
Additional File I: Asymptotic properties

We establish asymptotic properties of the proposed integrative prescreening. The asymptotic study is more

complicated than that in existing studies because of the presence of multiple datasets and, more importantly,

the heterogeneity among them. Note that a generalized liner model can also be written in the canonical

form fY (y; θ) = exp(yθ− b(θ) + c(y)), with known b(θ) and c(y) functions. Let βmj = (βmj0, β
m
j )T denote the

two-dimensional parameter and Xm
j = (1, Xm

j )T . We use the superscript “ ⋆ ” to denote the true regression

parameter. We make the following assumptions.

A1. For m = 1 . . .M , j = 1 . . . d, the Fisher information for the marginal regression Imj (βm⋆j ) =

E
{
b′′(βm⋆Tj Xm

j )Xm
j XmT

j

}
is finite and positive definite. Moreover, ∥Imj (βmj )∥ is bounded from above

in a local neighborhood of βm⋆j , denoted as B = B ×B, which is a square with the width B;

A2. b′′(·), the second derivative of b(·), is continuous and positive;

A3. For all βmj ∈ B, E(l(βm⋆Tj Xm
j )− l(βmTj Xm

j )) ≥ Vn∥βm⋆j − βmj ∥2, for some positive Vn bounded from

below uniformly over j = 1 . . . d and m = 1 . . .M ;

B1. The covariates Xm
j are bounded with ∥Xm

j ∥∞ ≤ Kn for some constant Kn;

B2. The variance var(αm⋆TXm) is bounded from above and below for m = 1, . . . ,M .

Assumption A1 ensures the existence of the marginal MLEs. A1–A3 are satisfied in a lot of generalized

linear models, particularly including linear regression, logistic regression and Poisson regression. B1 is

assumed for technical convenience, although the actual value of bound may remain unknown in practice. B2

is assumed so that the models are stable.

Proposition 1. The marginal surrogates
{
Sj = 1/M

∑M
m=1 β

m⋆
j , j = 1, . . . , d

}
have the same sparsity

structure as that of
{∑M

m=1 cov(Y
m, Xm

j ), j = 1, . . . , d
}
.

That is, (i) marginally unimportant genes are marginally uncorrelated with the response variables;

and (ii) when genes in the nonsparsity set are marginally correlated with the response variables, i.e.,

minj∈M⋆
|cov(Y m, Xm

j )| ≥ c1n, for m = 1 . . .M and some positive constant c1n, there exists some posi-

tive constant c2n such that

min
j∈M⋆

∣∣∣ M∑
m=1

βm⋆j /

M∑
m=1

cov(Y m, Xm
j )

∣∣∣ ≥ c2n. (1)

Here we define (βm⋆j0 , β
m⋆
j )T = argmaxβm

j0,β
m
j
Elm(βmj0 + βmj X

m
j ), where E is the expectation. Proposition 1

establishes the connection between the marginal surrogates {Sj}, which describe the sparsity structure of
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the joint models, with the marginal correlation coefficients. Based on Proposition 1, the main properties of

integrative prescreening are summarized in the following theorem.

Theorem 1. Suppose that assumptions A1–A3 and B1–B2 hold, then

(i) E supj∈M⋆

∣∣∣∑M
m=1 β̂

m
j /M −

∑M
m=1 β

m⋆
j /M

∣∣∣ = O(
√
log d/n).

(ii) If in addition minj∈M⋆ |cov(Y m, Xm
j )| ≥ c1n for m = 1 . . .M , then by taking γn = c1nc2n/2 ≫√

log d/n, with probability one, M⋆ ⊂ M̂γn , as n→ ∞.

The validity of marginal ranking statistic for selecting susceptibility genes has been established in Propo-

sition 1. Result (i) of Theorem 1 further establishes that the estimated marginal ranking statistics are

uniformly consistent. These two results suggest that the estimated marginal ranking statistic is asymptoti-

cally valid for selecting susceptibility genes. We note that, result (i) is valid for d = O{exp(nα)} with α < 1.

Result (ii) establishes that, when the threshold is properly chosen, integrative prescreening is consistent. Of

note, prescreening is a preliminary selection. Thus, as long as false negatives are controlled, false positives

are of less concern. Result (ii) provides an asymptotic order of the threshold, but it does not suggest a way

of determining its actual value with finite sample data. The following result is concerned with the number

of genes that can pass prescreening.

Theorem 2. Under assumptions A1–A3 and B1-B2, for any γn ≫ O(
√
log d/n), with probability converging

to one,

|M̂γn | ≤ O{γ−2
n max

m≤M
λmax(Σ

m)},

where Σm = var(Xm) and λmax(·) is the largest eigenvalue of a matrix.

Theorem 2 shows that, although the consistency properties do not depend on Σm, the number of

genes that can pass prescreening is affected by the correlation structure of gene expressions. When

γ−2
n maxm≤M λmax(Σ

m)/d→ 0, the number of selected genes is negligible compared to d.

Proof of Proposition 1 To prove the first part, it suffices to show that for j = 1 . . . d, the sparsity set of∑M
m=1 β

m⋆
j is the same as that of

∑M
m=1 cov(Y

m, Xm
j ). It takes three steps.

As the first step, we establish the connection between cov(Y m, Xm
j ) and βm⋆j . Note that for each j =

1 . . . d, m = 1 . . .M , βm⋆j = (βm⋆j0 , β
m⋆
j )T is the unique minimizer of the Kullback-Leibler distance

Im(βmj ) = E

[
log

{
fY (Y

m,αm⋆Xm)

fY (Y m,β
mT
j Xm

j )

}]
= E

[
b′(α⋆TXm)

{
α⋆TXm − βmTj Xm

j

}
− b(α⋆TXm) + b(βmTj Xm

j )
]
, (2)
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where Xm = (1, Xm
1 , . . . , X

m
d )T and Xm

j = (1, Xm
j )T . Hence it is the unique solution of the score equations

E
[
b′(βm⋆Tj Xm

j )Xm
j

]
= E

[
b′(α⋆TXm)Xm

j

]
.

Since EXm
j = 0 and E(Y m|Xm) = b′(α⋆TXm), the above equation is equivalent to

cov(Y m,Xm
j ) = cov(b′(α⋆TXm),Xm

j ) = cov(b′(βm⋆Tj Xm
j ),Xm

j ). (3)

In the second step, we show that if
∑M
m=1 cov(Y

m, Xm
j ) = 0, then

∑M
m=1 β

m⋆
j = 0. As the marginal covari-

ances of Y m and Xm
j have the same signs across m,

∑M
m=1 cov(Y

m, Xm
j ) = 0 implies that cov(Y m, Xm

j ) = 0

for each m = 1 . . .M. By (3), it further implies that

cov(b′(βm⋆Tj Xm
j ), Xm

j ) = 0.

If βm⋆j ̸= 0, then by the mean value theorem, there exists some ξ such that

βm⋆j cov(Y m, Xm
j ) = E

(
b′(βm⋆j0 + βm⋆j Xm

j )− b′(βm⋆j0 )
)
Xm
j β

m⋆
j = E(b′′(ξ)Xm2

j βm⋆2j ) > 0. (4)

This can not happen, since cov(Y m, Xm
j ) = 0. Therefore it forces βm⋆j = 0 for all m = 1 . . .M . This implies

that
∑M
m=1 β

m⋆
j = 0.

In the third step, we show that if
∑M
m=1 cov(Y

m, Xm
j ) ̸= 0, then

∑M
m=1 β

m⋆
j ̸= 0. Without loss of

generality, we consider the case when
∑M
m=1 cov(Y

m, Xm
j ) > 0. As the marginal covariances of Y m and Xm

j

are of the same direction across m, this implies that cov(Y m, Xm
j ) > 0 for all m = 1 . . .M . It thus follows

from (4) that βm⋆j > 0 for all m = 1 . . .M , which implies that
∑M
m=1 β

m⋆
j > 0. The first part of the result

is thus proved.

For the second part, since |
∑M
m=1 cov(Y

m, Xm
j )| ≥ c1n for j ∈ M⋆, without loss of generality, we assume

that for all m = 1, . . . ,M , cov(Y m, Xm
j ) are positive for j ∈ M⋆. It follows from the score equation that

M∑
m=1

E(b′(βm⋆j0 + βm⋆j Xm
j )Xm

j ≥ c1n, (5)

for j ∈ M⋆. By Taylor expansion, there exists D1 = supx b
′′(x) such that

|b′(βm⋆0 + βm⋆j Xm
j )Xm

j − b′(βm⋆0 )Xm
j | ≤ D1β

m⋆
j Xm2

j . (6)

By taking expectations on both sides of (6) and the Triangle inequality,

|Eb′(βm⋆j0 + βm⋆j Xm
j )Xm

j − Eb′(βm⋆j0 )Xm
j | ≤ D1β

m⋆
j . (7)
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It follows from (7) and the Triangle inequality that

E
M∑
m=1

b′(βm⋆j0 + βm⋆j Xm
j )Xm

j ≤ D1

M∑
m=1

βm⋆j . (8)

Combining (5) and (8), we get

min
j∈M⋆

M∑
m=1

βm⋆j ≥ c3n, (9)

where c3n = c1nD
−1
1 . The second assertion thus holds by letting c2n = D−1

1 . �

To prove Theorem 1, we will use the following results.

Lemma 2.2.1 in [21]. Let X be a random variable with P (|X| > x) ≤ Ke−Cx
p

for every x > 0 and

constants K, C and p ≥ 1. Then ∥X∥ψp ≤ ((1 + K)/C)1/p. Here ∥ · ∥ψp is the Orlicz norm: ∥X∥ψ =

inf
{
C > 0 : Eψ

(
|X|
C

)
≤ 1

}
and ψp(x) = ex

p − 1 for p ≥ 1.

Lemma 2.2.2 in [21]. Let ψ be a convex, nondecreasing, nonzero function with ψ(0) = 0 and

lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) < ∞ for a finite constant c. Then, for any random variables X1, . . . , Xm,

∥max1≤j≤mXi∥ψ ≤ Kψ−1(m)×max1≤i≤m ∥Xi∥ψ, for a constant K depending only on ψ.

Proof of Theorem 1 An application of Theorem 1 of [11] yields that, for any t > 0,

P
(√

n|β̂mj − βm⋆j | ≥ 16kn(1 + t)/Vn

)
≤ exp(−2t2/K2

n), (10)

where kn = b′(KnB+B). DefineWm
j,n =

√
n|β̂mj −βm⋆j |−16kn/Vn. Since for arbitrary x and positive scalers

a, t, |x− a| > t implies |x| > a+ t, (10) implies that

P
(
|Wm

j,n| ≥ 16knt/Vn
)
≤ exp(−2t2/K2

n).

It can be further expressed as

P
(
|Wm

j,n| ≥ x
)
≤ exp(−Cx2), (11)

where C = V 2
n /(128k

2
nK

2
n). Using Lemma 2.2.1 above, we obtain

∥Wm
j,n∥ψ2 ≤

√
3C,

for all 1 ≤ j ≤ d and 1 ≤ m ≤ M . Then by Lemma 2.2.2 above combined with the fact that

lim supx,y→∞ ψ2(x)ψ2(y)/ψ2(xy) = 0, there exists a universal constant K <∞ with

∥ max
1≤j≤d

Wm
j,n∥ψ2 ≤ K

√
log(1 + d)

√
3C.
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Since log(p+ 1) ≤ 2 log p for all p ≥ 2 and ∥X∥p ≤ ∥X∥ψp
for any random variable X, it follows that

E max
j=1,...,d

∣∣∣β̂mj − βm⋆j

∣∣∣ ≤ D2

√
log d/n,

where D2 = 2K
√
3C. Part (i) thus follows from the fact that

∣∣∣1/M M∑
m=1

(β̂mj − βm⋆j )
∣∣∣ ≤ 1/M

M∑
i=1

∣∣∣β̂mj − βm⋆j

∣∣∣. (12)

To prove part (ii), we note that by the Markov inequality and the result from part (i),

P
(
max
j≤d

∣∣∣1/M M∑
m=1

(β̂mj − βm⋆j )
∣∣∣ ≥ 1/2c1nc2n

)
≤ Emax

j≤d

∣∣∣1/M M∑
m=1

(β̂mj − βm⋆j )
∣∣∣/γn → 0.

Therefore with probability converging to one,

min
j∈M⋆

|
M∑
m=1

β̂mj | ≥ γn,

That is, P (M⋆ ∈ M̂γn) → 1.

Proof of Theorem 2 The proof takes two steps. In the first step, we show that the size of the set:

Mγn = {j : |1/M
∑M
m=1 β

m⋆
j | ≥ γn} is no greater than O(1/Mγ−2

n maxm≤M λmax(Σ
m)). In the second step,

we show that the size of M̂γn is of the same order as that of Mγn .

To show the first assertion, it suffices to show the Euclidean norm of βm⋆ = (βm⋆1 , . . . , βm⋆d )T is bounded

by O{
∑M
m=1 λmax(Σ

m)}. That is,

∥1/M
M∑
m=1

βm⋆∥2 ≤ O{1/M
M∑
m=1

λmax(Σ
m)}. (13)

Since

∥1/M
M∑
m=1

βm⋆∥2 ≤ 1/M
M∑
m=1

∥βm⋆∥2, (14)

we first bound
∑M
m=1 β

m⋆2
j , the jth entry of the right hand side of (14). Since b′(·) is monotonically increasing,

the function

M∑
m=1

{b′(βm⋆j0 +Xm
j β

m⋆
j )− b′(βm⋆j0 )}Xm

j β
m⋆
j

is always positive. By Taylor’s expansion, we have

M∑
m=1

{b′(βm⋆j0 +Xm
j β

m⋆
j )− b′(βm⋆j0 )}βm⋆j Xm

j ≥
M∑
m=1

D3(β
m⋆
j Xm

j )2,

5



where D3 = infx b
′′(x), since (βm⋆j0 , β

m⋆
j ) is an interior point of the square B. By taking the expectation on

both sides and using EXm
j = 0, we have

M∑
m=1

Eb′(βm⋆j0 +Xm
j β

m⋆
j )βm⋆j Xm

j ≥ D3

M∑
m=1

E(βm⋆j Xm
j )2.

It follows from the score equation that

M∑
m=1

βm⋆2j ≤ D4

M∑
m=1

Eb′(XmTαm⋆)Xm
j , (15)

for some D4 > 0. We further bound from above the right hand side of (15) by using var(XmTαm⋆) = O(1)

uniformly over m. By Taylor expansion,

{b′(XmTαm⋆)− b′(αm⋆0 )}Xm
j ≤ D5

∣∣∣Xm
j XmT

d αm⋆d

∣∣∣,
where Xm

d = (Xm
1 , · · · , Xm

d )T and αm⋆d = (αm⋆1 , . . . , αm⋆d )T . By putting the above equation into the vector

form and taking the expectation on both sides and sum over m, we have

M∑
m=1

∥∥∥E{b′(XmTαm⋆)− b′(αm⋆0 )}Xm
d

∥∥∥2 ≤ D2
5

M∑
m=1

∥∥∥EXm
d XmT

d αm⋆d

∥∥∥2 (16)

≤ D2
5

M∑
m=1

λmax(Σ
m) ∥Σm1/2αm⋆

∥∥∥2.
Using EXm

d = 0 and var(XmTαm⋆) = O(1), we conclude that

M∑
m=1

∥∥∥Eb′(XmTαm⋆)Xm
d

∥∥∥2 ≤ O(
M∑
m=1

λmax(Σ
m)) = D6 max

m≤M
λmax(Σ

m),

for some positive constant D6. This together with (15) entail (13).

To show the second step, we note that from the first step, the number of

{j : |1/M
∑M
m=1 β

m⋆
j | > γn} can not exceed O{γ−2

n maxm≤M λmax(Σ
m)}. Thus, on the set

Bn =

{
max
1≤j≤d

1/M

∣∣∣∣∣
M∑
m=1

β̂mj −
M∑
m=1

βm⋆j

∣∣∣∣∣ ≤ γn

}
,

the number of {j : 1/M |
∑M
m=1 β̂

m
j | > 2γn} can not exceed the number of

{j : 1/M |
∑M
m=1 β

m⋆
j | > γn}, which is bounded by O{γ−2

n maxm≤M λmax(Σ
m)}. The desired result thus

follows from part (ii) of Theorem 1 and the fact that γn = c1nc2n/2.
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