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Appendix A: Steady-state moment analysis of stochas-

tic gene expression model

Consider a gene expression model where each expression event creates a

burst of B mRNA molecules, where B is an arbitrary random variable with

Probability{B = i} = αi for i ∈ {1, 2, 3, . . .}. The average number of mR-

NAs produced per expression event is then given by �B� :=
�∞

i=1 iαi. We

denote by �B2� :=
�∞

i=1 i2αi the second order statistical moment of the

burst size B . A special case of the model would be constitutive gene expres-

sion where mRNAs are made one at time and corresponds to B = 1 with

probability one. Let m(t) denote the number of mRNA molecules at time

t. We treat mRNA expression and degradation events as stochastic events

with probabilities of occurring in an infinitesimal time interval (t, t + dt]

given by

Probability{m(t + dt) = m + i | m(t) = m} = kmαidt, ∀i ≥ 1 (1a)

Probability{m(t + dt) = m− 1 | m(t) = m} = γmmdt, (1b)

respectively, where km is the rate of expression events and γm is the mRNA

degradation rate. Based on the above formulation, the probability

Pj(t) := Probability{m(t) = j}, j ∈ {0, 1, 2, 3, . . .} (2)

evolves according to the Chemical Master Equation given by Eq. 1 in the

paper. As the protein population count is typically large, the dynamics of
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protein levels is modeled deterministically through an ordinary differential

equation (Eq. 2 in the paper).

We next derive differential equations that describe the time evolution

of the statistical moments of m(t) and p(t). For the above gene expression

model we have

d�ψ(m, p)�
dt

= �kmψ(m + B , p) + γmmψ(m− 1, p)− ψ(m, p)(km + γmm)�

+
�

∂ψ(m, p)
∂p

(kpm− γpp)
�

(3)

where ψ(m, p) is any continuously differentiable function and �.� denotes the

expected value of the corresponding quantity. Taking ψ(m, p) = mipj in (3)

for appropriate integers i and j, the time evolution of the first and second

order statistical moments of the population count are given by

d�m�
dt

= km�B� − γm�m� (4a)

d�p�
dt

= kp�m� − γp�p� (4b)

d�m2�
dt

= km�B2�+ γm�m�+ 2km�B��m� − 2γm�m2� (4c)

d�mp�
dt

= kp�m2�+ km�B��p� − γm�mp� − γp�mp� (4d)

d�p2�
dt

= 2kp �mp� − 2γp�p2�. (4e)

Setting the left-hand-side of equation (4) to zero, and solving for the steady-
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state moments we obtain

�m� =
km�B�

γm
, �p� =

kp�m�
γp

(5a)

�m2� = �m�2 + �m��B
2�+ �B�
2�B� (5b)

�mp� = �m� �p�+ �p��B
2�+ �B�
2�B�

γp

γp + γm
(5c)

�p2� = �p�2 +
�p�2

�m�
�B2�+ �B�

2�B�
γp

γp + γm
(5d)

where a bar denotes the steady-state value of the corresponding moment.

We quantify the steady-state protein noise level through the coefficient

of variation squared defined as

CV 2 :=
�p2� − �p�2

�p�2
. (6)

From (5) we find that the steady-state protein noise level is given by

CV 2 =
ηmγp

�m�(γp + γm)
(7)

where

ηm :=
�m2� − �m�2

�m�
=
�B2�+ �B�

2�B� . (8)

is the steady-state Fano factor of the mRNA population count. Note that

when gene expression noise arises from mRNA birth/death fluctuations (i.e.,

gene expression is constitutive and B = 1 with probability one), then ηm = 1
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and the protein noise level reduces to

γp

�m�(γp + γm)
. (9)

In light of equation (9), the protein noise levels can be decomposed into two

components:

CV 2 =
γp

�m�(γp + γm)
+

(ηm − 1)γp

�m�(γp + γm)
, (10)

where the first component represents noise from mRNA birth/death fluctu-

ations. The second component, which is non-zero only when ηm > 1, repre-

sents expression noise arising from stochastic promoter fluctuations between

different transcriptional states (transcriptional bursting).

Appendix B: Connection between mRNA Fano fac-

tor and mean transcriptional burst size

Consider a two-state promoter model where the promoter stochastically

transitions between an inactive (Goff ) and active state (Gon). The pro-

moter is represented by the following set of chemical reactions:

Goff
kon−−−→ Gon, Gon

koff−−−−→ Goff

Gon
km−−−→ Gon + mRNA, mRNA

γm−−−→ ∅

where km is the rate of transcription from the active state and kon, koff

are rate of transitions between the states. Let g(t) denote the state of the
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promoter, with g(t) = 1 and g(t) = 0 denoting that the promoter is active or

inactive, respectively. We recall from Appendix A that m(t) represents the

mRNA population count at time t. Then, the time evolution of statistical

moments are given by the following set of differential equations

d�g�
dt

= kon − (koff + kon)�g�, d�m�
dt

= km�g� − γm�m� (11a)

d�g2�
dt

= kon + (koff + kon)�g� − 2(koff + kon)�g2� (11b)

d�m2�
dt

= km�g�+ γm�m�+ 2km�gm� − 2γm�m2� (11c)

d�gm�
dt

= km�g2�+ kon�m� − (koff + kon + γm)�gm� (11d)

(see supplemental in Singh et al. Biophysical Journal 2010). Analysis of

(11) shows that the steady-state mRNA Fano factor is given by

ηm :=
�m2� − �m�2

�m�
= 1 +

koffkm

(koff + kon)(koff + kon + γm)
(12)

In the limit koff → ∞ (i.e., the active state is unstable and the promoter

spends most of the time in the inactive state)

ηm = 1 +
km

koff
, (13)

where km/koff , is the mean transcriptional burst size, i.e., the average num-

ber of mRNA transcripts produced in one cycle of promoter activation and

inactivation.
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Appendix C: Change in gene expression noise in

response to blocking mRNA production

Blocking mRNA production can be captured by setting the rate of expression

events km = 0 at t = 0. Our goal now is to predict how statistical moments

change as a function of the time t since the transcriptional block occurred.

With km = 0, we have from (4) that the statistical moments now evolve

according to the following differential equations

d�m�
dt

= −γm�m�,
d�p�
dt

= kp�m� − γp�p� (14a)

d�m2�
dt

= γm�m� − 2γm�m2�, d�mp�
dt

= kp�m2� − γm�mp� − γp�mp� (14b)

d�p2�
dt

= 2kp �mp� − 2γp�p2�. (14c)

Assuming that just prior to the transcriptional block the statistical mo-

ments had reached steady-state, we solve equation (14a) using the moments

calculated in (5) as initial conditions. From (14a) it is straightforward to

show that the mean mRNA and protein levels exponentially decay to zero

as follows

�m(t)� = �m� exp(−γmt), (15a)

�p(t)� = �p�
�

γp exp(−γmt)− γm exp(−γpt)
γp − γm

�
. (15b)

Solving the remaining equations in (14) using Mathematica we find that

the protein noise level (as measured by the coefficient of variation squared)
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monotonically increases with time as

CV 2(t)
CV 2

= f(γm, γp, ηm, t), CV 2(t) :=
�p2(t)� − �p(t)�2

�p(t)�2
(16)

where CV 2 given by (7) is the protein noise level at t = 0 and the function

f has the following asymptote

lim
t→∞

f(γm, γp, ηm, t) =






(γp+γm)(γp+ηm(γm−2γp))
ηmγm(γm−2γp) > 1 if γm > 2γp

∞ if γm ≤ 2γp.

(17)

For given protein and mRNA degradation rates, Figure 2 in the paper plots

the function f(γm, γp, ηm, t) as a function of time t for different ηm.

Appendix D: Incorporating noise at the translation

step in the gene-expression model

In this section we investigate how predictions in Fig. 2 change if protein

synthesis and decay is modeled stochastically. Let the probability that a

protein molecule is created or degraded in the next infinitesimal time interval

(t, t + dt] be given by

Probability{p(t + dt) = p + 1| p(t) = p, m(t) = m} = kpm (18a)

Probability{p(t + dt) = p− 1 | p(t) = p, m(t) = m} = γppdt, (18b)
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where kp is the mRNA translation rate and γp is the protein degradation

rate. The above equation together with Eq. (1) in Appendix A define

a stochastic gene-expression model where both mRNA and protein levels

evolve through stochastic jumps. For this model the moment dynamics is

given by

d�m�
dt

= km�B� − γm�m�,
d�p�
dt

= kp�m� − γp�p� (19a)

d�m2�
dt

= km�B2�+ γm�m�+ 2km�B��m� − 2γm�m2� (19b)

d�mp�
dt

= kp�m2�+ km�B��p� − γm�mp� − γp�mp� (19c)

d�p2�
dt

= kp�m�+ γp�p�+ 2kp�mp� − 2γp�p2� (19d)

which yields the following steady-state statistical moments of the population

count

�m� =
km�B�

γm
, �p� =

kp�m�
γp

, �m2� = �m�2 + �m��B
2�+ �B�
2�B� (20a)

�mp� = �m� �p�+ �p��B
2�+ �B�
2�B�

γp

γp + γm
(20b)

�p2� = �p�2 + �p�+
�p�2

�m�
�B2�+ �B�

2�B�
γp

γp + γm
, (20c)

where a bar denotes the steady-state value of the corresponding moment.

From (20) the steady-state protein noise level is given by

CV 2 :=
�p2� − �p�2

�p�2
=

1
�p�

+
ηmγp

�m�(γp + γm)
. (21)

Note that this noise level is similar to (7) in Appendix A, except for the 1/�p�



11

2 4 6 8 10 12 14

1

2

3

4

!
"#
$
%&
'(
)*

+,
"'
-)
+!
"#
.$
/0
!"

# .
1/
+

2'$)+%3)#+4#%,-5#'67",+8&"59+.:";#-/+

p =!

p = 50

p = 5

Figure S1: Predicted changes in protein expression noise after transcription
is blocked for different mean protein copy number per cell (�p�). �p� = ∞
corresponds to deterministic protein birth-death dynamics. B was assumed
to be geometrically distributed with a mean burst size of 10 transcripts
and CV 2 = 0.5. mRNA and protein half-lives are taken as 3 and 2.5 hours,
respectively. Noise levels are baselined by their corresponding values at time
t = 0.
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term which represents Poissonian noise arising from probabilistic birth and

death of individual protein molecules. Transient changes in protein noise

levels (CV 2(t)) are obtained by setting km = 0 at t = 0 and solving (19)

using (20) as initial conditions. Fig. S1 plots protein noise levels after a

transcriptional block for different steady-state mean protein levels per cell.

As can be seen from the figure, as long as protein levels are larger than

50 copies per cell, CV 2(t) is identical to noise levels obtained assuming

deterministic protein dynamics (�p� = ∞ line in Fig. S1). Typically, as long

as

CV 2 � 1
�p�

, (22)

modeling protein dynamics using mass-action kinetics is a good approxima-

tion. The clones considered in this paper have noise levels in the range of

CV 2 ≈ 0.5 − 1 and have on average over 10,000 copies of d2GFP protein

molecules per cell (Singh et al. Biophysical Journal 2010). Thus we satisfy

(22) by many orders of magnitude.

Appendix E: Actinomycin D does not change d2GFP

half-life

To investigate the effects of Actinomycin D on d2GFP half-life, clone F32

was treated with Actinomycin D plus Cycloheximide or just Cycloheximide.

Cells were collected at regular intervals after drug addition and the GFP

expression was measured by flow cytometry. The kinetics of GFP decay is
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Figure S2: GFP decays at the same rate after translation is blocked using
Cycloheximide, both in the presence and absence of Actinomycin D.

same both in the presence and absence of Actinomycin D (Fig. S2).

Appendix F: Transcriptional bursting is a signifi-

cant source of noise in HIV-1 LTR gene expression

In the above section we showed that transient changes in CV 2(t) after a

transcriptional block can be used to quantify the relative contributions of

different intrinsic noise mechanisms. Note that this theory was developed

assuming a complete-block of transcription (i.e., km is set to zero). However,

our experimental data shows that Actinomycin D only creates a partial-

block of mRNA transcription (Fig. S3). More specifically, after treating

clones with transcriptional inhibitors, mean reporter levels do not decay to
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Figure S3: Transient changes in mean GFP levels after a transcriptional
block. GFP levels are normalized by their corresponding value at t = 0.
Clone F32 was treated with Actinomycin D at 10 µg/mL and mean ex-
pression levels were measure for 22 hours after drug addition (square data
points). Black line represents the best fit of (23) to data, and it asymptot-
ically approaches a value of ≈ 10%. The protein and mRNA half-lives are
assumed to be 2.5 and 3 hours, respectively.

zero but converge to approximately 10% of its original value. Assuming,

addition of transcription-blocking drug reduces km to δkm where 0 < δ < 1,

the transient change in mean GFP level is given by

�p(t)�
�p�

= δ + (1− δ)
�

γp exp(−γmt)− γm exp(−γpt)
γp − γm

�
. (23)

Note that in the constitutive promoter model the transcriptional burst size

B = 1 with probability one by definition. So the transcription-blocking

drug can only affect the burst frequency km. For comparison purpose, we

also assume that the drug changes km to δkm in the transcriptional bursting

model.
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We next predict transient changes in CV 2(t) in response to a partial-

block of transcription. This is done using the following steps:

1. Assume a certain distribution for the transcriptional burst size B.

2. Compute the mRNA translation rate kp and frequency of transcrip-

tional events km for the corresponding transcriptional burst size B

using the following equations

�B�kpkm

γmγp
= �GFP � (�B2�+ �B�)γpγm

2�B�km(γp + γm)
= CV 2, (24)

where �GFP � and CV 2 are the experimentally measured mean re-

porter levels and steady-state coefficient of variation, respectively. Re-

call that both d2GFP protein and d2GFP mRNA half-life are known

(i.e., γm and γp are known). Thus, kp and km corresponding to the

transcriptional burst size B chosen in step 1 can be computed from

(24).

3. We assume that transcription-blocking drug reduces km to δkm where

δ = 0.1. The transient change in gene-expression noise in response to

a partial-block of transcription is computed by solving (4) using the

moments calculated in (5) as initial conditions.

In Fig. 3, the black dashed line corresponds to performing the above steps

for a transcriptional burst size B = 1 with probability one (i.e., ηm = 1).

On the other hand, the red line corresponds to a geometrically distributed

transcriptional burst size B with a mean of 15 mRNA transcripts (this
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corresponds to ηm = 15 from (8)). Our analysis shows that the rise in gene-

expression noise after a partial-block of transcription is inconsistent with a

model where ηm = 1, but consistent with a model where expression noise

primarily comes from transcriptional bursting.

In order to get a lower-bound on ηm, we note that the clones with the

fastest rise in expression variability in Fig. 3 reach a value of ≈ 1.75 (after

taking 95% error in CV 2(t) into account) at the final time point (t = 10

hours). Thus, CV 2(10) < 1.75 across all clones. Recall from Fig. 2 that a

lower value of ηm results in a faster increase in expression variability after

transcription is blocked. Model predictions show that in order for the pre-

dicted protein expression variability to be less than 1.75 at ten hours post

drug addition, ηm will have to be at least 10. This gives a lower bound on

the mRNA Fano factor across integration sites. Given the error in our data,

any value of ηm larger than 10 is consistent with the measured changes in

expression variability. This shows an important limitation of our method: it

is hard to estimate a precise value of ηm, especially when ηm is much larger

than one.

In the above experiment, the GFP fluorescence level is always signif-

icantly higher than background florescence, even after a partial-block of

transcription using Actinomycin D. However, this may not always be the

case and if the measured reporter fluorescence is close to the background

florescence, then the coefficient of variation will have to be corrected for it.

More specifically, the measured reporter fluorescence xM is given by

xM = xF + xB, (25)
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where xF denotes the actual reporter fluorescence and xB is the background

fluorescence. Assuming xF and xB to be independent of each other, the

corrected coefficient of variation squared is given by

CV 2
M �xM �2 − σ2

B

(�xM � − �xB�)2
, (26)

where CV 2
M := �x2

M �−�xM �2
�xM �2 is the measured coefficient of variation squared;

σ2
B := �x2

B� − �xB�2 is the variance in background fluorescence; �xM � and

�xB� denote the mean measured reporter fluorescence and mean background

fluorescence, respectively.

Next, we estimate the change in ηm when Actinomycin D creates a

partial-block of transcription. We assume that addition of Actinomycin

D changes km to δ1km and ηm to δ2ηm where 0 < δ1 < 1 and 0 < δ2 < 1.

To get the best estimates of δ1 and δ2 we assume ηm = 80, the mRNA Fano

factor determined from mRNA FISH (Appendix G). Note that δ1δ2 = 0.1

since the net transcription rate is reduced to 10% of its original value in the

presence of Actinomycin D at 10 µg/mL (Fig. S3). Predicted change in pro-

tein expression variability for this partial transcriptional block is obtained

by numerically solving (4) using initial conditions given by (5). Our analysis

shows that δ2 ≈ 0.5− 0.7 provides the closest fit between the model predic-

tion and the average transient expression variability across the four clones

after adding Actinomycin D. This result shows that Actinomycin D blocks

transcription by primarily affecting the burst frequency km (δ1 ≈ 0.2) and

there is a 2-fold reduction in ηm at the highest non-toxic dose of Actinomycin

D.
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Figure S4: Actinomycin D titration changes the decrease in mean GFP over
time (top graph), however, the effect on CV 2(t) remains the same (bottom
graph). Actinomycin D was either added at 0.1 (red line), 1 (purple line),
or 10 µg/mL(green line) to clone F32 and mean GFP expression and CV
were tracked using flow cytometry at 0, 2, 4.5, 7, and 9 hours after drug
addition.
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Figure S5: Transcriptional bursting is a significant source of variability in
HIV-1 LTR gene-expression across different integration sites. Time courses
of CV 2(t) of GFP expression, as measured by flow cytometry, for four iso-
clonal Jurkat T lymphocyte populations: F32 (blue), G95 (black), LL44
(green), LL8 (purple) after perturbation with transcriptional-blocking drugs
Actinomycin D (top graph) or Flavopiridol (bottom graph) at 10 µg/mL.
Black dashed-line corresponds to ηm = 1 and the red line corresponds to
ηm = 15.
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To investigate how CV 2(t) changes with the concentration of the tran-

scription blocking drug, clone F32 was treated with different concentra-

tions of ActinomycinD. Mean GFP intensity and coefficient of variation was

measured at 0, 2, 4.5, 7, and 9 hours after drug addition. Changes in

expression variability after a transcription block is identical for varying con-

centrations of the transcription-block drug (Fig. S4). Changes in d2GFP

expression variability in different isoclonal populations after treatment with

transcription-blocking drugs at 10 µg/mL is shown in Fig. S5.

Appendix G: Transcriptional bursting at the HIV-1

LTR revealed by mRNA FISH

mRNA FISH was performed on clone F32 and mRNA population counts

were measured in a total of 192 cells (see Materials and Methods). Clone

F32 has on average 100 d2GFP mRNA transcripts per cell (Fig. S6). The

steady-state Fano factor, ηm, defined as

ηm :=
�m2� − �m�2

�m�
(27)

was calculated from the histogram (Fig. S6) using bootstrapping. We obtain

ηm ≈ 80 with a 95% confidence interval of (65, 95). This value of ηm is high

but reasonable compared to published values. For example, Raj et al., 2006

reports mRNA Fano factors of over 100. It is important to point out that

unlike flow cytometry data, where we remove extrinsic noise by appropriate

gating, mRNA FISH data has both intrinsic and extrinsic noise. Thus this
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population determined using mRNA FISH. Inset: Example fluorescent im-
age of DAPI stained nuclei (blue) and fluorscently labeled mRNA (red dots).
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estimate of ηm is an upper bound since it is based on total expression noise

rather than just intrinsic noise.

Appendix H: Quantifying extrinsic noise using a

two-color reporter assay

To quantify the extent of extrinsic noise in HIV-1 gene expression, isoclonal

populations containing a single integrated copy of both HIV-1 LTR driving

d2GFP and a single integrated copy of HIV-1 LTR driving mCherry were

constructed (see Materials and Methods). Populations gated around the for-

ward (FSC) and side (SSC) scatter medians show little correlation between

the GFP and Cherry signal (Fig. S7). This result shows that appropriate

gating of cells removed most of the extrinsic noise.
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Figure S7: Scatter plot of single-cell intensities taken from flow-cytometry
data for an isoclonal cell population shows little correlation between the
GFP and Cherry signal. Populations were obtained by drawing a small gate
around the forward (FSC) and side (SSC) scatter medians.


