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Supplementary Figure 1. Linearity of tyramide amplification protocol
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In order to improve the signal to noise ratio in the mRNA in situ hybridizations, we use a 
tyramide amplification reaction that amplifies the signal of the antibodies used to detect 
the RNA probes (Luengo Hendriks et al., 2006). To compare tyramide amplified signal to 
directly labeled antibodies in single embryos and ensure the linearity of this 
amplification step, we hybridized a lacZ-DNP labeled probe to one of the transgenic 
reporter lines. We then detected the DNP probes using an Alexa 555-labeled anti-DNP-
HRP antibody. We conducted the tyramide amplification using coumarin. We could thus 
compare the Alexa 555 and coumarin signals directly. We stained nuclei using SYTOX 
Green and imaged the embryos using our standard protocol. We then processed the 
image stacks into PointClouds to segment the nuclei are segmented and un-mix the 
channels. Because the Alexa 555 signal becomes increasingly difficult to detect with 
embryo depth, we compared the coumarin and Alexa 555 signals in the top third of each 
embryo. We identified the “on” cells—those expressing the lacZ reporter—by 
thresholding using the same mode + 1 standard deviation metric described in Equation 
(7) of the main text. We then fit a line through these “on” cells. 

Though this experiment is not a perfect test of the linearity of the signal to RNA 
concentration, since we have not measured the linearity of the anti-DNP-HRP antibody, 
it demonstrates that a saturation of the amplification reaction is unlikely.  Based on the 
inspection of plots for 10 embryos, we found no evidence of a bend in the plot that 
would be expected if the amplification reaction was reaching saturation. A  plot for a 
typical embryo is shown above. The circle encloses the points corresponding to the “off” 
cells, and the line is the linear fit through the “on” cells.  In addition, as can be seen in 
Figure S1 of (Fowlkes et al., 2011), when histograms are plotted to show the distribution 
of intensity values found in the gene expression atlas, there is no peak at the high end 
of the spectrum, as would be expected if the amplification reaction was progressing until 
saturation.
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Supplementary Figure 2. Fitting subsections of the dmel endogenous hb pattern

Here we show the results of fitting a linear model to the posterior 36% of the dmel 
endogenous hb expression data. The dotted bar gives the AUC resulting from a model 
that includes all the data points; in this model the inputs of each time point are used to 
fit the output from the same time point. The “delay” bar gives the AUC resulting from 
using the inputs from one time point to fit the output of the subsequent time point. The 
remaining bars show the results of excluding the data points from one time point at a 
time. The exclusion of some time points, which correspond to a similar reduction in the 
size of the dataset as the “delay” model, give similar or better results than the time 
delay. 
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Supplementary Figure 3. Calculation of the ROC AUC

Here we show a receiver operating characteristic (ROC) curve for the dmel best fit 
shown in Figure 3A. The shaded area below the curve corresponds to the area under 
the curve (AUC). The ROC curve shows the tradeoff between the true positive rate, the 
fraction of experimentally-determined “on” cells that are correctly predicted, and the 
false positive rate, the fraction of experimentally-determined “off” cells that are 
incorrectly predicted. As the cutoff that separates “on” and “off” predictions is loosened, 
both the true and false positive rates increase. The AUC summarizes the entire curve as 
a single number. A random classifier has an AUC of 0.5, and a perfect classifier has an 
AUC of 1. This ROC curve has an AUC of 0.95, indicating that a high true positive rate 
can be achieved simultaneously with a small false positive rate.
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Supplementary Figure 4. Model results using r2

Here we show the modeling results using an r2 score, instead of the ROC AUC. (A) 
corresponds to Figure 3A, endogenous hb modeling, (B) is Figure 5A, transgenic lacZ 
modeling, and (C) is Figure 6, endogenous hb modeling. The dotted line corresponds to 
using a species-specific k(s) parameter vector, the orange bars show the results using  
k(dmel) (positional information), and the purple bars show the results using k(dmel) and 
a sequence weight (regulatory logic).
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Supplementary Figure 5. The whole embryo endogenous hb pattern

In panel (A), we show the endogenous expression pattern of hb, as in Figure 2, for the 
whole embryo, and in panel (B), we show the results of applying a multiple linear 
regression to the whole embryo. The performance of the model is substantially worse 
on the whole embryo, which is not surprising, since the anterior pattern is thought to be 
controlled by a different CRE using different regulators than the posterior stripe. In panel 
(C), we show the detailed cell-by-cell performance of the linear model using k(dmel), 
using the same color code as in Figure 3.
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Supplementary Figure 6. Modifications to the model do not greatly improve 
performance in the native context

In panel (A), we show the change in the performance of the model on the endogenous 
dmel data set when a cross-term is added, as compared to the model without any 
cross-terms. The cross-terms are modestly affect the performance of the model. In 
panels (B) and (C), we show the change in the performance of the model on the dmel 
data set when a regulator or two regulators are dropped from the model.

7



Supplementary Figure 7. The linear regression model for endogenous expression 
is robust to cross-validation

  

In panel (A), we show the results of a 10-fold cross validation exercise, in which 9/10 of 
the dmel endogenous data is used to train the multiple linear regression model and 1/10 
of the data set is used to evaluate the model. We plot the AUC for all the dmel cells and 
just the posterior cells in grey, and the cross-validation results in orange. The orange ʻxʼ 
shows the mean AUC, and the error bars show the minimum and maximum AUCs for 
the 10 folds of the data. In panel (B), we show the mean, minimum and maximum 
values of the coefficients a and k  resulting from the cross-validation. Both the AUC and 
the values of these coefficients vary very little in the cross-validation, indicating that the 
model is not over-fit.
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Supplementary Figure 8. The whole embryo transgenic hb posterior stripe CRE 
pattern

In panel (A), we show the expression pattern of lacZ reporter, as in Figure 4, for the 
whole embryo. In panel (B), we show the results of applying a multiple linear regression 
to the whole embryo. The performance of the model is worse for the dyak whole embryo 
pattern, but the addition of the sequence weights is once again useful in the transgenic 
case for prediction purposes. In panel (C), we show the detailed performance of the 
linear model, without any sequence weights, using the same color code as in Figure 3.
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Supplementary Figure 9. The linear regression model for transgenic expression is 
robust to cross-validation 

In panel (A), we show the results of a 10-fold cross validation exercise, in which 9/10 of 
the dmel transgenic data is used to train the multiple linear regression model and 1/10 
of the data set is used to evaluate the model. We plot the AUC for all the dmel cells and 
just the posterior cells in grey, and the cross-validation results in orange. The orange ʻxʼ 
shows the mean AUC, and the error bars show the minimum and maximum AUCs for 
the 10 folds of the data. In panel (B), we show the mean, minimum and maximum 
values of the coefficients a and k  resulting from the cross-validation. Both the AUC and 
the values of these coefficients vary very little in the cross-validation, indicating that the 
model is not over-fit.
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Supplementary Figure 10. The sequence weight improves the model predictions 
for the transgenic lines, independent of PWM selection

To compare the performance of different position weight matrices (PWMs), we 
calculated the sequence weight using the PWMs from (Bergman et al., 2005), (Li et al., 
2011) and (Noyes et al., 2008). We added a pseudocount of 0.01 to the PWMs from (Li 
et al., 2011) and a pseudocount of 1 to the PWMs from (Noyes et al., 2008). There was 
no PWM for hkb in (Li et al., 2011), so we used the one from (Bergman et al., 2005) 
instead. Here we plot the resulting AUCs from using each set of PWMs to predict the 
expression patterns in the transgenic lines carrying the dyak, dpse, and dper hb 
posterior stripe CREs. All three sets of PWMs yield sequence weights that improve the 
performance of the model as compared to the performance without the sequence 
weights (orange bars). We chose to use the PWMs from (Bergman et al., 2005), as they 
gave the best performance on average.
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The Effect of Measurement Non-linearities on the Model
Gathering high-quality expression data in intact animals is still a technical challenge. As 
we show in Supplementary Figure 1, the amplification step we use to increase our 
signal-to-noise ratio shows no evidence of saturation. However, since we have not 
directly measured the linearity of the anti-DNP-HRP antibody itself, this experiment is 
not a definitive demonstration of the linear relationship between measured signal and 
RNA level. Non-linearities would likely underestimate the amount of RNA in the most 
highly expressing cells. 

One of the advantages of using the ROC AUC measurement is that it is relatively 
insensitive to non-linearities in the input and output measurements of the circuit under 
study. A non-linearity in the output hb measurement would cause us to underestimate 
the amount of mRNA in the most highly expressing cells. However, when we evaluate 
the predictions, we threshold the measured hb levels into “on” and “off” cells using the 
mode + 1 standard deviation (Equation (7), Materials and Methods). Therefore, so long 
as this measurement still places these cells in the “on” category, the AUC would remain 
unchanged. In the case where the non-linearity is in the inputs, we consider activators 
and repressors separately. In cells where a repressor is highly expressed, even with an 
underestimation of the true level, the predictions likely already put the cell in the “off” 
category. In our circuit, there is only one weak activator, tll. An underestimation of its 
peak levels may cause a handful of cells to be predicted to be “off” instead of “on.” 
However, given its small contribution (Table I) and the fact that the false negative cells 
do not overlap tllʼs expression domain (dark grey cells in Figure 3B), it is unlikely that 
this effect is at play in our system. 
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Estimating the Effect of Measurement Error on the AUC
In order to understand the magnitude of a significant change in the AUC, we calculate 
how error would propagate to the hb predictions using the formula:

σ pred
2 s( ) = ks

gt( )2 ⋅σ gt
2 s( ) + ks

hkb( )2 ⋅σ hkb
2 s( ) + ks

kni( )2 ⋅σ kni
2 s( ) + ks

Kr( )2 ⋅σ Kr
2 s( ) + ks

tll( )2 ⋅σ tll
2 s( )

Here, σ pred
2 s( )  is the estimated error in the hb predictions for species s,  σ gt s( ) is the 

standard deviation for gt in Table S2 of (Fowlkes et al., 2011), and ksgt   is the coefficient 
of the linear model as reported in Table I of the main text. Since expression values for 
each gene are measured in separate experiments, we assume the covariation in 
measurement error between genes is zero. This formula yielded estimated average 
variance of the predicted hb expression level of 0.0091, 0.0134, and 0.0064 for dmel, 
dyak, and dpse, respectively. This indicates that dpse predictions have the smallest 
amount of uncertainty, but that in all species, the level of uncertainty is small compared 
to the level of hb predicted in “on” cells. 

To estimate the effect of these errors on the AUCs, we added a normally distributed 
error term (mean = 0, variance as estimated above) to our hb predictions and calculated 
the resulting AUC. We repeated this calculation 1000 times, and we found the standard 
deviation of the AUCs was 0.0021, 0.0022, and 0.0026, for dmel, dyak, and dpse, 
respectively, values that are smaller than the differences on which we base our 
conclusions.
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Calculation of Sequence Weight
We use an approximation based on statistical mechanics in order to calculate the 
sequence weight. The probability of a particular site k being bound by one transcription 
factor is 

p bound( ) = e
−ΔGk

Z

Here ΔGk  is the binding energy of the site, in units of thermal energy (kT), and Z is the 
partition function. We assume that this transcription factor is either bound to this 
particular site or another site in the genome, therefore

Z = e−ΔGk + e−ΔGi
i≠k
∑

we then write

 

p bound( ) = e−ΔGk

e−ΔGk + e−ΔGi
i≠k
∑

i
eΔGref

eΔGref

= e− ΔGk−ΔGref( )

e− ΔGk−ΔGref( ) + e− ΔGi−ΔGref( )
i≠k
∑

≈ e− ΔGk−ΔGref( )

N

As in (Fields et al., 1997), we define ΔGk − ΔGref( )as the specific binding energy of the 

TF to a sequence such that e− ΔGi−ΔGref( )
i≠k
∑ = N , where N is the genome size. We assume 

 N  e− ΔGk−ΔGref( ) . To estimate ΔGk − ΔGref = ΔΔGk  using a position weight matrix, we 
assume that each base pair of the site contributes to this energy independently and 
therefore

−ΔΔGk ∝ ln
pi b i( )( )
q b i( )( )i=1

w

∑ ,

where pi b(i)( ) is the frequency of observing the base b(i) at position i of the binding site, 
q b(i)( ) is the background frequency of base b(i), and w is the length of the binding site.

p bound( )∝ e
ln
pi b i( )( )
q b i( )( )i=1

w

∑

N
=

e
ln
pi b i( )( )
q b i( )( )

i=1

w

∏
N

=

pi b i( )( )
q b i( )( )i=1

w

∏
N
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To get an estimate of the total binding capacity of a stretch of sequence of length l, we 
assume the genome sizes of the different species s are approximately equal and 
calculate the sequence weight

c s( ) =

pi b i( )( )
q b i( )( )j=1

w

∏
i=1

l−w+1

∑
c dmel( )

In our modeling efforts, we multiply the sequence weight for a particular species and TF 
by the relative concentration of the TF in each cell and the fitted parameter k(dmel).

To calculate the likelihood a particular binding arrangement of TFs requires a more 
detailed calculation which takes into account the number of TF molecules in the system 
and effects like the physical occlusion of TFs binding overlapping sites and cooperative 
TF binding. Previous studies have implemented these types of models (Segal et al., 
2008; He et al., 2010), and these models require fitting a number of parameters to 
describe the TF molecule numbers and effects mentioned above.

Another effect we neglect in the sequence weight is the saturation of sites: beyond a 
certain concentration of a TF, the site is bound with very high probability, and therefore 
our multiplication of the sequence weight with the relative TF concentration 
overemphasizes the binding capacity of a strong site. Since we do not know the 
absolute concentrations of TFs or the absolute binding energies of binding sites, we 
cannot find saturated sites analytically. Instead, to look for sites likely to be saturated, 
we searched for binding sites that accounted for 50% or more of the total value of the 
sequence weight and found a single hkb site in the dyak posterior stripe CRE that fit this 
criteria. We thresholded its value to its 99th percentile value and found that the 
thresholded sequence weight performed better than the un-thresholded sequence 
weight.
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