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Appendix: Proof of the main theorem
Towards a theoretical understanding of false positives in DNA motif finding

Amin Zia and Alan M. Moses

1. Overview

Motif-finding methods search for short stretches of similar DNA bases referred to as motifs. We
describe the structure of a motif statistically by the relative frequency of the DNA bases in the
motif and compare these frequencies with a random background distribution. We refer to the
difference between the composition of the bases in the motif and the background distribution
as the strength or the specificity of motif, interchangeably.

Now suppose that the sequences are generated according to a background distribution and
therefore do not carry any biologically relevant motif. In this case, any motif detected by motif-
finding algorithms is a false-positive. The main theorem proved here gives an approximate size
for the dataset for which the detection of such fasle-positive motifs (with a given width and
specificity) becomes quite probable.

To prove the main theorem, we use a number of definitions and lemmas from classical
information theory and statistics to compute an upper-bound on the p-value of any given
motif (based on its width and specificity). The lemmas given here are mainly adopted from
[31] with minor modifications. Once the bound on the p-value is derived, we multiply it by the
number of possible motifs in the dataset to derive an upper-bound on the number of motifs
expected to be observed in the dataset. We use this bound to prove the main theorem.

It is important to note that the results presented here apply to any motif-finding scenario
no matter what algorithm is used. In fact we argue that false-positives happen because of the
intrinsic randomness residing in the sequences: if the size of the data set is sufficiently large,
false-positives with any arbitrary specificity can be observed by chance.

The outline of the proofs is as follows:

• We assume that a motif-finder can explore all possible motifs in a set of sequences
randomly generated according to a background distribution. The background distri-
bution is commonly considered as the genome-wide frequency of bases (e.g. a uniform
distribution).

• According to the Law of Large Numbers [31], it is extremely unlikely (i.e. it is a rare
event) that any motif in the dataset has bases with frequencies significantly different
than the background. We therefore use the theory of large deviation to compute the
probability of observing these events.

• By adding up the probabilities of all such rare events, i.e. the probability of observing
motifs with given strength or higher, we compute an upper bound on the p-value of
the motif.

• We then use the p-value and the number of motifs explored by the motif-finder to
compute the expected number of motifs at a given strength.
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Fig. 1. All sub-sequences of length W are generated by sliding a window of width W over each row of Y , one
base at a time.

1.1. Notations

We denote by A = {A,C, T,G} the set of DNA bases, which has cardinality 4, i.e. |A| = 4. All
theoretical derivations provided here are also valid for other alphabets including the amino-
acids for which |A| = 20.

We denote by L and n the length of the sequences and the number of sequences in the
dataset, respectively. Also we denote by W the width or size of the motif.

The position weight matrix (PWM) of a motif is a matrix with W columns corresponding
to W positions in the motif and 4 rows corresponding to bases {A, T,C,G}. We represent the
PWM with f or h throughout. We define a PWM precisely in the following. The background
distribution, with W columns and 4 rows is represented by g. The divergence (defined below)
or statistical difference between the motif’s PWM and g is measured by the Kullback-Leibrer
[31] distance denoted by D(f, g).

We represent matrices or vectors by upper-case variables: Y and X. The upper-case vari-
ables with a single index refer to rows of matrices, e.g. Yi represents the ith row of Y . All
vectors are row vectors. When we need to refer to a part of the row of a matrix, we use the
convention Yi,k:k+W that represent the vector of W elements (from column k to column k+W )
of the ith row of Y (see for example Fig. 1). Each single base in the dataset is denoted by
lower-case variables, e.g. x and y and indexed by the row and column position in the matrix
or the vector: yi,j is the base at the jth column of the ith row of Y .

For any matrix Y , we denote by Y T the transpose of a matrix.
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2. Preliminaries

3. Motif finding problem set up

Let us denote by Y = [Y1, Y2, ... , Yn]T the set of n sequences with length L used in typical
motif-finding problems:

Y =


y1,1 y1,2 y1,3 ... y1,L−1 y1,L
y2,1 y2,2 y2,3 ... y2,L−1 y2,L
... ... ... ... ... ...

yn,1 yn,2 yn,3 ... yn,L−1 yn,L

 (1)

where e.g. Yi is the ith row with L DNA bases.
Motif finding algorithms seek to find a set of over or under-represented short sub-sequences

of width W in rows of Y . In order to account for all possible sub-sequences in rows of Y , we
slide a window of length W over each row, Yi, from left to right and shifting one base at a time
(see Fig. 1) to generate all possible sub-sequences. As examples, the first three sub-sequences
of Y1 as well as the two consecutive sub-sequences of Yi, denoted by Yi,k:k+W and Yi,k+1:k+W+1,
are shown in Fig. 1.

Note that there are (L−W + 1) sub-sequences of length W in Yi.
Now suppose that we choose one sub-sequence from each row Yi. This results in n sub-

sequences (since Y has n rows). We arrange these sub-sequences in a matrix form, as shown
in the following, and refer to it as a motif X (see Fig. 2):

X =


x1,1 x1,2 x1,3 ... x1,W−1 x1,W
x2,1 x2,2 x2,3 ... x2,W−1 x2,W
... ... ... ... ... ...

xn,1 xn,2 xn,3 ... xn,W−1 xn,W

 (2)

This motif arrangement is based on the “one-occurrence-per-sequence” model in motif finding
where each sequence Yi contributes one and only one sub-sequence to motifs.

We denote by X the set of all motifs X obtained by this method and refer to it as the
dataset throughout:

X =

{
X : Xi,j ∈ {A, T,C,G}; i = 1, ..., n, j = 1, ...W ; Xi chosen from Yi by the sliding window

}
(3)

Each row of Y , e.g. Yi, consists of (L−W + 1) overlapping sub-sequences of width W . There
are n rows in Y . Therefore, the size of the dataset formed by all possible combinations of
sub-sequences is:

|X | = (L−W + 1)n. (4)

3.1. Statistical representation of motifs

The search for statistically significant motifs, in essence, involves finding X ∈ X that is dis-
tributed significantly differently from a background distribution g. To do so, we represent the
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Fig. 2. According to the “one-occurrence-per-sequence” (OOPS) model in motif finding, one and only one
sub-sequence from each row of Y is used to form a motif. We represent any of such motifs by X. Given that
there are (L−W +1) sub-sequences for each row, the dataset X of motifs consists of all (L−W +1)n different
combinations of the sub-sequences in Y .

motif X by a PWM f defined as:

f(X) ,


f1T f2T f3T ... fW−1,T fWT

f1C f2C f3C ... fW−1,C fWC

f1A f2A f3A ... fW−1,A fWA

f1G f2G f3G ... fW−1,G fWG

 (5)

where, e.g. fjT denotes the relative frequency of the symbol T in the jth column of the sub-
alignment X. The PWM f represents the empirical distribution of DNA bases at each column
of X. Each column of a PWM (e.g. fi) is the set of parameters of a categorical distribution
(commonly referred to as the “multinomial distribution” in literature imprecisely) that is
defined as a probability distribution that describes the result of the event of randomly selecting
one of K possible outcomes (e.g. K = 4 for DNA). For sequences of different alphabet, e.g.
protein sequences, the PWM is defined with 20 rows corresponding to the number of amino-
acid residues.

To quantify the strength or specificity of a motif we use information content measure
[42][3] that is defined as the divergence of the PWM of a motif from a background distribution.
Specifically, for a motif with a PWM f , the divergence from a background distribution g is
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defined as the Kullback-Leibler (KL) distance of f and g [41][3] as in the following:

D(f, g) ,
W∑
j=1

∑
k∈{T,C,A,G}

fjk log
fjk
gk

where fjk is defined in (5) and gk is the background distribution of base k.
The divergence, D(f, g), also also known as the biological information content of the motif

[42]. Throughout the manuscript, we refer to a motif X by its PWM f . We also use the
strength of a motif, its specificity as well as its information content, interchangeably for the
divergence, D(f, g).

4. Bounding the motif p-value

4.1. Probability of a motif

We consider a sampling process during which motifs X are drawn from a source according
to the background distribution g. In this framework, the event of observing a motif is the
probability of motif X under the background distribution g and represent it by Pg(X).

Note that in the discussion below we use classical results from information theory. In this
theory, the PWM of a motif (equivalently its empirical distribution) is commonly referred to
as the type of X. The discussion presented here is part of the Method of Types [48] that studies
statistical properties of sequences based on their types (empirical distributions).

The probability of motif X can be written in terms of its PWM using the following lemma:

Lemma 4.1. Suppose a motif X is drawn independently and identically ( i.i.d) according to
g and has a PWM (empirical distribution) f (defined in 5). The probability of X under g,
denoted by Pg(X) is given by:

Pg(X) = 2−n(H(f)+D(f,g)) (6)

where H(f) is the binary entropy of f defined as follows:

H(f) = −
W∑
j=1

∑
k∈{T,C,A,G}

fjk log fjk

and D(f, g) is defined in (3.1).

proof: See ([31], page 281).

�

This lemma gives the probability of a single motif X. In order to compute the probability
of a set motifs with a given PWM we need to add up the probabilities of all individual motifs
with PWM equal to f as described in the following section.

4.1.1. Class of a position weight matrix and its probability

Let us first define the set of all motifs X’s that have the same PWM f . This set is commonly
referred to as the class of the PWM f :

T (f) , {X ∈ X |pwm(X) = f}, (7)
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If we count the number of motifs in this class and add their corresponding probabilities using
(6) we can compute the probability of all X’s with PWM f . For this purpose, we use the
following lemma that gives the size of the class of a PWM f :

Lemma 4.2. The size of the type class of f is upper-bounded as follows:

|T (f)| ≤ 2nH(f) (8)

proof: See ([31], page 282).

�

It can be seen from (8) that as f changes in such a way that has a larger entropy (e.g. as
it gets closer to a uniform distribution as the background distribution g), the total number
of motifs, X with PWM f becomes exponentially large. Alternatively, when f is such that
its entropy is lower, i.e. it is a highly skewed PWM corresponding to a motif with strong
specificity, the number of motifs with a PWM equal to f becomes exponentially small.

Now, we can compute the probability of all motifs with a PWM f by adding the proba-
bilities of all motifs X ∈ T (f) for each of which we know the probability obtained in (6):

Lemma 4.3. If motifs X are drawn i.i.d according to a distribution g, the probability of motifs
that all have a PWM f is upper-bounded as follows:

Pg(T (f)) ≤ 2−nD(f,g) (9)

proof: The probability of a class T (f) can be written as:

Pg(T (f)) =
∑

X∈T (f)

Pg(X)

=
∑

X∈T (f)

2−n(D(f,g)+H(f)) (10)

= |T (f)|2−n(D(f,g)+H(f))

≤ 2nH(f)2−n(D(f,g)+H(f)) (11)

= 2−nD(f,g)

where in (10) we used (6) of Lemma 4.1 and in (11) we used (8) of Lemma 4.2.

�

According to this lemma, the upper-bound on the probability of all motifs with PWM
equal to f is exponentially proportional to the divergence between f and g. Therefore, as f

gets closer (in the divergence sense) to g, the probability of observing motifs becomes closer to
1. On the other hand, the probability of strong motifs with large divergence from background,
i.e. larger D(f, g), is exponentially small.

So far we have computed the probability of all motifs with a PWM f . We now can compute
the p-value of a motif with PWM f . For this purpose, we first determine the number of possible
PWMs as described in the following section.
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4.1.2. Number of possible PWMs

In the following, drive a bound on the number of possible PWMs.
First, let us consider only one column of a PWM as in (5). If there are n sequences in

the motif, the column has n symbols chosen from the symbols in A. One can enumerate all
possible distributions of symbols in this column:

P =

{(
fT
1 , f

C
1 , fA

1 , fG
1

)
: (

0

n
,

0

n
,

0

n
,
n

n

)
,
( 0

n
,

0

n
,

1

n
,
n− 1

n
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, ...,

(n
n
,

0

n
,

0

n
,

0

n

)}
It can be seen that the numerator of frequencies change from 0 to n. Furthermore, there are
three independent frequencies in this PWM, i.e. the last one is fixed by the rest to have a
sum equal to 1. Therefore, there are about (n + 1)3 different possible arrangements of this
frequencies. We formalize this idea for an extended number of columns, W , in the following
lemma [31]:

Lemma 4.4. For a motif of width W , there are at most |P| ≤ (n + 1)W (|A|−1) PWMs in P.

proof: There are |A| − 1 components in the PWM of any column (the last component is
fixed by the the others). The numerator of each component can take n + 1 values. Therefore,
each column can have (n+ 1)|A|−1 PWMs. Since each column is independently and identically
distributed, there are (n + 1)W (|A|−1) different PWMs for the motif of width W .

�

We are now able to compute an upper bound on the p-value of a motif.

4.2. A bound on the motif the p-value

Consider a motif X with a PWM, f , with strength D(f, g). The p-value of this motif is defined
as the probability of all motifs, X ′, that have PWMs, h, that are diverged by at least D(f, g):

pval(X) ,
∑

X′:D(h,g)≥D(f,g)

Pg(X ′) (12)

where Pg is as defined previously, and the sum is over motifs X‘ that have PWMs h.
By defining the maximum number of possible PWMs for a motif (of width W ) and knowing

the probability of the class of each PWM (Lemma 4.3) we can now compute the p-value of a
motif with PWM f . The main idea, as explained before, is to first define the set of all motifs
with PWMs stronger than f , i.e. with D ≥ D(f, g) and then to use Lemma 4.3 to compute
its probability. This idea is formalized in the following theorem known as Sanov’s Theorem in
large-deviation theory. Here we provide a simplified version of the proof that is only applicable
to our case. Interested readers are referred to ([31], page 292) for general theorem and technical
details.

Lemma 4.5. Assume a given set of motifs, X , generated according to a background distribu-
tion g and a given PWM f that is diverged from the background by D(f, g). The p-value of X

defined in (12) is upper bounded by:

pval(X) ≤ (n + 1)W (|A|−1)2−nD(f,g) (13)
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proof: We denote by E(f) the set of all motifs, X, that have a PWM h that is diverged
from g at least by D(f, g):

E(f) , {X ∈ X |pwm(X) = h,D(h, g) ≥ D(f, g)}, (14)

By definition, the probability of the set E is the p-value of motif with a PWM f . The probability
of the set E is equal to the sum of the probabilities of the classes of PWMs in E . We have:

pval(X) , Pg(E) (15)

=
∑
h∈E

Pg(T (h)) (16)

≤
∑
h∈E

2−nD(f,g) (17)

≤
∑
h∈E

max
h∈E

2−nD(h,g) (18)

=
∑
h∈E

2−nminh∈E D(h,g) (19)

≤
∑
h∈E

2−nD(f,g) (20)

= 2−nD(f,g)
∑
h∈E

(1) (21)

≤ 2−nD(f,g)(n + 1)W (|A|−1) (22)

In (15) we used the fact that, by definition, the probability of the set E is the sum of probabili-
ties of the classes of PWMs in E. In (17) we used (9) of Lemma 4.3 that gives an upper-bound
on the probability of the class of a PWM h. Inequality (18) in valid in we replace all 2−nD(h,g) in
summation with its maximum value. Similarly, this is valid if we replace its exponent with its
minimum in Inequality (19). By definition of the set E in (14), all its PWMs, i.e. all h ∈ E have
a divergence not less than D(f, g). Therefore, we have minh∈E D(h, g) = D(f, g) in Inequality
(20). It can be seen in (21) that D(f, g) is independent of the summation and therefore can
be taken out. In (22) we replace the summation with the number of its components, defined
by the total number of possible PWMs given by Lemma 4.4.

�

It is important to emphasize that the bound given in (13) is not tight. Note that in (20) we
replaced all possible PWMs, h, that have greater divergence than D(f, g) with f . Because of
this, we were able to bring the exponential out of the summation in (21) and then replace the
total number of PWMs, h, with the maximum number of possible PWMs (i.e. (n + 1)W (|A|−1)

Lemma 4.4) to count the summation and add probabilities. Depending on D(f, g) this can be
significantly larger than the real number of PWMs that diverge from the background more
than D(f, g). Therefore, in these cases, the bound on the p-value is extremely conservative
and is significantly larger than the real p-value.

In ideal cases, where an accurate p-value is to be computed, one needs to enumerate
all possible PWMs, h, in (21); a problem that becomes exponentially large for practically
interesting values of n and W .
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This Lemma provides an upper-bound on the p-value of a motif with PWM f presented
in Eq. 2.

5. Proof of the main theorem

Theorem 5.1. Assume a set Y of n sequences of length L of symbols from an alphabet |A|.
(a) The expected number of motifs of size W < L − 1 with strength equal or greater than

D(f, g) observed in Y is less than 1 when L is smaller than the following bound:

L < W − 1 +
2D(f,g)

(n + 1)W (|A|−1)/n (23)

where |A| is the cardinality of the set A, e.g. |A| = 4 for DNA sequences with A = {A, T,C,G}.
(b) Furthermore, when 1 or more motifs are expected to occur by chance (i.e. false-positives)

with strength at least as great as some threshold D∗, i.e. for these motifs D(f, g) ≥ D∗, an upper
bound on the threshold is given by:

D∗ ≤ log2 L + (|A| − 1)W
log2(n + 1)

n
(24)

Proof. When the probability of motifs with a PWM that is diverged as much as or greater
than D(f, g) multiplied by the size of the dataset derived in (4) gives the expected number of
such motifs observed in the dataset, denoted by Nf :

Nf = |X |Pg(E(f))

We find an upper-bound for Nf by substituting the upper-bound on Pg(E(f)) given by the
Lemma 4.5:

Nf = |X |Pg(E(f))

≤ |X |(n + 1)W (|A|−1)2−nD(f,g)

= (L−W + 1)n(n + 1)W (|A|−1)2−nD(f,g)

Therefore:

Nf ≤ (L−W + 1)n(n + 1)W (|A|−1)2−nD(f,g) (25)

(a) By letting the upper-bound on Nf to be less than 1 we have::

Nf ≤ (L−W + 1)n(n + 1)W (|A|−1)2−nD(f,g) < 1

which results in:

(L−W + 1)n(n + 1)W (|A|−1)2−nD(f,g) < 1

or:

L < W − 1 +
2D(f,g)

(n + 1)W (|A|−1)/n (26)

Therefore, if this inequality holds we have Nf < 1 and part (a) is proved.
(b) Let ND∗ be the number of motifs expected to be observed by chance (i.e. false positives)

in Y with strength greater than the threshold D∗. We set the arbitrary threshold D∗ to assume
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values equal to the strength of false-positives, i.e. D∗ = D(f, g). In that case, by definition, we
have ND∗ = Nf , and therefore from (25) we have::

(L−W + 1)n(n + 1)W (|A|−1)2−nD
∗ ≥ ND∗ ≥ 1

which results in:

(L−W + 1)n(n + 1)W (|A|−1)2−nD
∗ ≥ 1

or:

L ≥W − 1 +
2D
∗

(n + 1)W (|A|−1)/n (27)

≥ 2D
∗

(n + 1)W (|A|−1)/n . (28)

By taking log2 from both sides of the inequality part (b) is proved.

Part (a) of this theorem gives an upper-bound on the size of the dataset, which if satisfied,
no false-positive is expected to be observed in the dataset. Alternatively, given a dataset of
n sequences with length L, Part (b) provides an upper-bound on the strength of possible
false-positive motifs with width W .


