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Protein Engineering and Purification. The polyubiquitin Ubi12 con-
struct was engineered as previously described (1). The protein
was expressed in BLR Escherichia coli cells (Novagen). The cells
were grown to OD600 of 0.6 at 37 °C and the protein expression
was induced with 1 mM isopropyl-1-thio-β-D-galactopyranoside
(IPTG) for 3 h at 37 °C. The protein was purified using a Cobalt
affinity Talon resin (GE Biosciences) and Fast Fluid Liquid
Chromatography (FPLC–Superdex 200 HR column). We used
standard phosphate buffered saline for both purification and
measurements. All the regents used had a molecular biology
grading.

Experimental Setup. The measurements were obtained using an
atomic force microscope (AFM) customized for high-speed sin-
gle molecule force spectroscopy. The present AFM configuration
distinguishes itself from commonly used AFM spectrometers
through the use of smaller cantilevers, faster piezoelectric actua-
tors, a horizontal configuration, and a double-pulse preemptive
control system customized for the intended experimental proto-
col. In order to decouple the force measurements from the main
oscillatory mode of the supporting optical table the sample sub-
strate was mounted vertically i.e., the substrate normal and the
force measurements were all in a direction parallel to the optical
table’s surface and therefore perpendicular to the observed domi-
nant perturbations in the vertical axis.

The substrate was attached to a specially designed stage com-
posed of two piezoelectric actuators mounted in series. A slow
piezoelectric actuator (PicoCube, Physik Instrumente) with a
travel of 6 μm was used for cantilever calibration, to approach
the surface to the cantilever and for lateral movement. A second
piezoelectric actuator mounted between the first one and the
surface (PL055.30 multi-layer piezo stack, Physik Instrumente)
with a travel of 2 μm and a nominal resonant frequency higher
than 300 kHz was used to obtain the constant force condition with
a high response time. In the force clamp mode the force is con-
trolled by a feedback loop. The measured force signal is fed into a
well-tuned analog Proportional–Integral–Differential (PID) con-
trol system, which drives the fast piezoelectric actuator. Constant
force is applied to a polyprotein chain by adjusting the position of
the surface through the movement of the piezoelectric actuator.
The PID insures a constant tension on the protein by monitoring
the deflection of the cantilever.

In order to obtain several recoil traces from each stretched
poly-protein we created a multiquench protocol consisting in a
fast ramp of force from −100 pN to 180 pN in 20 ms to maximize
pick-up rate, followed by 0.2 s of constant force to allow all mod-
ules to unfold and finishing with a square wave force pattern last-
ing up to 1 s. The periodic stretching and quenching protocol is
designed to keep the protein in its purely elastic regime, avoiding
any enthalpic interactions that occur upon quenching the force to
a much lower final value. Contrary to the unfolding events that
are stochastic in nature, in this multiquench protocol the stretch-
ing and recoil times are known in advance. We take advantage
of this knowledge to optimize the control response by driving the
actuator closer to the new equilibrium position by a distance
equal to k∕ΔF where k is the cantilever spring constant and ΔF
is the magnitude of the stepwise change in force. This pre-emp-
tive system leaves the PID control with a smaller task of driving
only the change in length of the protein.

The cantilevers were calibrated using the equipartition theo-
rem, and the contact slope was obtained by moving of the piezo-

cantilever ensemble. The physical properties of the cantilever
used influence the response time and force sensitivity. The spring
constant influences the signal to noise ratio of the measurement,
while the resonance frequency limits the measurement band-
width. Furthermore, the surface area of the cantilever perpendi-
cular to the direction of motion induces opposing viscous drag
forces. We analyzed three types of cantilevers fitted for the pur-
pose of the experiment: Bruker MLCT (spring constant approxi-
mately 20 pN∕nm, resonance frequency in water approximately
1 kHz), Olympus Biolever BL-RC150VB (spring constant
approximately 40 pN∕nm, resonance frequency approximately
9 kHz) and Olympus Biolever BL-AC40TS (spring constant
approximately 100 pN∕nm, resonance frequency approximately
25 kHz). Fig. S1 shows the drag response of three types of canti-
levers as a function of moving velocity close to a surface. In this
experiment the force experienced by cantilevers at different ap-
proach and redraw velocities was measured. As shown in Fig. S1A,
the effect of the drag is symmetric around the zero force position
(part 2 and 4 vs. part 1 of the trace). In part 3 the cantilever is
in contact with the surface. The piezo’s position protocol shown
in lower box of Fig. S1A was applied to measure the deflection
force curves (upper box of Fig. S1 A and C), which were used to
evaluate the drag coefficients. Fig. S1D shows the way in
which the different cantilevers respond to the drag forces with
respect to the velocity of the actuator. For our experiments we
chose the Olympus Biolever BL-RC150VB, which exhibits good
balance between the drag force and the force signal resolution.

In a typical experiment, the cantilever is pushed to the surface
with a force of approximately 1 nN for 1 s, it is then retraced to
a deflection corresponding to a force of 180 pN. At this force
ubiquitin domains unfold and the end-to-end extension increases
in steps of 20 nm, corresponding to the elastic extension of the
amino acids trapped behind the mechanical transition state cor-
responding to the unfolding of the protein. Once unfolded, the
polypeptide chain is cycled between 250 and 100 pN. After the
polyprotein detaches the PID cannot maintain the set-point force
anymore and drives the surface away from the cantilever at high
velocity.

The final part of the curve, when the protein detaches and
the surface is moved away from the cantilever at a PID specific
velocity constitutes a second way to measure the drag. Fig. S2
shows such an experiment, where after detaching the cantilever
experiences two force regimes. Each regime is characterized by a
certain constant force and constant velocity. The drag coefficient
is calculated then as the slope of the line fitted to the force
and velocity of each stage, plotted one against the other (Fig. S2).
The averaged values from all the gathered fits is 2.286�
0.481 pN·ms∕nm, which agrees with the drag force measured in-
dependently from the cantilever itself.

The use of fast piezoelectric actuators and small cantilevers
greatly improves the response time of the feed-back loop. Fig. S3
shows that the time needed to restore the constant force after
an unfolding event is typically under 150 μs, while using just the
PicoCube actuator and the slower MLCTcantilevers yields a re-
sponse time of 4 ms.

High Force Approximation. The extension required to stretch an
unfolded protein under constant force is typically approximated
as resulting mainly from the entropy of the chain. The extension’s
dependency on the force is described by the worm-like-chain
(WLC) model of elastic extension (2–4):
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where kB is Boltzmann’s constant, T is the absolute temperature,
p is the persistence length,Lc is the contour length, and x denotes
the end to end extension of the chain, which is also our reaction
coordinate. We use a high force approximation to simplify the
inversion of Eq. S1. According to this approximation, the linear
term on the right hand side of Eq. S1 was taken to be x∕Lc ¼ 0.5.
In this regime, where the force is high, the contribution of the
linear term in Eq. S1 is less than 2%, and the function hardly
changes with the extension when looking at the asymptote to-
wards the contour length (Fig. S4).
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From the figure it is apparent that at the intercept between the
two curves, at x∕Lc ¼ 0.5 F ∼ 13 pN, above which the two curves
are very close to each other, until F ∼ 50 pN, where they coin-
cide, making this approximation reasonable to use as long as
we stay above these values.

Force Balance to Determine Deff (Brownian Dynamics). Deff deter-
mines the dynamics and time scales measured along the collapse
and extension traces. With the application of an external constant
force, Fi, the relaxation process is given by the following force
balance (under the assumption of high force made above) along
the reaction coordinate x, the end-to-end length:

μ
dx
dt

þ FEðxÞ − Fi ¼ 0; [S3]

where μ is the damping coefficient, which is related to the diffu-
sion coefficient, Deff , by the Einstein relation μ ¼ kBT∕Deff .
FEðxÞ is the elastic force predicted by the WLC polymer elasticity
model given by Eq. S2. Thus, Eq. S3 can be fully written:
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with C being an integration constant. De-
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Taking y > 0 returns a false expression: x < −Lcð1 − 1∕qÞ
because x, q, and Lc are positive numbers bigger than 1, hence
y has to be taken as <0 to give:

yeαy ¼ −
2

q
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Interestingly, this expression has both linear and exponential
dependencies on x and t, a predicament which is best treated
by the LambertW function. This function is defined as the inverse

of f ðxÞ ¼ xex, which basically means that x ¼ W ½f ðxÞ� (5). In
order to be formalized with theW function, Eq. S7 has to be rear-
ranged:
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and then solved:

x ¼ x0 −AW½−Be−λðt−t0Þ� [S9]

here x0 ¼ Lcð1 − 1∕qÞ corresponds to the plateau after the re-
laxation, A ¼ Lc∕α, B ¼ ð2∕qÞ exp½−ðκþ 2Þ� and
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leading to the final expression:
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This expression was used to fit the traces to get Deff . The si-
mulations were performed in Igor Pro 6 platform (Wavemetrics).
The simulated traces were generated by solving Eq. 1 in the main
text with a time resolution of 5 · 10−8 s. Fig. S5 below shows a
fitting with Eq. S11 to a simulated trace (dashed black line)
together with a single exponential, xðtÞ ¼ x0 þA expð−t∕τÞ (scat-
tered red line) with their residuals. The single exponential was
used to evaluate the relaxations time constants (Fig. 2 in themain
text). Interestingly, Eq. S11 fits better the chain’s relaxation than
the exponential decay.

The fitted averaged Deff value of 1;226 nm2∕s used in the
Brownian dynamics simulations remarkably returned a fitted
averaged Deff value of 1;214� 39.81 nm2∕s for the collapse and
1;223� 29.40 nm2∕s for the extensions. Interestingly, there is a
variation in the spread of the experimentally observed Deff ’s
fitted values when compared with the simulation’s narrow distri-
butions (Fig. 2C in the main text and Fig. S6). One of the most
probable causes for this spread is the persistence length, p, used
in the fits, which was assumed to have a constant value of 0.4 nm
[a typical value for unfolded proteins (6, 7)]. However, it is
evident that p can vary between 0.25 and 2.5 nm (8–11). Unlike
the simulated traces, the measured traces shows a length diversity
which was demonstrated to be determined to large extent by the
strength of the entropic, hydrophobic and electrostatic interac-
tions (8). These interactions result from considerable alterations
in the chain’s dihedral-space conformation together with side-
chain packing of the collapsing structures. All these interactions
are giving raise to length deviations from the WLC predictions
and resulting with different persistence lengths. Nevertheless,
we assumed here a constant value for p to keep the calculation
simple and consistent.

Mechanical Impedance (Kelvin-Voigt Model). Frequency response
function in physical systems is conveniently described by the
Kelvin-Voigt circuit, which describe a simple mechanical struc-
ture consisting of a mass, a spring, and a dashpot. A force, FðtÞ,
along one direction is applied and the system responds by chan-
ging the end-to-end length displacement, xðtÞ, accordingly. Here,
we consider the over-damped scenario by neglecting the inertia
term, thus describing the dynamic response of the system (the
polypeptide) by its elasticity, kpol and viscous damping coefficient,
μ through its equation of motion:

FðtÞ ¼ kpolxðtÞ þ μ_xðtÞ: [S12]
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The Kelvin-Voigt model assumes a linear constant parameter sys-
tem. Therefore its dynamic can be described by a frequency re-
sponse function, which is the Laplace transform of the system’s
output: xðtÞ ¼> xðωÞ, where ω is the angular frequency, resulting
in:

xðωÞ ¼ FðωÞkpol
k2
pol þ μ2ω2

− i
FðωÞμω

k2
pol þ μ2ω2

¼ ReðωÞ − iImðωÞ: [S13]

Here ReðωÞ and ImðωÞ denote the real and imaginary parts of
the dynamic response. The output of the system in dB is given by

dB ¼ −10 log
�
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�
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Where Amp2ðωÞ is the amplitude, given by Amp2ðωÞ ¼
Re2ðωÞ þ Im2ðωÞ to give
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where ω ¼ 2πf , f being the frequency in Hz. The bandwidth fre-
quency, f 1∕2, serves as an important parameter for characterizing
the frequency at which the mechanical response drops to half of
its amplitude. f 1∕2 is defined at −3 dB by

−3 ¼ 10 log
�

1
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�

[S16]
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Using the WLC assumptions with a frictional term, Khatri, et al.
introduced an expression for a polypeptide chain elasticity (12):
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when substituted into Eq. S17, we get the final expression for the
bandwidth frequency dependency on the system’s parameters:
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Molecular Dynamics Simulations. All-atom simulations in explicit
solvent were carried out with the software NAMD 2.8, using
the CHARMM22 force-field with CMAP corrections for the pro-
tein, and the TIP3P water model. We used periodic boundaries
conditions and a cutoff of 12 Å for electrostatic and Lennard-
Jones interactions. Long-range electrostatic interactions were
calculated using the PME method with a grid spacing of 1 Å.
All bonds between light and heavy atoms were maintained rigid,
while the rest of the protein was flexible. Steered MD simulations
of wild-type ubiquitin (PDB ID code 1UBQ) were performed
by fixing the Cα of the first residue (MET1) and by applying a
constant force on the Cα of the last residue (GLY 76) along the
z direction.

System preparation: To unfold the protein, we first pull on ubi-
quitin molecule in vacuum at a high force of 800 pN, during 10 ns.
A fully extended protein was thus generated, with no remaining
secondary structure. It was then solvated using the waterbox mod-
ule of VMD in a box of 3.5 * 3.5 * 32 nm, comprising 11,499 water
molecules and 35,728 atoms total. Energy minimization using the
steepest descent method (2,000 steps) was performed before
further equilibration, as described below.

Equilibration: The protein was then equilibrated for 6 ns at
250 pN in the isobaric ensemble at 300 K and 1 bar, using a time-
step of 2 fs, a Langevin thermostat (damping coefficient of
1 ps−1) for temperature control and the modified NAMD version
of the Nose-Hoover barostat with Langevin dynamics (piston per-
iod of 0.1 ps and piston decay time of 0.05 ps) for pressure con-
trol. This simulation was then propagated for 25 more ns to check
that the average end-to-end distance no longer evolved. No dy-
namical data was extracted from these simulations because of
possible bias introduced by the temperature and pressure control.

Collapse simulations: Initial configurations for collapse from
250 pN to 100 pN were chosen along the 25-ns trajectory at
250 pN. The simulations were propagated in the micro-canonical
ensemble for 5 ns to avoid spurious effects from pressure and
temperature control on the dynamics of collapse. A time-step
of 1 fs was used. We performed five such simulations to obtain
the average relaxation. Because of the large system size, average
temperature and pressure along these trajectories are very close
to that targeted during the NPT equilibration.

Extension simulations: The last configuration of one of the
collapse trajectory was then propagated for 30 ns using the same
setup as for equilibration (NPTensemble), both to check conver-
gence of the end-to-end distance and to generate starting config-
urations for extension: finally, five such trajectories were
generated by pulling back the protein at 250 pN during 5 ns in
the NVE ensemble.

Diffusion coefficient: To estimate the diffusion coefficient
along the end-to-end coordinate, we have employed a method
described earlier (13, 14). At each given force an additional 3-
ns simulation in the micro-canonical ensemble is performed using
the collective-variable module of NAMD to add a bias potential
on the end-to-end distance. This potential is harmonic and
chosen to be much stiffer than the actual PMF on which the
protein is moving, so that the resulting PMF is locally harmonic.
Under this approximation, it can be shown that the diffusion coef-
ficient can be recovered from the time autocorrelation function
of the end-to-end distance L,

D ¼ hδL2i2R
∞
0 hδLðtÞδLð0Þidt ; [S20]

where δL ¼ L − hLi are the fluctuation of L around its average
value. We performed simulations at both forces (100 pN and
250 pN), using a force constant of 100 kcal∕mol∕Å2 to constraint
the system around the average end-to-end distance hLi estimated
from unperturbed simulations (25.5 nm at 250 pN and 23.7 nm at
100 pN). In both cases, the unperturbed PMF is very smooth in
this region and we checked on a smaller, model system (decaa-
lanine in water) using different values for the force constant (20,
50, and 100 kcal∕mol∕Å2) that it does not have any significant
impact on the obtain value of D.

An example of the average autocorrelation function of L is
shown in Fig. S7. Error bars on D are estimated from block
averaging and by estimating D independently for each block.
A manuscript presenting further details about this approach
and other new insights from MD simulations is currently in pre-
paration.
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Fig. S1. Cantilever’s drag force measurements. (A) Traces of the drag forcemeasured on the cantilever according to the position protocol of the Piezo actuator
when moved at 30 nm∕ms. (B) Schematic stages of the position of the piezo and the cantilever numbered according to the different stages shown in a. (C) Six
force traces taken at velocities varying from 5 to 30 nm∕ms. (D) Force vs. velocity of each experiment plotted together from three different cantilevers showing
a drag coefficient of 5.7� 0.1 pN·ms∕nm for MLCT, 2.335� 0.03 pN·ms∕nm for BL-RC150VB and 0.895� 0.04 pN·ms∕nm for BL-AC40TS.
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Fig. S2. Drag force measurements from constant force AFM experiments. (A) An experiment example, in which an unfolded poly-ubiquitin chain is stretched
and relaxed between 250 and 100 pN. The piezo actuator is rapidly moved away from the cantilever as the chain ruptures at approximately 0.77 s. (B) Force vs.
velocity of the two stages detected after the detachment, out of which the drag coefficient is estimated per molecule from the slope of the linear fit between
the points.

Fig. S3. Two force traces of a single ubiquitin unfolding. The control system responds to the unfolding event driving the actuator withdraw the protein and
recover the condition of constant force. Force trace obtained by a standard AFM that shows decay with a time resolution of 4ms (upper box). The new fast-AFM
used in this work shows an almost instantaneous force recovery with a time constant smaller than 150 μs under the same conditions (low box).

Fig. S4. Comparison between the phenomenological WLCmodel, given by Eq. S1 (red) and its high force modification, Eq. S2 (black). From forces above 50 pN
the two curves coincide.
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Fig. S5. Fitting of the model to a simulated trace. A simulated trace (green line; Lc ¼ 300 nm, p ¼ 0.4 nm and Deff ¼ 1;226 nm2∕s) was fitted with the model
presented in this study (Eq. S11—dashed black line) and with a single exponential (scattered red line). The right axis shows the residuals of the fits.

Fig. S6. Histograms of values for Deff measured from Brownian Dynamic simulated traces for (A) collapse and (B) extension.

Fig. S7. Time correlation function of the normalized end-to-end length δL as a function of time (red curve) for ubiquitin at 100 pN. Its integral is shown in
green, together with the extrapolated value used in Eq. S20 (black dashes). The corresponding value of D is ð5.3� 1.4Þ 108 nm2∕s.
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