 1,078 fights.

A

B

Fig. S3. Analysis of data split into four quartiles of individuals based on their frequencies of appearance in fights. (A) Using data only within each quartile,
dimensions are small enough to accurately estimate entropies and thus the information captured by each maximum entropy model (I1 and I2) as well as all
possible interaction information (IN). Higher frequency quartiles carry more interaction information and in each case pair-wise interactions capture most or all
possible information. Error bars are uncertainties due to finite sample size estimated using the NSB method. (B) Our intuition holds that more captured in-
formation corresponds to better predictions. (Note that the frequency models sometimes perform worse than random due to overfitting.)
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Fig. S4. Comparing frequencies and covariances in the empirical data to those found in data generated from the sparse codingmodel at T ¼ 0.3018 (Top), the
spin-glass model (Middle), and the frequency model (Bottom), using 105 fight samples. Sparse coding fits individual frequencies about as well as other methods
and roughly fits only the largest covariances.

A B

Fig. S5. (A) The performance of the sparse coding model (with λ ¼ 10−1∕2) as the basis elements with magnitudes smaller than a varying cutoff are set to zero.
The number of remaining nonzero elements is varied by changing the cutoff. Because the performance drops off significantly only below about n ¼ 30, we use
the largest 30 elements to represent each basis in Fig. 5. The inset shows the number of groups remaining with one or more nonzero elements. (B) Regularizing
the spin-glass model: The performance of the spin-glass model as the size of the model is varied by including only individuals belonging to pairs with (circles)
largest covariance or (squares) most significant covariance. Overfitting is evident, because predictions are best for the regularized model restricted to 26
individuals (using the most significant covariances) instead of the full model which includes all 47 individuals.
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Fig. S6. A network representing the space of sparse solutions. Each node represents one group structure found in 500 randomly sampled local minima of Eq. 1
(using n ¼ 25). A node’s size is proportional to the number of minima that share that group structure (ranging from 1 to 6), and its color is darker if it has a
larger predictive success rate (ranging from white ¼ 10.4% to dark green ¼ 14.5%). Structures are connected with an edge when they differ by only a single
group. The best performers do not share highly similar structure, but common group structures do tend to cluster near each other.

Fig. S7. Network analogous to Fig. S6 for bases consisting of random combinations of groups (see text for details). Because there is much smaller similarity
between bases (smaller consensus) when bases are formed from random combinations of groups, the original sparse bases must contain structure more than
random collections of groups.
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Fig. S8. Sparse bases consist of socially meaningful groups significantly more often than two null models. The total height of each bar corresponds to the
mean proportion of groups in each basis that fit our definition of a socially meaningful group. Colors correspond to different types of social structures (see
text). Large gray error bars indicate standard deviation of the proportion of groups per basis, and small black error bars indicate standard deviation of the
mean for 500 bases over 100 null model instances.

Fig. S9. For models fit using data from all 47 individuals, the proportion of correct predictions as a function of the number of participants in the fight. With
more participants in a fight, it is easier for the sparse coding method to predict which other individuals are likely to be present.
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Table S1. Pearson’s correlation coefficients as a measure of the
generative models’ abilities to capture various statistics in the
data

PðAÞ PcðABÞ nðAÞ nðABÞ
In-sample
IGT [9] 0.62* 0.51* 0.80* 0.37*
Frequency 1.00* 0.01 −0.04 0.04
Spin-glass 1.00* 0.97* 0.94* 0.50*
Sparse coding 0.95* 0.76* 0.55* 0.27*
Out-of-sample
In-sample data 0.91* 0.60* 0.38* 0.15*
Frequency 0.91* 0.01 −0.02 0.05
Spin-glass 0.91* 0.57* 0.37* 0.07*
Sparse coding 0.84* 0.57* 0.25 0.05

PðAÞ are individual frequencies, PcðABÞ are pairwise correlations, nðAÞ
are average fight sizes conditional on individual appearances, and nðABÞ
are average fight sizes conditional on pair appearances (*p < 0.05).
Focusing on out-of-sample tests, spin-glass performs better than sparse
coding on conditional average fight sizes, and the two methods
perform comparably in predicting frequencies and pairwise correlations.

Table S2. Same as Table S1, using Spearman’s rank correlation
coefficients

PðAÞ PcðABÞ nðAÞ nðABÞ
In-sample
Frequency 1.00* 0.03 −0.07 0.04
Spin-glass 0.99* 0.94* 0.94* 0.57*
Sparse coding 0.90* 0.53* 0.47* 0.36*
Out-of-sample
In-sample data 0.74* 0.35* 0.38* 0.17*
Frequency 0.74* 0.02 0.02 0.06
Spin-glass 0.74* 0.32* 0.39* 0.09*
Sparse coding 0.65* 0.27* 0.17 0.08*
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