

**Supplemental Figure S1:** (a) Oxidation of methionine to methionine-sulfoxide and methionine-sulfone via hydrogen peroxide. (b) Copper catalyzed oxidation of histidine to 2-oxo-histidine.



## Supplemental Figure S2 : 2D <sup>1</sup>H-<sup>15</sup>N HSQC of H<sub>2</sub>O<sub>2</sub> Oxidized PrP(23-231)

Un-oxidized PrP(23-231) spectra (black), oxidized PrP(23-231) after 9 hrs incubation at 37 °C (red). PrP(23-231) (130 micromolar) oxidized with 10 mM  $H_2O_2$  in 10 mM sodium acetate buffer pH 5.5. Residues perturbed by  $H_2O_2$  oxidation are the same to those observed from PrP(113-231), shown in Figure 1.



Supplemental Figure S3: Methionine oxidation of PrP(113-231). 2D <sup>1</sup>H-<sup>15</sup>N HSQC spectra of PrP(113-231) (130 micromolar) in 10 mM sodium acetate buffer, pH 5.6 at 37 °C, showing un-oxidized spectra (black) and  $H_2O_2$  (10 mM) incubated sample at 3 hrs (pink) and 9 hrs (blue) incubation times. Selected regions of HSQC are shown in Figure 1 together with chemical shift perturbations.



Supplemental Figure S4: Size Exclusion Chromatogram of oxidized PrP(23-231) by  $H_2O_2$ . (a) Un-oxidized PrP(23-231), elution volume typical of a monomer. (b) PrP(23-231) incubated with 10 mM  $H_2O_2$ , elution volume also typical of a monomer. Samples were incubated at 37 °C, in 10 mM sodium acetate buffer at pH 5.5, for 7 hours, at 3mg/ml PrP(23-231) concentration and diluted to 0.1 mg/ml for injection onto size-exclusion Superdex-200 column.



Supplemental Figure S5: Reversible unfolding of  $H_2O_2$  oxidized PrP(23-231). Circular dichroism of chemical denaturation (using urea) on oxidized PrP(23-231) under the mild conditions; the unfolding trace (red ) and refolding trace (blue) show the change at 225 nm. All carried out at pH 5.5, using 10 mM sodium acetate buffer, with a protein concentration of 4.3  $\mu$ M. Refolding data obtained by dilution of 10 M urea sample. Very similar curves, with the [D]<sup>50%</sup> for the unfolding is 4.2 M and for the refolding is 4.4 M, indicating urea unfolding is reversible.



Supplemental Figure S6: 2D <sup>1</sup>H-<sup>15</sup>N HSQC of PrP(23-231) with and without 0.1 mole equivalents  $Cu^{2+}$  ions. PrP(23-231) apo (black) and PrP(23-231) with 0.1 mole equivalents  $Cu^{2+}$  ions (red). Only very minor perturbations in the <sup>1</sup>H-<sup>15</sup>N HSQC spectra with 0.1 mole equivalents of paramagnetic Cu(II) present. There was no change in the spectra recorded over time.



Supplemental Figure S7: 2D <sup>1</sup>H-<sup>15</sup>N HSQC of copper catalyzed oxidation of PrP(23-231). (Same data as shown in Figure 3) Un-oxidized PrP(23-231) (red), Cu<sup>2+</sup>catalyzed oxidation of PrP(23-231) after 4 hrs of incubation (green) and 16 hrs of incubation (blue). PrP(23-231) (3 mg/ml) oxidized with 10 mM H<sub>2</sub>O<sub>2</sub> and 0.1 mole equivalents Cu<sup>2+</sup> ions in 10 mM sodium acetate pH 5.5. After 4 hours some resonances from helix-C retain the signal and chemical shift values while many other signal from the structured domain lose their signal intensity due exchange broadening of a molten-globule fold.



Supplemental Figure S8: UV-CD spectra with PrP(113-231)  $H_2O_2$  oxidized under milder conditions. Red spectra are un-oxidized PrP and Black is oxidized PrP. Oxidizing conditions were PrP(113-231) 130 micromolar with 10 mM  $H_2O_2$  (no Cu<sup>2+</sup>) and incubated for 24 hrs. 10 mM sodium acetate buffer at pH 5.5. Little change in total helical content when oxidized by  $H_2O_2$  under these mild conditions.



**Supplemental Figure S9:** (a) UV-CD spectrum of  $PrP^{C}$  with 0.1 mole equivalent  $Cu^{2+}$  added no  $H_2O_2$ . PrP(23-231), 0.2 mg/ml, pH 7.4. Spectra recorded every 2 hrs up to 20 hrs. (b) FT-IR spectra of full-length  $PrP^{C}$  with 0.1 mole equivalents  $Cu^{2+}$  added (no  $H_2O_2$ ) no change in  $\alpha$ -helical amide-I band is observed. Low levels of  $Cu^{2+}$  ions alone (0.1 mole equivalents) have no effect on the structure of  $PrP^{C}$  and structure remained unchanged over 20 hours.



## Supplemental Figure S10: ANS (a) and bis-ANS (b) fluorescence for oxidized $(H_2O_2)$ and copper oxidized PrP using harsh oxidizing conditions.

PrP(23-231) 4  $\mu$ M was oxidized by incubation with 10 mM H<sub>2</sub>O<sub>2</sub> (Red) or with 10 mM H<sub>2</sub>O<sub>2</sub> plus 0.1 mol equivalents Cu<sup>2+</sup> ions (blue). Sample were incubated for 22 hours at 37 °C, Un-oxidized PrP(23-231) 4  $\mu$ M is also shown (green). In contrast, to the mildly oxidizing conditions little ANS fluorescence and no bis-ANS fluorescence relative to un-oxidized PrP<sup>C</sup> is not observed. This suggests that the strongly oxidized PrP does not have molten-globule like properties.



## Supplemental Figure S11: Proteinase K treatment of PrP<sup>C</sup> under harsh H<sub>2</sub>O<sub>2</sub> oxidizing conditions

A western blot of proteinase K treatment of 50 ng of PrP(23-231) was prepared following SDS–PAGE (14% gel). In the absence of proteinase K "-" and in the presence of 20 mole equivalents of proteinase K "+". Two controls were used the first was PrP(23-231) with 10 mM NaOAc, pH 5.5, incubated at 4 °C for 47 hours (C1) and the second was PrP(23-231) with 10 mM NaOAc, pH 5.5, incubated at 37 °C for 47 hours (C2). PrP(23-231) with 10 mM H<sub>2</sub>O<sub>2</sub> in the presence of 10 mM NaOAc, pH 5.5, incubated at 37 °C for 47 hours (OX). A primary monoclonal antibody (ICMS-18), detects mouse PrP<sup>C</sup>, was used when immunostaning. Mouse HRP-conjugated secondary antibody was used for detection. The highlighted band corresponds to a ~13 kDa fragment which is PK resistant, this is formed by the harsh H<sub>2</sub>O<sub>2</sub> treatment typical of digestion into PrP(90-231). Both of the controls of un-oxidized PrP<sup>C</sup> are not PK resistant producing smaller 6-10 kDa fragments form the PK digest.



Supplemental Figure S12: Detection of hydroxyl radical by 3-CCA assay. Fluorescence signal at 450 nm indicates the presence of hydroxyl radicals. Spectra confirm that  $H_2O_2$  and  $Cu^{2+}$  will generate hydroxyl radicals.  $Cu^{2+}$  with  $H_2O_2$  after 1 hour (black) and 20 hours (blue) at 37 °C. Incubation of  $H_2O_2$  in absence of  $Cu^{2+}$  ions will not generate an appreciable fluorescence signal.  $H_2O_2$  (2.5 mM) and  $Cu^{2+}$  ions (25  $\mu$ M) in phosphate buffer at pH 7.4. Hydroxyl radical detection was carried out using 3-Coumarin Carboxylic Acid (3-CCA) assay (King, M., et al. 2003). The product, 7-OH-CCA fluoresces at 450 nm with an excitation maxima at 388 nm. Fluorescence emission spectra were obtained with a Hitachi F-2500 fluorescence spectrophotometer using a 1 cm path-length quartz cuvette (Hellma) and 1 mM 3-CCA.



Supplemental Figure S13: 1D <sup>1</sup>H NMR spectra of full-length and fragment PrP when incubated with hydrogen peroxide. Panel (a) and (c) are PrP(113-231) (140 micromolar) in sodium acetate buffer (10 mM) at pH 5.6 at 37 °C. Panel (b) and (d) are PrP(23-231) (130 micromolar) in sodium acetate buffer (10 mM) at pH 5.4 at 37 °C (c) and (d) after 24 hours incubated with  $H_2O_2$  (10 mM). The singlets assigned to  $\varepsilon$ H of Met (diamonds) are lost upon oxidation, new resonance's assigned to Met-sulphoxide  $\varepsilon$ H are apparent. Triangle is a sodium acetate peak.

It has been possible to directly monitor oxidation of the Met residues using simple 1D <sup>1</sup>H NMR methods. Even for full-length PrP it is possible to observe the singlet signals for the  $\varepsilon$ H methyl proton of Met residues in the 1D <sup>1</sup>H NMR spectra. Addition of H<sub>2</sub>O<sub>2</sub> causes the gradual loss of the signals at ~ 2.5 ppm and appearance of new signals downfield at ~2.9 ppm for the sulphoxide for of  $\varepsilon$ H of Met<sup>OX</sup>. Complete loss of un-oxidized methionine  $\varepsilon$ CH<sub>3</sub> NMR signals are apparent within 24 hours, while, other resonances are unaffected in particular the His  $\varepsilon$ H singlets remain unaffected. In contrast, a mixture of Cu<sup>2+</sup> with H<sub>2</sub>O<sub>2</sub> is sufficient to generate hydroxyl radicals. The hydroxyl radicals is highly reactive, in particular, the His residues which chelate the Cu<sup>2+</sup> ions are oxidized to generate 2-oxo-His species. <sup>1</sup>H NMR indicates loss of His  $\varepsilon$ H signals, although the oxidized side-chain is difficult to observe.