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Derivation of Eqs. 7 and 8.We show here how Eqs. 7 and 8 are de-
rived. We begin by defining a quantity IP as

IPðΔPÞ ¼
Z

∞

−∞
Kðx; ΔPÞjU0ðxÞj2dx [S1]

such that IL ¼ IPð−P∕2Þ and IR ¼ IPðP∕2Þ. Substituting Eq. 2
into Eq. S1 an introducing f ðξiÞ ¼ expð−kμðξiÞÞ, we obtain
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Note that for clarity, in this section we write ξi instead of ξiðxÞ.
Following the definition of Eq. 6, repeated here for clarity

h : ½−W∕2; W∕2� → R ξ ↦ zodϕ 0ðξÞ þMξ;

we introduce a partition Ω ¼ ½−W∕2; W∕2� ¼∪i Ωi and hi such
that each hi is injective:

hi : Ωi → R ξ ↦ hðξÞ [S3]

finally allowing us to define pi as

pi : hðΩiÞ → Ωi x ↦ h−1
i ðxÞ: [S4]

For brevity we introduce
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which enables us to write Eq. S2 as
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where * represents complex conjugation andR the real part of a complex valued quantity. Up until now the summation indices depend
upon the value of x and, in particular, which hðΩiÞ it is a member of. We now change the variable of integration according to x ¼ hðξÞ.
Noting that dx ¼ h 0ðξÞdξ and that h 0ðξÞ ¼ zodg 0 0ðξÞ we can write Eq. S6 as
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In the polychromatic case for which we are principally interested,
the second term in Eq. S7 tends to zero due to the rapid oscilla-
tion of the integral kernel as k varies. This is a result of the loss of
visibility observed in any interference experiment when polychro-
matic light is employed. In the monochromatic case it is necessary
to assume that the object completely covers the open region of
apertureA1. Then, following Gureyev andWilkins (1), by making
the assumption that

j∂m
ξ ϕðξÞj ≪ ðZ 0Þ1−m; m2 > 0; [S8]

where Z 0 ¼ zsozod∕ðzso þ zodÞ, g 0ðξ; xÞ will have at most one so-
lution for each value of x, which removes the second term in
Eq. S7. Upon substituting back f ðξÞ ¼ expð−kμðξÞÞ into Eq. S7
we obtain

IPðΔPÞ ¼ λzod
Z
Ω
KðhðξÞ; ΔPÞ expð−2kμðξÞÞdξ

from which Eqs. 7 and 8 are directly obtained.

Discussion on a Possibly Erroneous Phase Gradient. Observation of
Eq. 13 reveals that it is possible for a sample possessing only
an absorption gradient to generate a possibly erroneous phase
gradient. This would occur if a difference between IR and IL
was produced by an absorption gradient. Such an erroneous
phase gradient is, however, made practically negligible by using
an incoherent source because the extended source acts to average
the absorption gradient over a single aperture. Further, in the
case of a point source, we have developed a method for correcting
for this erroneous phase gradient. Because this paper is focused
on incoherent sources we first give an example that demonstrates
how using an incoherent source mitigates this problem. We then
derive the method for correcting for an erroneous phase gradient.

To demonstrate how using an incoherent source mitigates the
problem of erroneous phase gradient, we have performed some
simulations for a wedge-like object composed of sapphire, using a
rigorous model outlined in detail in previous publications (2, 3).
We made two approximations in performing this simulation be-
cause we do not need to make comparisons with experiment as
part of this test. The first approximation is the spectrum because
it is difficult to measure the spectrum of our source because of the
intense flux. We thus employed a simulation by Boone et al. (4)
that assumes a source geometry partly different to that of the Ri-
gaku 007HF. The simulated spectrum is plotted in Fig. S1. The
second approximation is that we modelled δ and β for sapphire
with the relationship

δðEÞ ¼ δEref

�
Eref

E

�
2

; [S9]

βðEÞ ¼ βEref

�
Eref

E

�
4

; [S10]

where Eref ¼ 20 kV is a reference photon energy and δEref
¼

2.03 × 10−6 and βEref
¼ 3.99 × 10−9 are, respectively, the values

of δ and β at the reference energy (5). This approximation means
that the simulated results might differ slightly from that measured
experimentally as it neglects absorption edges. However, it is ade-
quate because we wish only to demonstrate a trend for typical
materials.

The simulation then progressed by simulating the XPCI image
for both setups in Fig. 1 for the configuration used to image the
ground beetle. The sample was a wedge-like object as depicted in
Fig. 1 with a thickness at the centre of 200 μm. Four different
slopes (1, 2, 3, and 4) were considered for a range of source sizes
between an ideal point source to source FWHM of 100 μm. Two

simulations were performed in each case, one with the correct
distribution of δðEÞ and one with δðEÞ ¼ 0. The erroneous phase
gradient error was then defined as

ϵϕ̄ 0 ¼ ϕ̄ 0jδðEÞ¼0

ϕ̄ 0jδðEÞ¼δEref ð
Eref
E Þ 2

: [S11]

The erroneous phase gradient is plotted for a range of source
FWHM in Fig. S2, which shows that the erroneous error reduces
as the source FWHM increases. In all of our experiments where
an incoherent source has been used the erroneous phase gradient
has been an insignificant source of error.

Even though the subject of this paper is incoherent sources we
would like to point out that it is possible to rigorously correct for
the erroneous phase gradient when a point source is used. We
present the mathematical analysis of this technique here. Instead
of assuming that μ is constant within a single open region of the
presample aperture we allow it to vary linearly. Because we con-
sider the geometry in Fig. 1, without loss of generality, we expand
both ϕ and μ in Taylor series about ξ ¼ 0 as

ϕðξÞ ¼ ϕð0Þ þ ∂ϕ
∂ξ

����
0

ðξ − ξsÞ; [S12]

μðξÞ ¼ μð0Þ þ ∂μ
∂ξ

����
0

ðξ − ξsÞ; [S13]

where we have included the parameter ξs to allow subpixel scan-
ning of the sample to be modelled. Upon substituting both of
these expressions into Eq. 13 for the case of a point source, direct
evaluation without approximation yields

IR − IL ¼ C expð−2kμð0ÞÞ expð2k∂μ∕∂ξj0ξsÞ
k∂μ∕∂ξj0

· ½coshðk∂μ∕∂ξj0W Þ − expð2k∂μ∕∂ξj0zodϕ 0∕MÞ� [S14]

IR þ IL ¼ C expð−2kμð0ÞÞ expð2k∂μ∕∂ξj0ξsÞ
k∂μ∕∂ξj0

sinhðk∂μ∕∂ξj0W Þ
[S15]

IR − IL
IR þ IL

¼ expð2k∂μ∕∂ξj0zodϕ 0∕MÞ − coshðk∂μ∕∂ξj0W Þ
sinhðk∂μ∕∂ξj0W Þ ;

[S16]

where coshðk∂μ∕∂ξj0W Þ leads to the potentially erroneous phase
gradient. Suppose now that measurements are taken for scanning
steps ξs ¼ −Δξ; 0; Δξ where Δξ is a subpixel quantity.

For example, in the ground beetle and phantom images, Δξ
was approximately 8 μm,which is calculated by dividing the pitch
of A1 by the number of subpixel scanning positions used to ac-
quire the image. Then ∂μ∕∂ξj0 may be extracted as

k
∂μ
∂ξ

����
0

¼ 1

4Δξ
log
� ðIR þ ILÞjξs¼Δξ

ðIR þ ILÞjξs¼−Δξ

�
; [S17]

which allows k∂μ∕∂ξj0W to be calculated. In the case of a large
phase gradient, unlikely to be encountered in practice, Eq. S16
may be inverted without approximation as

ϕ 0 ¼ log
�
IR − IL
IR þ IL

����ξs¼0

sinhðk∂μ∕∂ξj0W Þ

þ coshðk∂μ∕∂ξj0W Þ
�

M
2kzod∂μ∕∂ξ

; [S18]
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however, by substituting logð1þ xÞ ≈ x, sinhðxÞ ≈ x, and coshðxÞ ≈
1þ x2∕2 for small x, we obtain

ϕ 0 ¼
�
IR − IL
IR þ IL

����ξs¼0

þ 1

2
k∂μ∕∂ξj0W

�
P

2zod
: [S19]

Eqs. S18 and S19 thus show that the erroneous phase gradient
may be corrected because Eq. S17 allows k∂μ∕∂ξj0W to be cal-
culated. This means that whereas only two images are required to
perform quantitative XPCI with an extended source, more
images may be required if a point source is used in the presence
of strong absorption gradients.

Further Explanation of Fig. 2 C and D. An interesting question that
arises from Fig. 2 is why the positive peaks in the titanium raw
profiles are nulled to form the absorption image. Although this
must be the case due to energy conservation it is accommodated
in the raw profiles due to an asymmetry that can be observed in
the magnified plots of the titanium profiles from Fig. 2 as shown
in Fig. S3. These raw profiles, normalized only by the equivalent
profile in the absence of a sample (i.e., “flat fielded”), show that
the profiles are in fact offset by a subpixel amount. Further, they
also show a change in the slope of the profile where the negative

peak would be in less absorbing samples. This is indicated by the
arrow associated with configuration IR in Fig. S3. The physical
reason for this is explained by noting the two distinct imaging re-
gimes that are responsible for the profiles in Fig. S3. The first and
perhaps most general regime is that depicted in the IR configura-
tion of Fig. S3 in which the system is sensitive to both sample
absorption and phase gradients. In this case, when imaging a low-
absorbing sample, a negative peak would be observed if photons
originally incident upon the open region of A2 are refracted into
the absorbing region of A2. In the case of a highly absorbing sam-
ple such as titanium, the reduction in photons due to refraction is
less than the maximum reduction observed due to absorption in
the sample. Thus a negative peak is not produced. In the alternate
regime depicted in the IL configuration a positive peak results
because photons originally incident upon the absorbing region
of A2 are refracted into the open region thus producing a signal
greater than that when no sample is present. The asymmetry
arises essentially because the profile minimum can be determined
by absorption or refraction whereas the peak is determined by
refraction only. It should be noted that we include titanium as
the pathological case because nowhere have we seen phase
and absorption retrieval techniques demonstrated for such highly
absorbing samples.
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Fig. S1. Plot of photon fluence from an X-ray source with a Mo target and a tube voltage of 35 kV (1).

1 Boone J, Fewell T, Jennings R (1997) Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography. Med Phys
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Fig. S2. Plots of erroneous phase gradient as a proportion of the actual phase gradient for a range of source FWHM.
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Fig. S3. Magnified plots of IL and IR from Fig. 2C as well as the image and sample configurations (not to scale) that produced the positive and negative peaks.
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