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Supplementary Fig. 1.  Purification of autocatalytically processed Yca1.  (A) Gel 
filtration profile of E. coli-expressed full-length wild-type Yca1. Purified Yca1 was eluted from 
Superdex-200 gel filtration column in a fraction corresponding to an apparent molecular mass of 
approximately 35 kDa. The eluted Yca1 protein contains two subunits comprising residues 1-331 
and 335-432, respectively.  (B) Autocatalytic processing occurs after Lys331 and Lys334 in 
Yca1. N-terminal peptide sequencing indicates that autoprocessing of Yca1 may occur at the 
carboxyl-end of Lys331 and Lys334. The blue and red arrows indicate possible autoprocessing 
sites. 

 
Supplementary Fig. 2.  Disruption of the homo-dimeric interface in canonical caspases 

by two extra β-strands of Yca1.  (Left) Homo-dimer of caspase-3. Two molecules of caspase-3 
form a homo-dimer (green & yellow) (PDB code 1CP3 (1)).  (Top right) Structure of Yca1 
monomer. The two extra β-strands of Yca1 (blue) that may disrupt canonical caspase-like 
homo-dimerization are encircled in red.  (Bottom right) Structural alignment of Yca1 monomer 
to caspase-3 monomer. Structural alignment showed that the two extra β-strands of Yca1 (blue) 
induce steric clash with the adjacent caspase-3 molecule (yellow) during homo-dimer formation. 

 
Supplementary Fig. 3. Structural comparison of the active sites of Yca1, caspase-3, 

caspase-9 and the paracaspase MALT1.  (Left) Structural overlay of active sites of Yca1 and 
caspase-3. A close-up view on the Yca1 (blue) and caspase-3 (green) (PDB code 1CP3 (1)) active 
sites is shown. The covalently bound inhibitor Acetyl-Asp-Val-Ala-Asp-fluoromethyl ketone 
(Ac-DVAD-fmk) is highlighted in orange.  (Middle) Structural overlay of Yca1 and caspase-9. 
A close-up view on the Yca1 (blue) and caspase-9 (magenta) (PDB code 1JXQ (2)) active sites is 
shown. The covalently bound inhibitor benzoxycarbonyl-Glu-Val-Asp-dichlorobenzylmethyl 
ketone (z-EVD-dcbmk) is highlighted in cyan.  (Right) Structural overlay of Yca1 and MALT1. 
A close-up view on the Yca1 (blue) and MALT1 (yellow) (PDB code 3UOA (3)) active sites is 
shown. The covalently bound inhibitor benzoxycarbonyl-Val-Arg-Pro-Arg (z-VRPR-fmk) is 
highlighted in purple. 

 
Supplementary Fig. 4.  Identification of Ca2+-stimulated, additional processing sites in 

autoprocessed Yca1. Single mutation of Arg72 or Lys86 reduced the 36-kDa doublet to a single 
band (lanes 2 & 3), whereas simultaneous mutation of Arg72 and Lys86 led to complete absence 
of the 36-kDa doublet in the presence of 10 mM Ca2+ (lane 4). 

 
Supplementary Fig. 5.  The N-terminal fragment of Yca1 does not affect its protease 

activity. To examine whether the N-terminal sequences of Yca1 inhibits its protease activity 
similarly as the case for MCA2 (4), we generated two variants: Yca1-Δ86, which had the 



N-terminal 86 amino acids deleted, and Yca1-R72A/K86A. The protease activity assay, measured 
by the disappearance of the substrate Bir1 (residues 1-435), reveals that both Yca1-Δ86 and 
Yca1-R72A/K86A exhibited a similar level of protease activity compared to the WT Yca1 
protein. Note that the variant Yca1-R72A/K86A migrated a bit faster in the presence of Ca2+ on 
SDS-PAGE (lanes 3 & 4). 

 
Supplementary Fig. 6.  Autoprocessing of Yca1 can occur in trans. The presence of Ca2+ 

facilitated the auto-processing of MBP-Yca1 into a doublet of bands at about 60-kDa (lanes 1 & 
2), which we believe represent MBP-Yca1(1-72/86). The presence of Ca2+ had no impact on the 
auto-catalytic processing of the mutant MBP-Yca1-C276A (lanes 7 & 8). Notably, in the 
presence of both Ca2+ and Yca1, the mutant MBP-Yca1-C276A was processed into the 
characteristic doublet of 60-kDa (lanes 5 & 6). This result indicates that auto-cleavage at 
R72/K86 can occur in trans, at least in vitro using purified recombinant proteins. 
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