Suppression of nuclear factor-kappa B activation and inflammation in microglia by a physically-modified saline

Saurabh Khasnavis¹, Arundhati Jana¹, Avik Roy¹, Tony Wood², Supurna Ghosh², Richard Watson², and Kalipada Pahan¹

¹Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612; ²Revalesio Corporation, 1200 East D Street, Tacoma, WA 98421

<u>To whom correspondence should be addressed:</u> Kalipada Pahan, Ph.D. Department of Neurological Sciences, Rush University Medical Center 1735 West Harrison St, Suite 320, Chicago, IL 60612 Telephone (312) 563-3592; Fax (312) 563-3571; Email: <u>Kalipada_Pahan@rush.edu</u>

Legends to supplementary figures

Supplementary Figure 1. Mass spectrometric analyses of NS, PNS60 and RNS60. To examine compositional differences in NS, PNS60 and RNS60, the LC-Q-TOF system was configured with an electrospray ionization interface (ESI) and the analysis was performed in both positive and negative modes. To facilitate visual comparison, the 100 to 1000 m/z scan range for each sample was separated into 9 segments of 100 m/z each and printed as part of the study data. The extracted segments from each of PNS60 and RNS60 were compared to the corresponding extracted segments for NS. Only a part of it is shown (A, solvent; B, NS; C, PNS60; D, RNS60).

Supplementary Figure 2. Effect of isoform-selective PI-3 kinase inhibitors on RNS60-mediated upregulation of I κ B α in mouse microglial cells. Mouse BV-2 microglial cells preincubated with different concentrations of GDC-0941 (A&B), TGX-221 (C&D), IC-87114 (E&F), and AS-605240 (G&H) for 30 min were treated with RNS60 (10% v/v) under serum-free condition. After 1 h of treatment, the level of I κ B α was monitored by Western blot (A, C, E, & G). Bands were scanned and results presented as protein expression relative to Actin (B, D, F, &H). Results represent mean \pm

SD of three separate experiments. ${}^{a}p < 0.001$ vs control; ${}^{b}p < 0.001$ vs RNS60; ns, non-significant.

Supplementary Figure 3. Effect of siRNA knockdown of p110 α and p110 δ isoforms of PI-3 kinase on RNS60-mediated upregulation of I κ B α in mouse microglial cells. Mouse BV-2 microglial cells were transfected with control siRNA, p110 α siRNA or p110 δ siRNA (Santa Cruz, CA). After 48 h of transfection, the knockdown of p110 α and p110 δ was monitored by Western blot (A). After 48 h, cells were stimulated with RNS60 for 1 h followed by monitoring the level of I κ B α by Western blot (B). Bands were scanned and results presented as protein expression relative to Actin (C). Results represent mean \pm SD of three separate experiments. ^{*a*}*p* < 0.001 vs control; ^{*b*}*p* < 0.001 vs cont siRNA-RNS60.

Supplementary Figure 3

Supplementary Table 1

Table 1

Test Material	Ba ^d	Ni	K	TOC
Bottled RNS60 ^a	0.0024 (0.0004)	0.0059 (0.0008)	0.6 (2)	35
Bottled PNS60 ^{a,b}	0.0028 (0.0004)	0.0043 (0.0008)	0.2 (2)	43
Source saline ^c	0 (0.0004)	0.0045 (0.0008)	$0.6(1)^{e}$	21

Table 1 Legend

ICP-MS results for the three tested metals (out of 26 total) that were above the minimal detection limits, presented as ppm (mg/L) above the detection limit (provided in parentheses). Total Organic Carbon (TOC) values are shown in ppb. ^{*a*}In glass bottles, ^{*b*}This saline contacted the same device surfaces as RNS60 and was bottled in the same way, ^{*c*}Supplied in polypropylene bottles, ^{*d*}Barium is known to leach from glass, ^{*e*}The smaller detection limit for control saline resulted from large analysis volumes.