

Fig. S1. Generation and characterization of *Mkl* 2^{-/-} **null embryos.** (A) Schematic representation of the MKL2 protein and the gene targeting strategy used in this manuscript. The locations of the RPEL, Basic, Glutamine-rich (Q), SAP and transcriptional activation (TD) domains and leucine zipper (LZ) are shown. A schematic representation of exons 6-12 (rectangles) of the mouse *Mkl2* gene, including the location restriction enzyme sites used to genotype ES cells and mice. The position of the DNA probe used for Southern blot analysis is indicated below (black rectangle). The targeted allele contains the PGK-neomycin resistance (neo) cassette and loxP sites (triangles) flanking exon 8. (B) Southern blot analysis of mouse genomic DNA demonstrating the 9.4 kb wild-type allele (+) and the 3.7 kb null allele generated after Cremediated recombination. (C) PCR genotype analysis showing the expected bands corresponding to the wild-type allele (+) and conditionally targeted allele (-) following Cre-mediated recombination. PCR primers complementing the specific exons indicated are shown on the right of the ethidium bromide-stained agarose gel.

Fig. S2. Disruption of elastin organization in the carotid artery of E13.5 $Mkl2^{-/-}$ mutant embryos. Histological sections were prepared from E13.5 wild-type (WT) and $Mkl2^{-/-}$ (MUT) embryos were immunostained with anti-tropoelastin antibody (green). (A,C) Histological transverse sections cut at the level of the common carotid arteries in wild-type control (A) and $Mkl2^{-/-}$ mutant (MUT) embryo. The location of the trachea (Tr) and esophagus (Eso) are shown. The white rectangles indicate the sections shown in B and D. Original magnification was ×40. (B,D) High-power magnification reveals the structure of the tunica media in the left common carotid artery in a wild-type (B) and mutant (D) embryo. In the wild-type carotid, thin elastin fibers (arrows, green stain) are visualized between layers of spindle shaped vascular SMCs. By contrast, medial organization of the mutant artery is disrupted with attenuated or absence of tropoelastic staining in segments of the artery (arrows) and irregular deposition of elastin in other other segments. Original magnification was ×400.

Fig. S3. Multiple TGF- β /BMP genes are downregulated in *Mkl2*^{-/-} ES cells. To validate the microarray studies, qRT-PCR analyses were performed with mRNA harvested from wild-type and *Mkl2*^{-/-} ES cells. The experiment was performed three times with three biological replicates used in each experiment. Data are expressed as the percentage of wild-type gene expression (arbitrary units) observed in *Mkl2*^{-/-} ES cells±s.e.m. (**P*<0.01 versus wild-type gene expression).

Fig. S4. Expression of TGF β 1 and TGF β 3 in the cardiac outflow tract and great arteries of E14.5 control and *Mkl2*^{-/-} embryos. Histological sections cut at the level of the cardiac outflow tract of wild-type (WT) control and *Mkl2*^{-/-} mutant embryos were immunostained with antibodies that recognize TGF β 1 (A-D) or TGF β 3 (E-H). (A-D) Abundant TGF β 1 (green stain) is observed throughout the embryonic RV and LV myocardium and endocardial cushions (EC) (A). By contrast, TGF β 1 (green stain) was expressed background levels (IgG) in the aortic arch (Ao) and carotid arteries (CA). The location of the trachea (Tr) and esophagus (E) are shown. Original magnifications were ×20 in A; ×100 in B-D. (E,F) Abundant TGF β 3 (green stain) is observed throughout the LV and RV myocardium of the control embryo. The red rectangle in E demarcates the location of F. By contrast, very low levels of TGF β 3 are observed in the ascending aorta (Ao) and pulmonary trunk (PT), whereas abundant TGF β 3 is observed in the LA. (G,H) In addition, low levels of TGF β 3 are observed in the wall of the truncus arteriosus (TA) and arch of the aorta (Ao) of *Mkl2*^{-/-} mutant embryos. No appreciable difference in TGF β 3 expression was observed in the great arteries of wild-type and MUT embryos. Original magnifications were ×20 in E and ×100 in F-H.

Fig. S5. Expression of SMC contractile proteins is downregulated in arteries of *Mkl2^{-/-}* **mutant embryos.** (A-**D**) Histological sections prepared from E9.5 wild-type control (A,B) and *Mkl2^{-/-}* mutant (MUT) embryos were immunostained with SM-α-actin (SMA) antibody. (A,B) Abundant SMA (red) is observed throughout the embryonic RV, pharyngeal arch arteries (6PA) and dorsal aorta (DAo) in wild-type embryos. (C,D) By contrast, expression of SMA is markedly attenuated in the pharyngeal arch arteries (6PA) and aorta (Ao) of *Mkl2^{-/-}* mutant embryos. Of note, SMA expression is preserved in the dorsal aorta (DAo) and embryonic RV. Original magnifications were ×50 in A,C; ×100 in B,D. (E-J) Histological sections prepared from E9.5 wild-type control (E-G) and *Mkl2^{-/-}* MUT (H-J) embryos were immunostained with SM-myosin heavy chain (SM-MyHC) antibody. (E,F) Abundant SM-MyC (red) is observed throughout the pharyngeal arch arteries (6PA) and dorsal aorta (DAo) in wild-type embryos. (H,I) By contrast, expression of SM-MyHC is markedly attenuated in the pharyngeal arch arteries (6PA) and aorta (DAo) in wild-type embryos. (H,I) By contrast, expression of SM-MyHC is markedly attenuated in the pharyngeal arch arteries (6PA) and aorta (Ao) of *Mkl2^{-/-}* mutant embryos. Once again, SM-MyHC expression is preserved in the dorsal aorta (DAo). (G,J). Histological sections showing the basilar artery (Bas) demonstrating that expression of SM-MyHC is markedly attenuated in the mutant basilar artery (J) compared with the basilar artery in the wild-type embryo (G). Original magnifications were ×50 in E,H, ×100 in F,I and ×200 in G,J.

Table S1. PCR primers used in these studies

Mkl2 genotyping primers

P1	F,5'-ATACAACCCGCTTTTTAATAGG-3'
P2	F,5'-ATCTGTACAGCTTGAAACCTGGCC-3'
P3	R, 5'-TTCCCATTTCCACACGCTGATGTT-3'

qRT-PCR primers

GAPDH	F, 5'-AGTCCATGCCATCACTGCCACCCA-3'
	R, 5'-TCCACCACCCTGTTGCTGTAGCCG-3'
SRF	F, 5'-CCCGCTCAGACCCCACCACAGA-3'
	R, 5'-CAGGTAGTTGGTGATGGGGAAGGA-3'
MKL1	F, 5'-ACACTCATCAAGCAAAGCCAACCC-3',
	R,5'-GATCTTGGCATAGGAGGAGTCCAT-3'
MKL2	F, 5'-AACCCCTCTAACTGCAGAC-3'
	R,5'-GCTACGGTGTTTGTCGTTTG-3'
TGFβ1	F, 5'-ACCCTGCCCCTATATTTGGA-3',
	R,5'- TGGTTGTAGAGGGCAAGGAC-3'
TGFβ2	F,5'-GAACCCAAAGGGTACAATGC-3',
•	R,5'-TGGTGTTGTACAGGCTGAGG-3'
TGFβ3	F,5'-TATGCCAACTTCTGCTCAGG-3'
-	R,5'-CTCTGGGTTCAG GGTGTTGT-3'
SMA	F,5-'TACCATGTACCCTGGCATTGCTGA-3'
	R,5-'AGAAGGCCCTCTGACTTTAGAAGC-3'
SMMyHC	F, 5'-CTCTGTGCTGCACAACCTGA-3'
	R, 5'-TCGGCAATGGCATAGATGTG-3'
Fn	F, 5'-AGACCTGGGAAAAGCCCTACCAA-3'
	R, 5'-ACTGAAGCAGGTTTCCTCGGTTGT-3'
Col4a1	F, 5'-TGGATCGGCTATTCCTTCG-3'
	R,5'-GGCGCTTCTAAACTCTTCC-3'
Fbn1	F,5'-CTGTCCACCAGGATACTTCC-3'
	R,5'-CAGTGAGTTGTCGTCCATC-3'
ltgα5	F,5'-GCACCACCATTCAATTTGAC-3'
_	R,5'-CACTGCAAGGACTTGTACTC-3'
ltgβ5	F,5'-GAATGCCTGTTGATCCACC-3'
	R,5'-GGATGAGGTTTGCCTTCAG-3'
ltgβ8	F,5'-CTGCAAATGTGGTCTCCTGTGC-3'
	R,5'-CGTTCACTTCCTGATCCACCTG-3'
Talin	F,GCTCGGGCGTTAGCAGTC-3'
	R,ATGGAATCTGAGACAGTCCGAGA-3'
Vinculin	F,5'-CCAAGGTCAGAGAAGCCTTCC-3'
	R,5'-CGTAGCTGTTCAAGGTCTGGTG-3'
ld1	F,5'-GGAGATCCTGCAGCATGTAATC-3'
	R,5'-ATCGTCGGCTGGAACACATG-3'
ld2	F,5'-TGGACTCGCATCCCACTATC-3'
	R.5'-CATTCGACATAAGCTCAGAAGG-3'

ld3	5'-GCGTGTCATAGACTACATCCTC-3'
	R,5'-CCTCTTGTCCTTGGAGATCAC-3'
Bmp2	F,5'-GAATCAGAACACAAGTCA GT-3'
	R,5'-GTTTGTGTTTGGCTTGACGC-3'
Bmp4	F,5'-TGTGAGGAGTTTCCATCACG-3'
	R,5'-CAGCGAAGGACTGCAGGGCT-3'
Bmp5	F, 5'-GGATGGCCGCAGCATCAATGTAAA-3'
	R, 5'-GAAGGCCACCATGAATGGCTGTTT-3'
Bmp7	F, 5'-ACCGCAGCCGAATTCAGGATCTAT-3'
	R, 5'-TATCAAACACCAACCAGCCCTCCT-3'
Smad3	F,5'- CCAGGCTGACATGGGCAAATGAAA-3'
	R, 5'-TGTCACAGTTTGCTGTGGCAATCC-3'
Smad5	F, 5'-AGCAAGAGTGTGTCAGCTCCATGA-3'
	R,5'- TCCTGAAGGCTGCCAAGTAAAGGA-3'
Smad6	F, 5'-ACAAGCCACTGGATCTGTCCGATT-3'
	R, 5'-AGAATTCACCCGGAGCAGTGATGA-3'
Smad7	F, 5'-TTCGGACAACAAGAGTCAGCTGGT-3'
	R, 5'-AGCCTTGATGGAGAAACCAGGGAA-3'
Smad9	F,5'- TGACGGCAGGTACATTCAACCAGA-3'
	R,5'- TTAAGAGCCTTGGCTTTGCTTGCC-3'
Lefty1	F,5'-ATGATTGTCAGCGTGAAGGAGGGA-3'
	R,5'- TTGCATGAAAGGCACATCCTTGGG-3'
Lefty2	F,5'-TCCTGACGTATGAATGTGTGGGCA-3'
	R,5'- ACTGACAATCATGGGCAAGGAGGT-3'
Nodal	F,5'- ACATGATTGTGGAGGAGTGTGGGT-3',
	R,5'- TCTTTAGCTCCAGCAGGCAGAACT-3'
Noggin	F,5'-TGAGCAAGAAGCTGAGGAGGAAGT-3'
	R,5'-AGGTGCACAGACTTGGATGGCTTA-3'
Pitx2	F,5'-ATG GAG ACC AAT TGT CGC AAA C-3',
	R,5'-GCT TCC GTA AGG TTG GTC CAC A-3'

ChIP assay primers

Control	F,5'-ATGCTAAGTAATGGGACATTGCT-3'
	R,5'-AAGTCAGCTCTGCTTCCAGG-3'
CArG1	F,5'-CTGGGGCTGACCTTGAAGGAAGAA-3'
	R,5'-TTCTTCTACTCCACTGGCCCTGAG-3'
CArG2	F,5'-ATGGGGACCAAACCCAAAGGAT-3',
	R,5'-ACTTCTCTACGCAAAGGGCACTG-3'
CArG3	F,5'-AAACAGTTGGGTCCCGTCCA-3'
	R,5'-GAACACTATTCTGGGAGCCA,-3'
CArG4	F,5'-CTATCCCTTTCACTCCCGAGCTGTC-3'
	R,5'-ACACACACACACACACATGAC-3'
CArG5	F,5'-GTGGTTGATTTTCATGTTGTGG-3'
	R,5'-CAGAGAGTCTGCCTTTTTAGG-3'

Table S2. Primary and secondary antibodies used in these studies

Primary antibodies	Catalog code	Vendor
polyclonal anti-fibronectin	NB100-92247	Novus Biologicals
monoclonal anti-fibronectin	sc-8422	Santa Cruz Biotechnology
polyclonal anti-GAPDH	G9545	Sigma
polyclonal anti-β-tubulin	ab6046	Abcam
polyclonal anti-tropoelastin	ab21601	Abcam
monoclonal anti-phospho Smad3	CG1561	Cell Applications
monoclonal anti-TGFβ2	MAB612	R&D systems
monoclonal anti-smooth muscle-actin (1A4)	A5228	Sigma-Aldrich
polyclonal anti-phospho-paxillin (Tyr118)	2541	Cell Signaling Technology
polyclonal anti-collagen IV	AB756P	Millipore
polyclonal Anti-SRF (G20)	sc335	Santa Cruz
Rabbit IgG	2729	Cell Signaling Technology
Secondary antibodies		
Alexa Fluor® 488 Goat Anti-Mouse IgG	A-11001	Invitrogen
Alexa Fluor® 488 Rabbit Anti-Mouse IgG	A-11059	Invitrogen
Alexa Fluor® 568 Goat Anti-Rabbit IgG	A11011	Invitrogen
Alexa Fluor® 568 Goat Anti-Mouse IgG	A-11004	Invitrogen
Alexa Fluor® 594 Donkey Anti-Goat IgG (H+L)	705-585-003	Jackson ImmunoResearch
Donkey anti-mouse IgG HRP	715-035-150	Jackson ImmunoResearch

Table S3. Genes induced or repressed by twofold or more in response to Mkl2 deletionOwing to the small number of replicates, no statistical analysis is provided and data are regarded asexploratory

Induced genes			
Transcript cluster	Gene symbol	mRNA Accession Number	Fold change (<i>Mkl2^{-/-}</i> versus control)
10369615	Srgn	NM_011157	30.57
10480155	Cubn	NM 001081084	7.32
10458262	Slc23a1	NM_011397	3.14
10561153	Cyp2b23	NM_001081148	3.02
10499412	Rab25	NM 016899	2.91
10446473	Lama1	NM_008480	2.74
10484276	Neurod1	NM_010894	2.34
10351368	Gpa33	NM_021610	2.20
10436978	Cbr3	NM_173047	2.16
10474575	Slc12a6	BC062099	2.02
10570516	Kbtbd11	BC080858	2.00
Repressed genes			
Tropogript cluster		mRNA Accession	Fold change (<i>Mkl2^{-/-}</i> versus
	Nuf?		
10000837	INXI5 Una5h	<u>NM</u> 020770	0.50
10207246	Ees	NM_010234	0.50
10397340	FUS Writes	NM_010234	0.30
10434701	Gabra2	NM_009290	0.49
10560344	Jaf?	NM 001122737	0.49
10602925	Ig12 Dhka?	NM 172783	0.49
10359161	T likaz Soat 1	NM 009230	0.49
10510051	Pion	NM 175437	0.49
10427402	Ghr	NM 010284	0.49
10408937	Atvn1	NM_009124	0.49
10377938	Fno3	NM 007933	0.48
10444258	Psmb8	NM 010724	0.48
10352320	Tmem63a	NM 144794	0.48
10503835	Rragd	NM 027491	0.48
10505132	Akap2	NM 001035533	0.48
10583203	Phxr4	BC107288	0.48
10602805	Mtap7d2	NM 001081124	0.48
10560481	Fosb	NM 008036	0.48
10347277	Igfbp2	NM_008342	0.48

10484307	Frzb	NM_011356	0.47
10513256	Lpar1	NM 010336	0.47
10406270	Glrx	NM_053108	0.47
10461629	Ms4a4d	NM 025658	0.47
10415411	Nynrin	BC057379	0.47
10545780	Exoc6b	BC145693	0.47
10599120	Dock11	NM_001009947	0.47
10571601	Pdlim3	NM_016798	0.47
10385036	Fgf18	NM 008005	0.47
10361771	Plag11	NM_009538	0.47
10485982	Actc1	NM_009608	0.47
10442194	Zfp677	NM_172486	0.46
10604633	Cxx1b	NM_001018063	0.46
10406229	Pcsk1	NM 013628	0.46
10497817	Anxa5	NM_009673	0.46
10366546	Cpm	NM 027468	0.46
10468070	Fgf8	NM_010205	0.46
10606609	Tspan6	NM 019656	0.46
10469936	Nrarp	NM_025980	0.46
10496569	Gbp6	NM_001083312	0.46
10533050	Hspb8	NM 030704	0.46
10499132	Mab2112	NM_011839	0.46
10543145	Thsd7a	AK173072	0.46
10406205	Erap1	NM_030711	0.45
10541524	Nanog	NM_028016	0.45
10431915	Slc38a4	NM 027052	0.45
10601980	Mum111	NM_175541	0.45
10359870	Pbx1	NM 183355	0.44
10505028	Slc44a1	AK141895	0.44
10496580	Gbp3	NM 018734	0.44
10576495	Trim67	BC094596	0.44
10604576	Gpc3	NM_016697	0.43
10429564	Ly6a	NM 010738	0.43
10544089	Zc3hav1	NM_028864	0.42
10449807	Abhd9	NM_001033163	0.42
10496555	Gbp1	NM_010259	0.42
10362097	H60b	AB284505	0.42
10474229	Cd59a	NM 001111060	0.42
10570957	Sfrp1	NM_013834	0.42
10534667	Serpine1	NM 008871	0.42
10464905	Npas4	NM_153553	0.41

10472688	Sp5	NM 022435	0.41
10497149	Gpr177	NM 026582	0.41
10607562	Cnksr2	NM_177751	0.41
10357137	Gli2	NM_001081125	0.40
10603208	Mid1	NM 010797	0.40
10538590	Herc5	ENSMUST0000031817	0.40
10509163	Id3	NM_008321	0.40
10496592	Gbp2	NM_010260	0.39
10603289	Clcn5	NM 016691	0.39
10352302	Lefty2	NM_177099	0.39
10438603	Igf2bp2	NM_183029	0.39
10521471	Ppp2r2c	NM_172994	0.39
10549964	Zscan4c	NM_001013765	0.38
10371379	Nuak1	NM 001004363	0.38
10544596	Tmem176b	NM_023056	0.38
10531420	Cxcl11	NM 019494	0.38
10578829	Palld	NM_001081390	0.38
10549972	Zscan4c	NM 001013765	0.38
10607587	Pdha1	NM_008810	0.37
10587639	Nt5e	NM_011851	0.37
10469167	Sfmbt2	NM 177386	0.37
10429568	Ly6c1	NM_010741	0.37
10498018	Pcdh18	NM_130448	0.36
10344966	Ly96	NM_016923	0.36
10592251	Pknox2	NM_001029838	0.36
10477920	Myl9	NM 172118	0.36
10607524	Sms	NM_009214	0.35
10361358	Rgs17	NM 019958	0.35
10583809	Cnn1	NM_009922	0.34
10604844	Sms	AF031486	0.34
10559978	Zscan4c	NM_001013765	0.34
10428619	Enpp2	NM_015744	0.34
10384223	Igfbp3	NM 008343	0.33
10407435	Akr1c18	NM_134066	0.33
10604551	Usp26	NM_031388	0.33
10445293	Pla2g7	NM_013737	0.33
10477250	Hck	NM_010407	0.32
10397984	Ppp4r4	NM 028980	0.32
10376950	Pmp22	NM_008885	0.31
10459335	Fam38b	BC147606	0.30
10360920	Tgfb2	NM 009367	0.30

10344952	Rdh10	NM_133832	0.29
10607619	Cdk15	NM 001024624	0.29
10374777	Efemp1	NM 146015	0.28
10593123	Tagln	NM_011526	0.26
10404429	Serpinb9	NM_009256	0.26
10599348	Gria3	NM_016886	0.26
10602772	Rps6ka3	NM_148945	0.26
10467124	Acta2	NM 007392	0.26
10387855	Alox15	NM_009660	0.25
10493850	Sprr2a	NM 011468	0.23
10602977	Scml2	NM_133194	0.16
10569335	H19	NR 001592	0.15
10608138	Ddx3y	NM_012008	0.09
10608107	Uty	NM_009484	0.08
10441669	Т	NM 009309	0.07
10477986	Nnat	NM_010923	0.05

Table S4. KEGG pathways repressed in response to *Mkl2* deletion by Gene Set Enrichment

 Analysis

KEGG pathways (From MsigDB)	Number of genes	Normalized Enrichment Score (NES)	Nominal <i>P</i> value	FDR q-val
HSA04350 TGF BETA SIGNALING PATHWAY	84	-2.067	0.0000	0.0000
HSA04360_AXON_GUIDANCE	125	-1.982	0.0000	0.0021
HSA04340_HEDGEHOG_SIGNALING_PATHWAY	53	-1.942	0.0000	0.0066
HSA05217_BASAL_CELL_CARCINOMA	53	-1.900	0.0000	0.0109
HSA04510_FOCAL_ADHESION	182	-1.774	0.0000	0.0656
HSA04010_MAPK_SIGNALING_PATHWAY	231	-1.745	0.0000	0.0785
HSA04310_WNT_SIGNALING_PATHWAY	133	-1.741	0.0000	0.0696
HSA01030_GLYCAN_STRUCTURES_BIOSYNTHESIS_1	102	-1.722	0.0000	0.0754
HSA00510_N_GLYCAN_BIOSYNTHESIS	36	-1.713	0.0102	0.0725
HSA05212_PANCREATIC_CANCER	70	-1.712	0.0029	0.0661
HSA04110_CELL_CYCLE	102	-1.712	0.0014	0.0601
HSA05210_COLORECTAL_CANCER	78	-1.689	0.0014	0.0698
HSA00640 PROPANOATE METABOLISM	30	-1.677	0.0107	0.0731
HSA04320_DORSO_VENTRAL_AXIS_FORMATION	26	-1.677	0.0101	0.0679
HSA04662_B_CELL_RECEPTOR_SIGNALING_PATHWAY	60	-1.662	0.0030	0.0741
HSA05130_PATHOGENIC_ESCHERICHIA_COLI_INFECTION_EHEC	41	-1.642	0.0114	0.0845
HSA04810_REGULATION_OF_ACTIN_CYTOSKELETON	186	-1.619	0.0026	0.0964
HSA04520_ADHERENS_JUNCTION	70	-1.618	0.0073	0.0921
HSA00760_NICOTINATE_AND_NICOTINAMIDE_METABOLISM	21	-1.612	0.0269	0.0910
HSA04916_MELANOGENESIS	89	-1.596	0.0088	0.0999
HSA05131_PATHOGENIC_ESCHERICHIA_COLI_INFECTION_EPEC	41	-1.589	0.0144	0.1018
HSA00410_BETA_ALANINE_METABOLISM	24	-1.589	0.0339	0.0975
HSA00563_GLYCOSYLPHOSPHATIDYLINOSITOL_ANCHOR_BIOSYNTHESIS	19	-1.586	0.0204	0.0963
HSA00100_BIOSYNTHESIS_OF_STEROIDS	22	-1.558	0.0383	0.1162
HSA04530 TIGHT JUNCTION	114	-1.555	0.0055	0.1147
HSA00561_GLYCEROLIPID_METABOLISM	46	-1.533	0.0411	0.1316
HSA05220_CHRONIC_MYELOID_LEUKEMIA	71	-1.532	0.0177	0.1281
HSA00512_O_GLYCAN_BIOSYNTHESIS	28	-1.521	0.0369	0.1339
HSA04620_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY	88	-1.511	0.0226	0.1399
HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	208	-1.510	0.0063	0.1359
HSA00280_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION	40	-1.505	0.0305	0.1361
HSA01031_GLYCAN_STRUCTURES_BIOSYNTHESIS_2	51	-1.501	0.0250	0.1358
HSA05221_ACUTE_MYELOID_LEUKEMIA	49	-1.495	0.0363	0.1383
HSA04150_MTOR_SIGNALING_PATHWAY	42	-1.493	0.0422	0.1361
HSA05010_ALZHEIMERS_DISEASE	27	-1.462	0.0677	0.1653
HSA05211_RENAL_CELL_CARCINOMA	67	-1.459	0.0427	0.1631

HSA00380_TRYPTOPHAN_METABOLISM	50	-1.456	0.0541	0.1626
HSA00530_AMINOSUGARS_METABOLISM	26	-1.447	0.0689	0.1687
HSA04115_P53_SIGNALING_PATHWAY	57	-1.439	0.0365	0.1754
HSA00252 ALANINE AND ASPARTATE METABOLISM	29	-1.433	0.0733	0.1770
HSA04660_T_CELL_RECEPTOR_SIGNALING_PATHWAY	89	-1.425	0.0418	0.1832
HSA00230_PURINE_METABOLISM	137	-1.409	0.0332	0.1976
HSA00120_BILE_ACID_BIOSYNTHESIS	31	-1.381	0.0983	0.2312
HSA00251_GLUTAMATE_METABOLISM	30	-1.378	0.0992	0.2301
HSA00650_BUTANOATE_METABOLISM	42	-1.378	0.0970	0.2251
HSA04120_UBIQUITIN_MEDIATED_PROTEOLYSIS	34	-1.376	0.0902	0.2239
HSA04930_TYPE_II_DIABETES_MELLITUS	41	-1.375	0.0927	0.2197
HSA00600_SPHINGOLIPID_METABOLISM	33	-1.374	0.1128	0.2168
HSA00020_CITRATE_CYCLE	25	-1.363	0.1036	0.2261
HSA03320_PPAR_SIGNALING_PATHWAY	57	-1.356	0.0922	0.2324
HSA04330_NOTCH_SIGNALING_PATHWAY	39	-1.346	0.1049	0.2411
HSA04130 SNARE INTERACTIONS IN VESICULAR TRANSPORT	30	-1.345	0.1197	0.2373
HSA04920_ADIPOCYTOKINE_SIGNALING_PATHWAY	68	-1.342	0.0708	0.2370
HSA00340_HISTIDINE_METABOLISM	36	-1.336	0.1130	0.2405
HSA04630_JAK_STAT_SIGNALING_PATHWAY	132	-1.326	0.0523	0.2493