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MATERIAL AND METHODS 
 
Genetic and Environmental Risk Factors: 
1. Human Risk Datasets 
 Structural Datasets: All CNV locations are based on the March 2006 human 
reference sequence (National Center for Biotechnology Information [NCBI] Build 36.1) 
CNVs were identified from 2 independent cohorts, A and B. 
 Cohort A is comprised of 114 sporadic, non-syndromic subjects with isoloated 
tetralogy of Fallot (TOF), and 22 sporadic, non-syndromic trios with isolated hypolastic 
left heart syndrome (HLHS) were studied.  TOF is defined by a combination of 
malpositioned aorta that overrides both ventricles, ventricular septal defect, pulmonary 
stenosis, and right ventricular hypertrophies. HLHS is associated with defects in mitral 
valve, left ventricle, aortic valve, and the aorta.  Diagnosis of TOF or HLHS was 
obtained by non-invasive imaging (2D-echocardiography and/or MRI) and/or cardiac 
catheterization and/or surgery).  TOF cases were recruited from Brigham & Women’s 
Hospital, Children’s Hospital Boston and the Instituto do Coração da Universidade de 
São Paulo, Brazil (detailed in Ref. (1)). HLHS cases from Children’s Hospital Boston 
provided informed consent for participation.  No patients had clinical features of 
developmental syndromes, multiple major developmental anomalies, or major 
cytogenetic abnormalities.  The parents of affected subjects were not known to have 
either significant congenital or cardiac disease.  
 

CNVs were identified by genotyping using the Affymetrix Human Genome-Wide 
SNP Array 6.0 at the Broad Institute (TOF, HLHS and Controls) and Affymetrix 
(HapMap trios). Genotypes from the X and Y chromosomes were excluded from 
analyses.  114 TOF trios and 22 HLHS trios were analyzed using Birdseed v.1.5 with 
97.8 +/- 1.3% and 99.7 +/- 0.6% average call rates achieved, respectively.  Genotype 
information on the CEU and YRI HapMap trios was obtained directly from Affymetrix.  
The Birdseye(2) CNV-detection algorithm was used to identify CNVs using a confidence 
(LOD) score of 10 (corresponding to a true positive call rate > 90%) for the proband to be 
copy number (CN) variable (CN = 0,1,3 or 4). CNVs that corresponded to known copy 
number polymorphisms (CNPs)(3) or that were smaller than 20 kb were discarded.  
CNVs with ≥ 50% overlap with CNVs found in ≥ 1% of 2,265 control samples were 
designated CNPs.   Copy number variants due to cell line artifacts were identified in 
HapMap samples and were discarded(4).  Finally, the size distributions of the CNVs were 
plotted. One case CNV was significantly larger than the remaining CNVs and thus 
excluded from the statistical analysis. One translocation was observed in one TOF 
patient. Translocation breakpoints were mapped using the Affymetrix Human Genome-
Wide SNP Array 6.0 at the Broad Institute, see above. Translocations at this locus have 
earlier been observed in several patients with pulmonary stenosis. The final dataset, 
containing 403 CNVs from 136 patients, is provided seen in Dataset S1. 
 

Cohort B is comprised of  526 individuals with a diverse spectrum of isolated and 
syndromic CHD (Dataset S2). DNA samples were analyzed by Oligonucleotide-based 
array comparative genomic hybridization (arrayCGH) as previously described(5, 6). In 
brief, arrayCGH analysis was performed using a 105K-feature whole-genome microarray 

2



manufactured by Agilent Technologies (Santa Clara, CA) or a 135k-feature whole-
genome microarray manufactured by Roche NimbleGen (Madison, WI, USA). Genomic 
DNA was labeled with Cyanine dyes Cy3 or Cy5 using a DNA labeling kit (Roche 
Nimblegen). Array hybridization and washing were performed as specified by the 
manufacturer. Arrays were scanned using an Axon 4000B scanner (Molecular Devices, 
Sunnyvale, CA, USA) and analyzed using GenePix 6.1 (Molecular Devices), DNA 
Analytics 4.0 (Agilent Technologies, Santa Clara, CA, USA) and NimbleScan 2.5 (Roche 
NimbleGen). Results were then displayed using the custom arrayCGH analysis software 
Genoglyphix (Signature Genomic Laboratories). CNVs with ≥ 50% overlap with CNVs 
found in ≥ 1% of the Pharmacogenomics and Risk of Cardiovascular Disease (PARC 
cohort of 960 healthy individuals, published in Ref. (7)), were designated CNPs. Finally, 
the size distributions of the CNVs were plotted. Twelve CNVs were significantly larger 
than the remaining CNVs and thus excluded from the statistical analysis.   The final 
dataset, containing 1544 CNVs from 526 subjects, is provided in Dataset S2. 
 Sequence datasets: Genes that cause CHD by Mendelian mutations(8-18)  and that 
contain SNPs associated with CHD(19-26) were annotated from the literature and are 
provided in Dataset S4.  Only SNPs that have been convincingly associated in large, 
robust, case-control studies were included in these datasets.  
 
2. Genetic and Environmental Response Datasets  
 Mendelian Responder datasets: These include genes with significantly 
differentially expressed genes (using a Bonferroni correction) in mouse models of human 
CHD,  haploinsufficiency for Nkx2-5 or Gata4.  Mendelian mutations that produce 
haploinsufficiency of either gene results in dominant inheritance of CHD(27-29). 
 Gene expression was measured in the left ventricle (LV) and atrium (AA) as 
previously reported(30). The hearts from 3-week old male Nkx2-5+/- mice(31) (n=8) and 
Gata4+/- mice(32)  (n=5) and littermate wild-type controls (n>6) were isolated using 
protocol approved by institutional IACUC. Heart was immediately dissected and stored 
in RNA stabilization reagent, RNAlater (Ambion, Inc.). RNA samples were pooled 
according to genotypes, cDNA libraries were constructed, and sequenced using the 
Illumina Genome Analyzer, according to the manufacturer's protocol.  Statistical 
computations of differential gene expression was performed using Bayesian p-
statistic(33) (designed for analysis of digital gene expression profiles) and corrected for 
multiple testing using a Bonferroni correction. Genes significantly differentially 
expressed at P < 0.05 after corrections are  provided in Dataset S6.  
 We observed a high degree of consistency between perturbed genes in different 
tissues in the same haploinsufficiency mouse model (significant at P < 1.0e-20, in both 
mouse models using a hypergeometric distribution). This observation establishes that the 
gene sets in each model are reasonable proxies for genes perturbed across many tissues 
and developmental time points by Mendelian mutations in the relevant gene.  Human 
othologs of mouse genes were defined using Ensembl orthology mapping and human 
gene nomenclature annotations (http://www.ensembl.org/; http://www.genenames.org/). 
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  Environmental Responder dataset:  To consider genes that are significantly 
perturbed by the environment, we used a dataset of genes significantly differentially 
expressed across zebrafish heart development when exposed to retinoic acid, a known 
environmental teratogen that causes cardiac phenotypes(34).  Despite having a two-
chamber heart, zebrafish are clinically relevant model for human CHD, due to the high 
degree of conservation of genes and processes in heart development between 
vertebrates(35, 36). The human orthologs of zebrafish genes were identified using 
Affymetrix probe identifiers and Ensembl orthology mapping (http://www.ensembl.org/).  
 

We observe that the environmental and Mendelian responder genes overlap 
(significant at P = 4.4e-4, using a hypergeometric distribution), providing support for the 
strong conservation of genes involved in cardiogenesis across vertebrates(35, 36), and the 
functional convergence of diverse risk factors in CHD.   
 
3. Control datasets: 
 Six datasets were used for controls. These include the following: 1) Crohn’s 
disease responder genes,(37) that show significant differentially expression in Crohn’s 
disease; 2) Human gene that carry mutations involved in Crohn’s disease (MIM:612262; 
http://omim.org/entry/612262); 3) Genes in loci with SNPs that are associated with 
Crohn’s disease ( identified in genome-wide association studies); 4) Rare (population 
frequencies < 1%) structural variants observed in normal controls from the National 
Institute for Neurological Disorders and Stroke (NINDS, 2575 rare CNVs from 709 
healthy individuals);  5) Rare structural variants observed in the Human Genome 
Diversity Panel cohort (HGDP, 998 rare CNVs from 1064 healthy individuals). Both the 
NINDS and HGDP cohorts are published in Ref. (7).  Structural variants overlapping 
50% or more with variants present in 1% or more of the Pharmacogenomics and Risk of 
Cardiovascular Disease cohort (PARC, 960 healthy individuals, published in Ref. (7)) 
were deemed polymorphisms and were excluded; 6) 117 rare structural variants identified 
in Cohort C, 98 healthy control trios, studied by the same experimental procedures, 
pipeline and threshold as described (above) for Cohort A. All control datasets are 
available from www.cbs.dtu.dk/suppl/dgf/ . 
 
 
Statistical Analyses: 
1. Datasets  
 Statistical analyses of structural variants in Cohort A, B, C, and for gene 
expression analyses are provided above.  
 
2 Network Analyses 
 We recently derived, and experimentally validated, a series of functional 
molecular networks driving the development of distinct anatomical structures of the 
human heart.(38)  These networks describe physical interactions at the level of proteins 
between genes involved in normal heart development, in specific discrete anatomical 
structures such as the ventricular septum and outflow tract. Perturbations of such genes in 
mouse models cause ventricular septal defects, abnormal outflow tract development, 
abnormal heart valve development, atrial septal defects, and fifteen other anomalies that 
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occur in human CHD. In the following ‘heart developmental networks’ refer to this 
dataset. 
 
Functional convergence: In the outflow tract development network all seven gene sets 
showed functionally convergence, as depicted in the main Figure 1 and Dataset S4.  
 A permutation test was used to measure the likelihood of observing a similar 
degree of functional convergence, taking into consideration the quantitative overlap of 
each risk dataset with the network. This was done by measuring how often similar 
numbers (or more) genes from the individual risk datasets are present in 10,000 matched 
sets of proteins where the degree distribution of the proteins is conserved. In each random 
dataset the individual proteins were carefully modeled on equivalent proteins in the 
outflow tract development network, to ensure they had comparable degree distributions 
(amount of ties or interactions to other proteins in the protein interaction database 
InWeb(39-41)).  
 To exemplify: In the outflow tract development network, we observe that one 
protein is encoded by a gene in which SNPs are associated to risk of CHD; eight proteins 
are encoded by genes in which Mendelian mutations cause CHD, ten proteins are 
encoded by genes responding to CHD mutations; two protein are encoded by genes 
disrupted by CNVs in Cohort A; four proteins are encoded by genes disrupted by CNVs 
in Cohort B, four proteins are encoded by genes that are targets of environmental 
teratogens; and six proteins are encoded by genes responding to environmental teratogens 
(Figure 1 and Figure 2 in the main text) .  To assess the significance of this amount of 
functional convergence between the risk datasets, and the network we generate a null 
distribution by the following procedure: For random dataset 1 modeled on the outflow 
tract network, we denote the SNP risk dataset “present” if one or more random proteins 
are encoded by genes in the SNP risk dataset. Similarly, we denote the Mendelian 
mutation risk dataset “present” if eight or more random proteins are encoded by proteins 
in the dataset This procedure is repeated for each risk dataset, and for random set 1 we 
note the amount of “present” risk datasets, and we repeat the procedure 10,000 times. We 
then count the amount of times that an equal or more amount of risk datasets are 
annotated as “present” in the 10,000 random proteins sets (compared to seven “present” 
risk datasets in the actual outflow tract development network), which constitutes the null 
distribution. In the case of the outflow tract development network, the highest amount of 
“present” risk in any of the random protein sets is five. Thus, we have empirically 
established that the functional convergence by the risk and responder datasets in the 
outflow tract development network is significant at P<1.0e-4. This procedure is repeated 
for each developmental network.    
 To determine if the observed propensity for functional convergence of the risk 
datasets (described in the main text) are a general principle in other biological systems 
underlying relevant structures in the developing human heart, we carried an analogous 
analysis for the entire set of heart developmental networks (Dataset S4, and 
Supplementary Figs 1-16). In 14 of 16 networks we observe significant functional 
convergence of the datasets of risk factors after adjustment for multiple hypothesis testing 
using a Bonferroni correction.  
 Second, we analyzed the overlap of the joint distribution of all seven gene sets 
(main text Table 1 and 2) and each of the heart developmental networks. To be 
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conservative, we only analyzed the independent and non-redundant overlap between the 
seven datasets and the network in question, although a few genes from the network occur 
in several of the seven datasets. A hypergeometric distribution was used to test the 
significance of these overlaps, and the significances were corrected for multiple testing 
using a Bonferroni correction. In 15 of the 19 networks there was a significant 
enrichment of genes from the risk datasets (1.6e-7 < adj. P < 0.33, Dataset S5). Together, 
these two tests illustrate the propensity for functional convergence of the risk and 
responder datasets in networks driving the development of the human heart.  
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Functional convergence of risk factors in atrio-
ventricular canal development

Supplementary Fig. 1.  Functional convergence of CHD risk factors in a molecular network underlying the development of the 
atrioventricular canal.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in 
development of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed 
with the Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian 
responders (sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, 
blue). Proteins encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded 
accordingly.  Contact (edges) between the circles represents physical interactions between the proteins.  The propensity for functional 
convergence of proteins encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared 
to a random expectation. (b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs 
to. Note that only few genes (red boxed) are identi�ed in multiple datasets.
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Functional convergence of risk factors in atrio-
ventricular valve development

Supplementary Fig. 2.  Functional convergence of CHD risk factors in a molecular network underlying the development of the 
atrioventricular valves.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved 
in development of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed 
with the Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian 
responders (sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, 
blue). Proteins encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded 
accordingly.  Contact (edges) between the circles represents physical interactions between the proteins.  The propensity for functional 
convergence of proteins encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared 
to a random expectation. (b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs 
to. Note that only few genes (red boxed) are identi�ed in multiple datasets.
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Supplementary Fig. 3.  Functional convergence of CHD risk factors in a molecular network underlying the proliferation of the cardio-
myocytes.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in this devel-
opmental process (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the Adobe 
zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders 
(sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins 
encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact 
(edges) between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins 
encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared to a random expectation. 
(b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few 
genes (red boxed) are identi�ed in multiple datasets.

Functional convergence of risk factors in cardio-
myocyte proliferation 
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Functional convergence of risk factors in the 
development of the endocardial cushions

Supplementary Fig. 4.  Functional convergence of CHD risk factors in a molecular network underlying the development of the 
endocardial cushions.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in 
development of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed 
with the Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian 
responders (sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, 
blue). Proteins encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded 
accordingly.  Contact (edges) between the circles represents physical interactions between the proteins.  The propensity for functional 
convergence of proteins encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared 
to a random expectation. (b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs 
to. Note that only few genes (red boxed) are identi�ed in multiple datasets.

10



Supplementary Fig. 5.  Functional convergence of CHD risk factors in a molecular network underlying the development of the heart 
shape.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in this develop-
mental process (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the Adobe zoom 
tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders (sequence, 
green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins encoded by 
genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact (edges) 
between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins encoded by 
genes in CHD risk and responder datasets within the network was signi�cant (adj. P  = 0.029) compared to a random expectation. (b) A higher 
resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few genes (red 
boxed) are identi�ed in multiple datasets.

Functional convergence of risk factors in devel-
opmental processes of the heart shape
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Functional convergence of risk factors in devel-
opment of the heart tube

Supplementary Fig. 6.  Functional convergence of CHD risk factors in a molecular network underlying the development of the heart 
tube.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in development of 
this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the Adobe 
zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders 
(sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins 
encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact 
(edges) between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins 
encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared to a random expectation. 
(b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few 
genes (red boxed) are identi�ed in multiple datasets.
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Supplementary Fig. 7.  Functional convergence of CHD risk factors in a molecular network underlying the development of the 
myocardial �bers.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in 
development of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed 
with the Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian 
responders (sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, 
blue). Proteins encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded 
accordingly.  Contact (edges) between the circles represents physical interactions between the proteins.  The propensity for functional 
convergence of proteins encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared 
to a random expectation. (b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs 
to. Note that only few genes (red boxed) are identi�ed in multiple datasets.

Functional convergence of risk factors in the 
development of the myocardial �bers
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Functional convergence of risk factors in looping 
of the heart tube

Supplementary Fig. 8.  Functional convergence of CHD risk factors in a molecular network underlying the looping of the heart tube.  
(a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in development of this 
heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the Adobe zoom 
tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders (sequence, 
green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins encoded by 
genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact (edges) 
between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins encoded by 
genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared to a random expectation. (b) A higher 
resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few genes (red 
boxed) are identi�ed in multiple datasets.
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Supplementary Fig. 9.  Functional convergence of CHD risk factors in a molecular network underlying the development of the 
myocardial trabeculae.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved 
in development of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed 
with the Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian 
responders (sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, 
blue). Proteins encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded 
accordingly.  Contact (edges) between the circles represents physical interactions between the proteins.  The propensity for functional 
convergence of proteins encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared 
to a random expectation. (b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs 
to. Note that only few genes (red boxed) are identi�ed in multiple datasets.

Functional convergence of risk factors in the 
development of the myocardial trabeculae
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Functional convergence of risk factors in the 
development of the semilunar valves

Supplementary Fig. 10.  Functional convergence of CHD risk factors in a molecular network underlying the development of the 
semilunar valves .  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in 
development of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed 
with the Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian 
responders (sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, 
blue). Proteins encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded 
accordingly.  Contact (edges) between the circles represents physical interactions between the proteins.  The propensity for functional 
convergence of proteins encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared 
to a random expectation. (b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs 
to. Note that only few genes (red boxed) are identi�ed in multiple datasets.
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Supplementary Fig. 11.  Functional convergence of CHD risk factors in a molecular network underlying the development of the sinus 
venosus .  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in development 
of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the Adobe 
zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders 
(sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins 
encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact 
(edges) between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins 
encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared to a random expectation. 
(b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few 
genes (red boxed) are identi�ed in multiple datasets.

Functional convergence of risk factors in the 
development of the sinus venosus 
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Functional convergence of risk factors in the 
organization of the myocardium

Supplementary Fig. 12.  Functional convergence of CHD risk factors in a molecular network underlying the organization of the 
myocardium.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in develop-
ment of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the 
Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders 
(sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins 
encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact 
(edges) between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins 
encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared to a random expectation. 
(b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few 
genes (red boxed) are identi�ed in multiple datasets.

18



Supplementary Fig. 13.  Functional convergence of CHD risk factors in a molecular network underlying the development of the 
myocardium.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in develop-
ment of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the 
Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders 
(sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins 
encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact 
(edges) between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins 
encoded by genes in CHD risk and responder datasets within the network was not signi�cant (adj. P = 1.0) compared to a random expecta-
tion. (b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few 
genes (red boxed) are identi�ed in multiple datasets.

Functional convergence of risk factors in the 
development of the myocardium
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Functional convergence of risk factors in the 
development of the heart size 

Supplementary Fig. 14.  Functional convergence of CHD risk factors in a molecular network underlying the development of the heart 
size.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in development of 
this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the Adobe 
zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders 
(sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins 
encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact 
(edges) between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins 
encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P = 0.057) compared to a random expectation. 
(b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few 
genes (red boxed) are identi�ed in multiple datasets.
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Supplementary Fig. 15.  Functional convergence of CHD risk factors in a molecular network underlying the development of the 
myocardial wall.  (a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in 
development of this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed 
with the Adobe zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian 
responders (sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, 
blue). Proteins encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded 
accordingly.  Contact (edges) between the circles represents physical interactions between the proteins.  The propensity for functional 
convergence of proteins encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared 
to a random expectation. (b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs 
to. Note that only few genes (red boxed) are identi�ed in multiple datasets.

Functional convergence of risk factors in the 
development of the myocardial wall
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Functional convergence of risk factors in the 
alignment of the out�ow tract 

Supplementary Fig. 16.  Functional convergence of CHD risk factors in a molecular network underlying the alignment of the out�ow 
tract .(a) Functional convergence (at the level of proteins) between risk factors in CHD is illustrated in a network involved in development of 
this heart structure (detailed in Ref. 38). Network circles (nodes) represent gene-encoded proteins (gene names identi�ed with the Adobe 
zoom tool) that are colored to denote whether these are found in risk datasets of Mendelian mutations, SNPs, or Mendelian responders 
(sequence, green), CNVs from cohort A or cohort B (structure, gold) or environmental risk or responder datasets (environment, blue). Proteins 
encoded by genes represented in more than one risk or responder dataset are marked with a red circle and color coded accordingly.  Contact 
(edges) between the circles represents physical interactions between the proteins.  The propensity for functional convergence of proteins 
encoded by genes in CHD risk and responder datasets within the network was signi�cant (adj. P < 0.019) compared to a random expectation. 
(b) A higher resolution table indicating the speci�c risk or responder datasets a given gene in the network belongs to. Note that only few 
genes (red boxed) are identi�ed in multiple datasets.
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Supplementary Notes: 
 
The effect of gene recycling between the networks:    
 The involvement of the same genes across several stages in heart development is 
well recognized and was identified in our previous analyses of heart development 
networks that we used for these studies (42).  However, because these networks are 
unique in their specific gene content, sets of pathways each contains and are separated in 
time and space during cardiac development, each network constitutes a discrete 
functional entity, despite sharing of genes.  
 We assessed the potential effect of recycled genes within different networks on 
our analyses by assessing the degree of overlapping genes in two networks where the risk 
factor datasets did not significantly converge: myocardial development and heart size.  
Although 74% of genes in the myocardial development network were also found in other 
networks, the different risk and responder genes did not significantly converge on the 
myocardial development network (Supplementary Figure 13).  Similarly, the heart size 
network includes 92% of genes found in other networks, including FGF receptor pathway 
genes and NOTCH pathway genes, both of which have well recognized roles in heart 
development (Supplementary Figure 14).  Again, despite this considerable gene sharing, 
we also observed no converge on the heart size network by the risk and responder genes.  
 We also analyzed if the risk and responder genes significantly converged in the 
set of 228 non-repetitive genes (that encode proteins which occur in one network only) 
across all networks, in comparison to 10,000 randomly matched sets.  There was 
significant convergence (P = 0.004, using a permutation test) by the risk and responder 
genes on this dataset.  Taken together these data support our conclusion that the strong 
signals observed are independent of gene sharing between different networks, and 
indicate that both the risk and responder datasets functionally converge on the proteins 
participating in heart developmental networks. 
 
Enrichment of heart developmental genes in the risk and responder datasets: 
 For the analysis in Figure 5 (main text), we measured the fraction of genes 
affected in each of the 19 gene sets represented in the corresponding protein networks.  
The number of affected genes was compared to a dataset-specific null distribution of 19 
random gene sets to determine the fractions of genes expected to be affected by chance 
given the dataset’s size and composition.  Random gene sets for the null distribution were 
modeled using the method described above. For each dataset, network enrichments are 
compared to the corresponding null distribution using a conservative non-parametric two-
sample Kolmogorov–Smirnov test.  
 To corroborate the analysis outlined above and to normalize for size differences 
between the data sets we additionally measured enrichment as the probability of 
observing the amount of genes from a given risk or responder dataset in each of the 
networks. The P value of overlaps between a given network-dataset pair were calculated 
using a hypergeometric distribution and compared to a dataset-specific null distribution 
of P values based on permuted networks. P values are plotted after transformation using 
the negative base-10 logarithm. This test shows that all risk and responder datasets 
significantly more enriched for heart developmental genes than expected by random 
(5.0e-4 < P < 0.002 for the individual datasets Supplementary Fig. 17). 
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Supplementary Fig. 17 
 
 
 

      
 
 
 
 
 
 
 
 
Enrichment of heart developmental genes in six control datasets simulating the 
CHD datasets:    
 We applied both enrichment tests (main text Figure 4 and Supplementary Fig. 
17) to six independent biological control datasets not associated with congenital heart 
disease. Dataset one was genes perturbed (significantly differentially expressed), in 
Crohn’s disease. This dataset is denoted Crohn’s responder genes, and is detailed in Ref. 
(37), datasets two is genes in which inherited mutations are thought to be involved in 
Crohn’s disease (MIM:612262; http://omim.org/entry/612262), dataset three is genes in 
loci definitively associated to Crohn’s disease through SNPs identified in genome-wide 
association studies.  Datasets four and five are rare (observed at population frequencies < 
1%) structural variants observed in normal controls from the National Institute for 
Neurological Disorders and Stroke (NINDS, 2575 rare CNVs from 709 healthy 
individuals), and the Human Genome Diversity Panel cohort (HGDP, 998 rare CNVs 
from 1064 healthy individuals). Both the NINDS and HGDP cohorts are recently 
published in Ref. (7). Copy number polymorphisms were identified as structural variants 

Supplementary Fig. 17. Enrichment of heart developmental genes in risk and responder datasets. 
Network perturbations as determined by the test described in the Supplementary Materials and Methods. 
The results corroborate the enrichment analysis from the main text Figure 4. Distributions are plotted as 
their median, first and third quartile (box), minimum and maximum (whiskers). The significance of the 
difference between the enrichment P value distributions for a given risk dataset is indicated by the P value 
above the relevant distributions. 
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overlapping 50% or more with variants present in 1% or more of the Pharmacogenomics 
and Risk of Cardiovascular Disease cohort (PARC, 960 healthy individuals, published in 
Ref. (7)). The sixth dataset (cohort C) was generated on 98 healthy control trios by the 
same pipeline, thresholds, and experimental procedures as described for Cohort A above. 
This dataset consists of 117 rare CNVs in 98 healthy individuals. Together these datasets 
cover most of the datatypes we have tested CHD. None of the control datasets showed 
significant enrichment for heart developmental genes.  
 
Supplementary Fig. 18.  

 
 
 
 
  
 
 
   
 
Comparative analysis of human risk datasets in Figure 4 
 

Supplementary Fig. 18. Enrichment of heart developmental genes in six biological control datasets 
covering all datatypes represented in our CHD study. We applied the enrichment tests (described 
Fig. 4 (main text)and Supplementary Fig. 17) to the six control datasets. (a) and (b) As expected, none 
of these biological control datasets are enriched for heart developmental genes, control datasets are 
underlined in red. For comparison, the datasets from Fig. 4 and Supplementary Fig. 17 are shown as 
‘CHD risk and responder datasets’ underlined in black. The test seen in (a) is equivalent to the test 
depicted in the main text Fig. 4, the test in (b) is equivalent to the test depicted in the Supplementary 
Fig. 17. Distributions are plotted as their median, first and third quartile (box), minimum and maximum 
(whiskers). The significance of the enrichment is indicated by the P value above the relevant 
distributions. Details can be seen by zooming with the Adobe zoom tool. 
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Despite the lack of functional convergence of risk factors in Table 1 on the same 
genes, there are some examples of overlaps, illustrating interesting biological principles. 
Of a total of 1243 genes perturbed either by CNVs and translocations, Mendelian 
mutations, SNPs or the environment, 17 fall into several different datasets illustrating two 
biological principles. First, the subset of structural variants that are known to be de novo 
occurrences significantly affect genes also associated with Mendelian mutations. Of 11 
de novo CNVs in the dataset of structural variants associated with sporadic non-
syndromic CHD, five contain genes also associated with Mendelian mutations(1) 
(significant at P = 4.9e-5, using a hypergeometric distribution). These genes are 
NOTCH1, JAG1, RAF1, CRELD1, and TBX1 (1), which shows that inherited gene 
mutations, and de novo structural DNA changes affecting these genes have similar 
biological effects although such events are fundamentally different at the level of 
genomic structure. Second, common SNPs in genes with Mendelian mutations, and SNPs 
in environmental target genes, can in some cases themselves be associated with risk in 
cardiac phenotypes. For example, folate is an environmental risk factor in cardiac 
phenotypes, and is metabolized by interacting with methylenetetrahydrofolate (MTHFR). 
Common SNPs in MTHFR are associated with increased risk of cardiac phenotypes(21). 
 
Support for the model from animal models: 
 Our model is in part supported by recent data from animal models. Mice with combined 
heterozygous mutations of eTbx5/Gata4 and eTbx5/Nos3 (eTbx5 being a deletion targeted to 
endothelial cells) display more severe ASD phenotypes than eTbx5+/- heterozygous mice(43). 
Nos3, which encode an endothelial form of NOS (nitric oxide synthase), is regulated by 
numerous environmental factors. Thus, the increase in phenotypic effect from combined 
heterozygous mutations of eTbx5/Gata4 and eTbx5/Nos3 provides limited experimental support 
for our model of gene-gene and gene-environmental interactions in CHD.    
 
 
Limitations of our analysis 
 We recognize several limitations in this study. First of all cardiac development is a 
dynamic process, and it is possible that the lack of direct convergence for many of the genetic 
risk factors in CHDs is due to the fact that many human risk factors are currently unknown and 
that CHDs only represent the extreme tails of a continuous phenotypic distribution. These 
extreme cases are more readily identified than subtle phenotypes in individuals who are within 
normal spectrum of phenotypic variation. It is unlikely that common variation (such as SNPs) 
will play a large role in CHDs due to purifying natural selection against common alleles that 
confer elevated relative risk for these phenotypes.  This caveat is highlighted in studies of 
continuous, and less severe, cardiac phenotypes such as QT interval variation, where SNPs 
directly converge on genes that are also identified in Mendelian long QT syndrome, and which 
play a role in mediating cardiac ion currents (44, 45).  

Secondly, the data from animal models have multiple limitations. It is likely that the 
responder datasets we identify in the mouse models are incomplete due to differences between 
gene expression patterns in embryonic hearts compared to post natal hearts. Third, available 
genome-wide datasets on environmental responder genes were limited to data from a zebrafish 
model of gene expression response to high doses of retinoic acid. We did observe significant 
functional convergence of this responder data set with the genes responding to Mendelian 

26



 

mutations. However, if more datasets become available in the future, analysis of additional data 
from environmental models could build a more complete picture of the functional effects from 
environmental risk factors.      
 
Genes emerging from these analyses 
 Our analyses incorporated risk and responder data sets that span more than 2100 unique 
genes.  While each dataset was enriched for genes encoding for proteins in the heart 
developmental networks, only 15 genes were found in multiple risk or response data sets as well 
as in one of the 19 heart developmental networks. ACTC1, CCND2, FOXM1, IGFBP5, JAG1, 
MYH6, NOTCH1, PCSK6, PLCB1, RAF1, RARG, RARA, TBX5, TMOD1, and TWIST1.  Seven 
of these genes (CCND2, FOXM1, IGFBP5, PCSK6, PLCB1, TWIST1, and TMOD1) are not 
known to function in human Mendelian causes of CHD nor are these genes the direct targets of 
teratogens.  Further study of these genes in cardiac development and CHD may be warranted.  
There is some evidence to connect these genes to heart development. Targeted deletion of the 
mouse homologue of four of these genes (Foxm1, Pcsk6, Twist1 and Tmod1) results in heart 
defects, supporting their involvement in cardiac development (46-49). Studies of embryonic 
(E9.5) mice have defined the cell cycle control gene Ccnd2 as a direct target of Gata4 in cardiac 
myocytes (50).   Although there is no direct evidence to implicate PLCB1 in heart development, 
the enzyme encoded by this gene, phosphoinositide-specific phospholipase C beta 1, is activated 
by G protein-coupled receptors and catalyzes the formation of inositol 1,4,5-trisphosphate (IP3).  
IP3 is an intracellular messenger that upon binding of receptors induces calcium release from 
intracellular reservoirs and may initiate pacemaking activity in the heart tube (51). Murine IP3 
receptors are expressed at E8.5 (52) and targeted deletion of two subtypes (Ip3r1 and Ip3r2) 
results in hypoplasia of the right ventricle and outflow tract. Presently, there is no direct 
evidence for involvement of IGFBP5 in heart development. However, IGFBP5 regulates the 
activity of insulin-like growth factor (IGF) -I and -II (53) and IGF-I signaling is involved in 
regulation of heart growth (54).  
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