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Host-virus coexistence given a wide range of ecological and molec-
ular parameters

We first analyze simplified versions of the dynamics in order to understand if and under
what conditions hosts and viruses can coexist in the absence of de novo generation of
novel genome states. To do so, consider an environment containing a single host genotype
and a single viral genotype whose population densities are denoted as N and V and whose
genome states are denoted as S and G. First, assume that M(S,G) = 0, in other words,
that the host is not immune to the virus via CRISPR mechanisms. In that case, the
ecological dynamics of this system can be written as (see Equations (1-2) in the main
text)

dN

dt
= rN

(
1 − N

K

)
− (1 − q)φNV (S1)

dV

dt
= β(1 − q)φNV − φNV −mV (S2)
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The steady state population densities can be found by setting dN/dt = 0 and dV/dt = 0.
We find three possible steady states: (i) a trivial equilibrium where both hosts and viruses
are absent (N∗ = 0, V ∗ = 0); (ii) an equilibrium where hosts are at carrying capacity and
viruses are extinct (N∗ = K,V ∗ = 0); (iii) a coexistence equilibrium where both hosts
and viruses are present. Coexistence only occurs for certain regimes of parameters. We
find that N∗ = m

φ(β−1−βq) and that V ∗ = r(1−N∗/K)
(1−q)φ . The two conditions for coexistence

are: (i) β(1 − q) > 1; (ii) Kφ(β(1−q)−1)
m

> 1. However, the typical number of virions
produced is on the order of dozens, hundreds or even thousands. Further, rates of spacer
acquisition are presumed to be quite small, i.e., q � 1. Hence, in practice, the first
condition is nearly always met. This means that the virions produced by successful
infections are far greater than those viruses lost due to unsuccessful infections (when a
host is not immune). The second condition is typical of host-virus models. For example,
if we approximate β(1−q)−1 ≈ β then the second term is the basic reproductive number,
R0 ≡ Kφβ/m for a virus infecting a host population at its carrying capacity, N∗ = K
given an adsorption constant φ, burst size β and extra cellular mortality rate m. These
results suggest that in order to model realistic dynamics we should focus on parameter
values for which R0 > 1.

Next, consider an environment with a single host genotype and a single viral genotype
and assume that M(S,G) = 1. In other words, the host is immune to the virus via
CRISPR mechanisms. In that case, the ecological dynamics of this system can be written
as (see Equations (1-2) in the main text)

dN

dt
= rN

(
1 − N

K

)
− pφNV (S3)

dV

dt
= βpφNV − φNV −mV (S4)

As before, the steady state population densities can be found by setting dN/dt = 0
and dV/dt = 0. Ignoring the trivial and host-only equilibria, we find by analogy with
the prior results that the coexistence equilibria occurs when N∗ = m

φ(pβ−1) and V ∗ =
r(1−N∗/K)

pφ
. Hence, the two conditions for coexistence are: (i) pβ > 1; (ii) Kφ(pβ−1)

m
>

1. However, the failure rate of the CRISPR system is thought to be quite low, for
example, efficiency of plating experiments suggest that p (the success rate of viruses
infecting immune hosts) is on the order of 10−5. Hence pβ will be much less than 1, and
so more viruses die by infecting hosts than they do by exploiting hosts. In such a regime,
coexistence is impossible, suggesting that a virus population cannot perpetually coexist
on a host immune to it in the absence of other mechanisms that facilitate coexistence.

In summary, we restrict our attention to ecological and molecular parameters which
satisfy the following two conditions: (i) viruses die out when infecting immune hosts; (ii)
viruses coexist with non-immune hosts. Given small error rates and large burst sizes,
these conditions can be written compactly as: Kφβ

m
> 1 and 1

1−q < β < 1
p
.
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Mutant hosts and viruses arising from directed and undirected
mutation, respectively, can successfully invade a resident popu-
lation

The basis for the de novo generation of novelty in this model is the dynamic updating of
spacer, S, and protospacer, G, states. Here, we show analytically that novel genotypes
of both hosts and viruses can have positive per-capita growth rates when rare. Consider
first the host-only equilibrium, in which N∗ = K and V ∗ = 0. The question we ask is
whether a new virus population will increase in numbers if the resident host population
does not possess immunity to it. The new viral population will experience a per-capita
growth rate of

β(1 − q)φK − φK −m, (S5)

based on Equation (S2). Note that this growth rate is positive given the biological con-
ditions of interest described above. Hence, coexistence of viruses with hosts that do not
possess CRISPR immunity implies the invasion of a rare virus population in a host-only
environment.

Next, we ask whether a mutant host population can invade a system comprised of
resident hosts and viruses. The mutant host has immunity to the viruses whereas the
resident host does not. The mutant host population will obey:

dN ′

dt
= rN ′

(
1 − N +N ′

K

)
− pφN ′V. (S6)

We can evaluate the success of the invasion by recalling that N∗ = m/ (φ (β − 1 − βq))

and that V ∗ = r(1−N∗/K)
(1−q)φ . Hence, the per-capita growth rate of the mutant host given

resident hosts with population N∗ and resident viruses with population V ∗ is:

r

(
1 − N∗

K

)
−
rp
(
1 − N∗

K

)
(1 − q)

(S7)

The per-capita growth rate of the mutant host will be positive so long as p/(1 − q) < 1.
For p � 1 and q � 1, this is certainly satisfied, and so mutant hosts will invade as is
expected. Because of the principle of competitive exclusion, the resident host will die out,
and so the new steady state will be one of N∗ = 0, N ′∗ = K,V ∗ = 0.

In summary, if we consider a mutation-limited system in which ecological dynamics
are much faster than evolutionary dynamics then we expect: (i) a virus to stably coexist
with a host which possesses no immunity to it; (ii) a mutant host to emerge, leading to
the death of the resident host and the resident virus; (iii) a new virus which is added
to the system for which there is no standing immunity will invade leading back to (i)
above. Together, these results suggest a mechanism by which novelty will be introduced
and a mechanism by which it will be eliminated. In reality, ecological and evolutionary
time scales are not always so separable. It is possible that more complex patterns of
diversification, including increases of diversity toward a dynamic steady state, may occur.
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Detailed Simulation Protocol

The initial state of our simulations consist of a single susceptible host and a single virus.
We begin our simulation procedure by estimating the mutation rate of each strain (see
Figure S6). The mutation rate, µNi

, of each host strain depends on its abundance (Ni), the
abundance of all viral strains (

∑
j

Vj), the interaction rate (φij), and the spacer acquisition

rate (q), via µNi
=
∑
j

φijNiVjq. The mutation rate, µVj , of each viral strain depends on

its abundance (Vj), the burst size (β), the per-protospacer viral mutation rate (µ), the
interaction rates (φij), and the probability of viral lysis (p when the host is immune and
1 − q when the host is susceptible), via µVj =

∑
i

βµφijNiVj(1 − q) when the host is

susceptible or µVj =
∑
i

βµφijNiVjp when the host is immune.

We recalculate the mutation rate for each strain after each event (strain extinction,
strain mutation, or data recording) and assume it is constant until the next event. Al-
though the values of Ni and Vj are continuously varying in time, we treat the continuous
time-varying mutation rates as piecewise smooth mutation rates. As our time intervals
between events are very short the mutation rates change very little over each period. We
demonstrate this by comparing the mutation rate of each strain before and after every
event: µ(t+δt)

µ(t)
(See Figure S7). The majority of the comparisons (> 90%) are within 0.05

of 1 and all fall between 0.5 and 2.5. This distribution is narrow and centered around 1
indicating that the mutation rates do not change significantly between events, i.e., they
are effectively constant.

We use the Gillespie algorithm to determine the time until the next mutation event, tm.
We compare this time with the interval for data recording, trecord (1 hr for all simulations
in this paper), to determine which event occurs next and proceed as follows (See Figure
S6).

If the time interval, tm, is greater than the time interval until the next data recording
point, trecord, then the next predicted event is a data recording event. The system of ODEs
is deterministically solved in Matlab using ode45 for the time interval [tcurrent, tcurrent +
trecord]. If the system of ODEs stops via an event function with t < tcurrent+trecord, there is
a strain extinction event prior to the predicted recording event. Our event function stops
the ODE solver whenever the population density of any strain falls below our critical
population threshold, ρc. A strain extinction event results in the removal of the ODE
associated with the strain whose density fell below the threshold. If the system of ODEs
stops with t = tcurrent + trecord, data is recorded and the ODE system does not change in
size. Regardless, the mutation rates are recalculated.

If the time interval, tm, is less than the time interval until the next data recording
point, trecord, then the next predicted event is a mutational event. The system of ODEs is
deterministically solved in Matlab using ode45 for the time interval [tcurrent, tcurrent + tm].
If the system of ODEs stops via an event function with t < tcurrent + tm, there is a strain
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extinction event prior to the predicted mutational event that results in the removal of
the ODE associated with the strain whose density fell below the threshold, as explained
above. If the system of ODEs stops with t = tcurrent + tm, the predicted mutational event
will occur. As a mutational event will produce a new strain, an ODE is added to the
system.

Mutational events occur as follows. In the case of host acquisition of a spacer, a
given host strain is probabilistically selected to acquire a new spacer in proportion to
its instantaneous rate of successful defense events. The viral strain from which it will
draw a protospacer is chosen probabilistically in proportion to its interaction rates taking
into account immunity. Once the viral strain from which the host will draw a spacer is
selected, then the protospacer is chosen randomly from the set of all protospacers in that
virus. Provided no other host strain has an identical set of spacers, the new host strain
is included in the simulation with a population density 10% greater than the extinction
threshold, ρc. The parent host strain remains in the simulation without a change in its
population density.

Similarly, in the case of viral mutation, a given strain of virus is probabilistically
selected to undergo a mutation event in proportion to the instantaneous growth rate of
that strain. The protospacer to mutate is chosen randomly from the set of all protospacers
in the chosen viral strain. The newly added protospacer is always novel so the new
viral strain is included in the simulation with a population density 10% greater than the
extinction threshold. The parent viral strain remains in the simulation without a change
in its population density.

Once one of the following events has taken place – (i) a host or virus strain goes
extinct; (ii) a mutation event occurs; or (iii) the simulation reaches a defined time point
for data output – the mutation rate of each strain is recalculated, using the formulas
which depend on abundances given above. This entire process is repeated until one of the
following occurs: all host strains go extinct, all viral strains go extinct, or the simulation
reaches the maximum running time (2,500 hours for the results presented in this paper).

Viral population size as a function of q

When hosts are unable to acquire spacers (q = 0), the host population density and viral
population density settle to the top-down controlled steady state described previously
such that host density is at a minimum (N∗ = m

(β−1)φ) and viral density is exactly as

predicted (V ∗ = r
φ

(
1 − N∗

K

)
). When q = 1, hosts gain immunity at every interaction so

the viral population goes extinct, leading to a maximum in host density at the carrying
capacity. Thus as the spacer acquisition parameter q is increased from 0 and hosts more
rapidly acquire spacers, it may be expected that the total viral population density will
decrease. However, we observe that the viral population size increases as the number of
host increases, a result of increasing q when q � 1. From our exploration of changing p
and q with p � 1 and q � 1, it appears the viral population size is a unimodal function
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of q or at least the dynamics are complicated, depend on host diversity and do not simply
decrease monotonically.

Now, let us imagine that q is small, such that multiple host and viral strains coexist.
In general such infection patterns are complex. Let us consider the simple case such
that there are two host strains with two viral strains that can only infect each host type
exclusively (i.e. V1 can only infect N1 and V2 can only infect N2). In such a case, we have
the following system of equations:

dN1/dt = rN1(1 − N1 +N2

K
) − (1 − q)φN1V1 − pφN1V2

dN2/dt = rN2(1 − N1 +N2

K
) − (1 − q)φN2V2 − pφN2V1

dV1/dt = β(1 − q)φN1V1 + βpφN2V1 − φ(N1 +N2)V1 −mV1

dV2/dt = β(1 − q)φN2V2 + βpφN1V2 − φ(N1 +N2)V2 −mV2

Solving this system gives similar results: N∗1 = m
((1+p−q)β−2)φ , N∗2 = m

((1+p−q)β−2)φ , V ∗1 =

r
φ(1+p−q)

(
1 − N∗

1+N
∗
2

K

)
, and V ∗2 = r

φ(1+p−q)

(
1 − N∗

1+N
∗
2

K

)
. So that the total viral density in

this particular scenario with two hosts strains is V ∗1 + V ∗2 = V ∗tot = 2r
φ(1+p−q)

(
1 − N∗

1+N
∗
2

K

)
.

This leads to the condition that, at least in this specific example, the viral density
with two host strains (s = 2) is greater than with one host strain (s = 1): V ∗tot(s = 2) >

V ∗tot(s = 1) if 2r
φ(1+p−q)

(
1 − 2m

((1+p−q)β−2)φK

)
> r

φ(1−q)

(
1 − m

((1−q)β−1)φK

)
.

Although these formulas seem complicated, we can simplify them significantly by
observing that p, q � 1 and β � 1. Using these simplifications our steady states become:

N∗1 = m
βφ

, N∗2 = m
βφ

, V ∗1 = r
φ

(
1 − N∗

1+N
∗
2

K

)
, and V ∗2 = r

φ

(
1 − N∗

1+N
∗
2

K

)
. Additionally, the

condition for an increase in viral density, V ∗tot(s = 2) > V ∗tot(s = 1), becomes 1 > 3m
Kφβ

.
Now consider there are s host strains with s viral strains that can only infect each

host type exclusively (i.e. V1 can only infect N1, V2 can only infect N2, V3 can only infect
N3 and so forth). Going through the same calculation, we find that V ∗tot(s) > V ∗tot(s = 1)

when sr
φ(1+(s−1)p−q)

(
1 − sm

((1+(s−1)p−q)β−s)φK

)
> r

φ(1−q)

(
1 − m

((1−q)β−1)φK

)
. Again consider

the scenario where p, q � 1, then V ∗tot(s) > V ∗tot(s = 1) if s
(

1 − sm
(β−s)φK

)
> 1 − m

(β−1)φK .

Using the parameters from our model (β = 50, φ = 10−7, K = 105.5, m = 0.1), this holds
from s = 2 until s ∼ 11.

Hence, adding diversity of hosts, can allow more viral types to infect distinct host
types, leading to an increase in viral population density. In the specific scenario consid-
ered here Vtot is a unimodal function of q. Although the dynamics of our eco-evolutionary
models are complicated, we anticipate that there will exist a non-trivial relationship be-
tween q and viral density, likely unimodal.
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Dependence of coevolutionary dynamics on the number of spacers
and protospacers

Here, we consider the effect of varying the number of spacers per host and the number of
protospacers per virus on the outcomes of the multi-scale coevolutionary model. In varying
these parameters, we considered values ranging from 4 spacers per host to 8 spacers per
host and from 6 protospacers per virus to 10 protospacers per virus. We do not increase
the number of protospacers per virus beyond 10 due to computational constraints. In
keeping with the experimental observation that there are more protospacers per virus,
the number of protospacers is always greater than the number of spacers per host by at
least two. We find that changing the number of spacers or protospacers does not affect
the dynamics significantly. As the number of spacers per host increases, the hosts have
immunity to a greater fraction of the viral population. Since there are more spacers per
host, there are more opportunities for each host strain to have immunity to viruses (see
Figure S8e). As the number of spacer per host and protospacer per virus increases, the
number of viral strains decreases (see Figure S8d). At the same time, the population
size of both hosts and viruses increases (See Figure S8a-b). In contrast to increasing q,
the increased viral density seen here arises from increased host population density rather
than an increase in the number of host strains. Similarly, we find that the initial spacers
dominate the contributions to relative immunity regardless of the number of spacers and
protospacers (see Figure S9).
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Viral mutation rate, µ Percent of replicates evading initial die-out Relative running time
(in first 200 hours) (to µ = 10−8)

10−6 100 229.4
5 ∗ 10−7 100 109.1

10−7 90 12.2
5 ∗ 10−8 74 3.6

10−8 25 1

Table S1. Values of viral mutation rate, µ, affect the ability of viral mutants to appear
before dying out as well as the length of time required to run simulations.

Figure S1. Many host and viral strains exist in the population but most have low
abundance.
Dominant host strains are immune (white squares) to dominant viral strains at t = 1500
while many low abundance host strains remain susceptible (black) to viral strains. Strains
are listed in order of abundance with host strains on the vertical axis and viral strains on
the horizontal axis. More abundant host strains are at the top, and more abundant viral
strains are to the right. The green lines distinguish between strains composing more than
1% of the population (host - above, viral - right) and strains composing less than 1% of
the population (host - below, viral - left). The color of the box indicates whether there is
immunity (white) or susceptibility (black). The immunity matrix shown is from a single
representative simulation.

8



(a) Lifetimes of Viruses

(b) Lifetime of Hosts

Figure S2. Short lifetimes of hosts and viruses are consistent with the maintenance of
strain diversity through continual replacement with new types.
Strain lifetimes of (A) viruses and (B) hosts are predominantly short although a few
strains have lifetimes of up to 1000 hrs (computed from 100 replicate simulations).
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(a) Host population size (b) Host population size (log)

(c) Percentage of host population (d) Percent immunity to virus population

Figure S3. Dynamics of individual host strains changes rapidly.
Fluctuations in the number of each host strain (A),(B) and the percentage of the total
host population (C) arise from the amount of immunity to the viral population each host
strain possess (D). Each line represents a different strain, and the corresponding strains
in each plot have the same color. Note: All host strains comprising greater than 1% of the
host population are included. When lines begin or end abruptly, the strain has emerged
from or fallen below the 1% threshold. The dynamics are from a single representative
simulation.
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Figure S4. New protospacers are rarely incorporated as spacers into hosts.
At the time of their incorporation into a host, most protospacers (average over 100 repli-
cate simulations) have been in the simulation between 100 and 2000 hours. As the average
time between virus births is less than one hour, this indicates that most protospacers which
are incorporated are not new (see Figure S5).
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(a) Birth times of Viruses

(b) Birth times of Hosts

Figure S5. Birth times of host and viral strains
Histogram of the number of births of viral (A) and host (B) strains during the course of
the simulation. Increased viral and host births are correlated.
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Figure S6. Simulation Method
The simulation proceeds until one of the following events: (i) a host or virus strain goes
extinct; (ii) a mutation event occurs; or (iii) the simulation reaches a defined time point
for data output. Once this occurs the population densities are used to recalculate the
mutation rate of each strain.
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(a) Host

(b) Viral

Figure S7. Strain mutation rates do not change significantly between sampling time
points.
The mutation rate of strains, (A) host and (B) viral, is recalculated after each event. The
relative difference between the mutation rate at one event point t and the next event point
t+ δt is plotted. The mutation rate has not changed significantly over these intervals and
thus the distribution is centered around 1. The mutation rates are computed from a single
representative simulation (out of 100 replicates).
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(a) Host Population Density (b) Viral Population Density

(c) Host Strain Count (d) Viral Strain Count

(e) Immunity to Viral Population

Figure S8. Spacer and protospacer numbers have little effect on the dynamics.
The number of spacers per host is varied from 4 to 8 and the number of protospacers
per virus is varied from 6 to 10. Values of protospacers per virus are grouped on the
x-axis. Values of spacers per host have identically colored bars (Blue represents spacer
= 4; green represents spacer = 6; red represents spacer = 8.) All bars represent median
of 100 replicates and the lines represent standard error.
As the number of protospacers per virus and spacers per host increases, host population
density (A) increases, viral population density (B) increases, host strain counts (C) remain
unchanged, viral strain counts (D) decrease, and the fraction of the viral population the
hosts are immune to (E) increases. 15



Figure S9. Spacer and protospacer numbers have little effect on relative immunity.
Relative immunity conferred by the newest n spacers in the locus compared to the im-
munity from the full locus of spacers. Mean (circles) and standard deviation (error bars)
were computed for 100 replicates averaged over the time points after the locus is filled
with spacers. Immunity is determined by calculating what percentage of the viruses the
most recent n spacers from all hosts can match, where n = 1, 2, .... Relative immunity is
the percentage of viruses the most recent n spacers from all hosts can match compared to
the percentage of viruses the full spacer locus matches. The number of spacers per host
is varied from 4 to 8 and the number of protospacers per virus is varied from 6 to 10. All
bars represent 100 replicates and the lines represent standard error.
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