Supporting Information

Transition state analogue inhibitors of human methylthioadenosine phosphorylase and bacterial methylthioadenosine/S-adenosylhomocysteine nucleosidase incorporating acyclic ribooxacarbenium ion mimics.

Keith Clinch^{a*}, Gary B. Evans^a, Richard F. G. Fröhlich^a, Shivali A. Gulab^a, Jemy A. Gutierrez^b, Jennifer M. Mason^a, Vern L. Schramm^b, Peter C. Tyler^{a*} and Anthony D. Woolhouse^a

List of contents:

1. Experimental S2

2. 1 H and 13 C NMR spectra of **17 I** (**17 II**, **17 III**), (±)-**25**, **33**, (*ent*-**33**), **40**, (*ent*-**40**), **47**, **54**, (±)-**65**, (±)-**68**, (±)-**72**, (±)-**78** and **79** and of the Mosher amide derivatives of **14 I** and **14** II.

*Corresponding authors. Fax.: +64-4-931-3055; e-mail: <u>k.clinch@irl.cri.nz</u>; Fax.: +64-4-931-3055 e-mail: p.tyler@irl.cri.nz

^a Carbohydrate Chemistry, Industrial Research Limited, P O Box 31310, Lower Hutt 5040, New Zealand.

^b Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.

Experimental

General

Air sensitive reactions were performed under argon. Organic solutions were dried over anhydrous MgSO₄ and the solvents were evaporated under reduced pressure. Anhydrous and chromatography solvents were obtained commercially and used without any further purification. Thin layer chromatography was performed on glass or aluminium sheets coated with 60 F₂₅₄ silica gel. Organic compounds were visualized under uv light or use of a dip of ammonium molybdate (5 wt%) and cerium(IV) sulfate 4 H₂O (0.2 wt%) in aq. H₂SO₄ (2M), one of I₂ (0.2%) and KI (7%) in H₂SO₄ (1M), or 0.1% ninhydrin in EtOH. Chromatography (flash column, or an automated system with continuous gradient facilility) was performed on silica gel (40-63 µm). All reactions involving sealed pressure tubes were conducted behind a safety shield. Optical rotations were recorded at a path length of 1 dm and are in units of 10⁻¹ ¹deg cm² g⁻¹; concentrations are in g/100 mL. ¹H NMR spectra were measured in CDCl₃, CD₃OD, DMSO d_6 (internal Me₄Si, δ 0) or D₂O (HOD, δ 4.79), and ¹³C NMR spectra in CDCl₃ (centre line, δ 77.0), CD₃OD (centre line, δ 49.0), DMSO d_6 (centre line, δ 39.5) or D₂O (no internal reference or internal CH₃CN, δ 1.47 where stated). ¹⁹F NMR (external CFCl₃, or internal δ 0, where stated). Assignments of ¹H and ¹³C resonances were based on 2D (¹H-¹H DQF-COSY, ¹H-¹³C HSQC, HMBC) and DEPT experiments. **NMR** abbreviations used: b, broad; s, singlet; d, doublet; t, triplet; m, multiplet. High resolution electrospray mass spectra (ESI-HRMS) were recorded on a Q-TOF Tandem Mass Spectrometer. Microanalyses were performed by the Campbell Microanalytical Department, University of Otago, Dunedin, New Zealand.

Synthetic Chemistry

5-[(Benzyloxy)methyl]-7-bromo-4-chloro-5*H*-pyrrolo[3,2-*d*]pyrimidine (9). *N*-Bromosuccinimide (2.90 g, 16.3 mmol) was added in several portions to a stirred solution of chloride 8^{50} (4.46 g, 16.3 mmol) in CH₂Cl₂ (100 mL) cooled in an ice-bath. After 1 h the

solvent was evaporated and the residue chromatographed (EtOAc-hexanes, 3:7) to give $\bf 9$ as a yellow solid (4.1 g, 71%). ¹H NMR (500 MHz, DMSO d_6): δ 8.76, (s, 1H), 8.44 (s, 1H), 7.27–7.20 (m, 5H), 5.91 (s, 2H), 4.58 (s, 2H). ¹³C NMR (125.7 MHz, DMSO d_6): δ 150.3 (CH), 149.4 (C), 142.3 (C), 137.8 (CH), 137.1 (C), 128.0 (CH), 127.5 (CH), 127.3 (CH), 123.0 (C), 90.1 (C), 77.3 (CH₂), 70.0 (CH₂). ESI-HRMS for C₁₄H₁₂⁷⁹Br³⁵ClN₃O⁺ (M+H)⁺ calcd. 351.9847, found 351.9848. X-ray crystal structure. ⁵¹

5-[(Benzyloxy)methyl]-4-chloro-5*H*-pyrrolo[3,2-*d*]pyrimidine-7-carbaldehyde (10). n-Butyllithium (1.48M in hexanes, 9.2 mL, 13.6 mmol) was added to a solution of bromide **9** (3.73 g, 10.6 mmol) in a mixture of dry anisole (48 mL) and dry Et₂O (145 mL) at -78 °C. The mixture was stirred for 2-3 min then DMF (4.11 mL, 53.0 mmol) was added at such a rate that the internal temperature remained below -68 °C. After warming to -40 °C, H₂O (20 mL) was added, then the solution was warmed to rt, EtOAc (200 mL) added and the organic layer washed successively with H₂O and brine then dried and the solvent evaporated. The resulting orange solid was chromatographed (EtOAc-hexanes, 2:8 then stepwise to 4:6) to give **10** as a yellow solid (1.83 g, 57%). ¹H NMR (500 MHz, CDCl₃): δ 10.33, (s, 1H), 8.92 (s, 1H), 8.13 (s, 1H), 7.36-7.27 (m, 5H), 5.90 (s, 2H), 4.60 (s, 2H). ¹³C NMR (125.7 MHz, CDCl₃): δ 183.8 (CH), 152.4 (CH), 151.0 (C), 144.0 (C), 139.8 (CH), 135.6 (C), 128.7 (CH), 128.5 (CH), 127.7 (CH), 124.8 (C), 117.4 (C), 77.7 (CH₂), 71.3 (CH₂). ESI-HRMS for C₁₅H₁₂³⁵ClN₃NaO₂⁺ (M+Na)⁺ calcd. 324.0511, found 324.0507.

tert-Butyl (4*R*)-2,2-dimethyl-4-[(methylsulfanyl)methyl]-1,3-oxazolidine-3-carboxylate (12 I). Methanesulfonyl chloride (0.26 mL, 3.33 mmol) was added to a solution of *tert*-butyl (4*S*)-4-(hydroxymethyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (11 I, 0.7 g, 3.03 mmol, prepared as for its enantiomer⁵⁴) and Et₃N (0.68 mL, 4.84 mmol) in CH₂Cl₂ (10 mL) at 0 °C. After 30 min the mixture was washed with aq. NaHCO₃ (sat., 3 x 5 mL), dried and the solvent evaporated. The residue was dissolved in DMF (8 mL) and sodium thiomethoxide (0.42 g, 6.05 mmol) added. After stirring at rt for 1 h, Et₂O (100 mL) was added and the mixture washed with H₂O (4 x 10 mL), brine then dried and the solvent evaporated. The residue was chromatographed (EtOAc-hexanes, 5:95) to give 12 I as a colourless oil (0.59 g, 75%). [α]_D²⁰ +44.3 (c 1.02, CHCl₃). ¹H NMR (500 MHz, CDCl₃ ~1:1 mixture of rotamers): δ 4.06 (bd, *J* = 6.2 Hz, 0.5H), 4.01-3.89 (m, 2.5H), 2.89 (bd, *J* = 13.0 Hz, 0.5H), 2.75 (bd, *J* = 13.2 Hz, 0.5H), 2.52 (dd, *J* = 13.3, 10.7 Hz, 1H), 2.16, 2.13 (2s, 3H), 1.60, 1.50 (2s, 3H), 1.48, 1.47 (2s, 12H). ¹³C NMR (125.7 MHz, CDCl₃, ~1:1 mixture of rotamers): δ 152.0, 151.3 (C's), 94.2, 93.7 (C's), 80.2, 79.9 (C's), 66.5, 66.2 (CH₂'s), 56.7, 56.4 (CH₂'s), 36.4, 35.6 (CH's),

28.5, 28.4 (CH₃'s), 27.6, 24.4 (CH₃'s), 26.9, 23.1 (CH₃'s), 15.4, 15.3 (CH₃'s). ESI-HRMS for $C_{12}H_{23}NNaO_3S^+$ (M+Na)⁺ calcd. 284.1291, found 284.1289.

(2*R*)-2-Amino-3-(methylsulfanyl)propan-1-ol hydrochloride (14 I). Aqueous hydrochloric acid (37%, 2 mL) was added to an ice-cold solution of 12 I (0.54 g, 2.07 mmol) in MeOH (3 mL). The solution was warmed to rt, left for 1.5 h then the solvents evaporated to give 14 I as a colourless gum which solidified on standing (0.326 g, 100%). [α] $_{\rm D}^{20}$ -39.7 (c 1.20, H₂O). 1 H NMR (500 MHz, D₂O): δ 3.97 (dd, J = 12.4, 3.9 Hz, 1H), 3.83 (dd, J = 12.4, 6.2 Hz, 1H), 3.62 (m, 1H), 2.95 (dd, J = 14.5, 5.7 Hz, 1H), 2.83 (dd, J = 14.5, 8.4 Hz, 1H), 2.23 (s, 3H). 13 C NMR (125.7 MHz, D₂O, internal CH₃CN): δ 60.9 (CH₂), 52.2 (CH), 32.9 (CH₂), 15.1 (CH₃). ESI-HRMS for C₄H₁₂NOS⁺ (M+H)⁺ calcd. 122.0635, found 122.0634.

Preparation of the (R, R) Mosher amide. Compound 14 I (4 mg, 0.025 mmol) was dissolved in CDCl₃ (0.6 mL), spiked with CFCl₃ then Et₃N (10.5 μL, 0.075 mmol) and (S)-MTPACl⁵⁶ (7.5 mg, 0.03 mmol) added. After 30 min at rt the sample was analysed by ¹⁹F NMR. ¹⁹F NMR (470.5 MHz, CDCl₃, internal CFCl₃): δ -69.3 (s, 97%), -69.4 (s, 3%). The % d. e. = 94%. See 14 II for the preparation of the (R, S) diastereomer.

(2R)-2-[({5-[(Benzyloxy)methyl]-4-chloro-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-

yl}methyl)amino]-3-(methylsulfanyl)propan-1-ol (15 I). A mixture of **14 I** (0.12 g, 0.76 mmol), aldehyde **10** (0.38 g, 0.76 mmol), Et₃N (0.11 mL, 0.76 mmol) and 2-picoline-borane complex⁵⁵ (0.106 g, 0.99 mmol) were stirred together in MeOH (4 mL) at rt for 16 h. The solvent was evaporated and the residue chromatographed (CHCl₃-7M NH₃ in MeOH, 99:1 then 98:2) to give **15 I** as a yellow solid (0.21 g, 67%). [α]_D²⁰ -24.0 (c 0.63, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 8.63 (s, 1H), 7.92 (s, 1H), 7.25-7.18 (m, 5H), 5.91 (d, J = 11.0 Hz, 1H), 5.89 (d, J = 11.0 Hz, 1H), 4.56 (s, 2H), 4.07 (d, J = 14.2 Hz, 1H), 4.03 (d, J = 14.2 Hz, 1H), 3.70 (dd, J = 11.1, 5.1 Hz, 1H), 3.61 (dd, J = 11.1 5.6 Hz 1H), 2.81 (m, 1H), 2.67 (dd, J = 13.5, 6.2 Hz, 1H), 2.59 (dd, J = 13.5, 6.7 Hz, 1H), 1.97 (s, 3H). ¹³C NMR (125.7 MHz, CD₃OD): δ 153.0 (C), 150.6 (CH), 143.9 (C), 138.7 (CH), 138.5 (C), 129.3 (CH), 128.8 (CH), 128.6 (CH), 125.5 (C), 116.1 (C), 78.3 (CH₂), 71.7 (CH₂), 63.9 (CH₂), 58.2 (CH), 40.9 (CH₂), 36.6 (CH₂), 15.7 (CH₃). ESI-HRMS for C₁₉H₂₄³⁵ClN₄O₂S⁺ (M+H)⁺ calcd. 407.1304, found 407.1309.

(2R)-2-[({4-Amino-5-[(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-yl}methyl)amino]-3-(methylsulfanyl)propan-1-ol (16 1). Compound 15 I (0.19 g, 0.48

mmol) was dissolved in NH₃-MeOH solution (7M, 25 mL) and heated at 135 °C in a sealed pressure tube for 30 h. After cooling, the solvent was evaporated and the residue chromatographed (CHCl₃-7M NH₃ in MeOH, 98:2) to give **16 I** as a yellow solid (0.14 g, 74%). [α]_D²⁰ -35.9 (c 0.50, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 8.17 (s, 1H), 7.49 (s, 1H), 7.32-7.24 (m, 5H), 5.66 (s, 2H), 4.57 (s, 2H), 4.00 (d, J = 13.8 Hz, 1H), 3.96 (d, J = 13.8 Hz, 1H), 3.71 (dd, J = 11.2, 5.0 Hz, 1H), 3.62 (dd, J = 11.2, 5.5 Hz, 1H), 2.84 (m, 1H), 2.67 (dd, J = 13.5, 6.4 Hz, 1H), 2.58 (dd, J = 13.5, 6.7 Hz, 1H), 1.97 (s, 3H). ¹³C NMR (125.7 MHz, CD₃OD): δ 152.8 (C), 151.6 (CH), 149.4 (C), 137.7 (C), 133.5 (CH), 129.6 (CH), 129.3 (CH), 129.2 (CH), 116.1 (C), 114.5 (C), 78.6 (CH₂), 71.3 (CH₂), 63.8 (CH₂), 58.0 (CH), 41.0 (CH₂), 36.6 (CH₂), 15.7 (CH₃). ESI-HRMS for C₁₉H₂₆N₅O₂S⁺ (M+H)⁺ calcd. 388.1802, found 388.1796.

(2R)-2-[({4-Amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl}methyl)amino]-3-

(methylsulfanyl)propan-1-ol (17 I). Pd black (100 mg) was added to a solution of 16 I (0.13 g, 0.33 mmol) and hydrazine hydrate (55% in hydrazine, 1.9 mL) in NH₃-MeOH solution (7M, 10 mL), and the mixture stirred at rt for 30 min. The solids were filtered off and the solvents evaporated. The residue was chromatographed (CHCl₃-7M NH₃ in MeOH, 9:1) to give 17 I as a colourless solid (0.074 g, 84%). [α] $_{\rm D}^{20}$ -38.3 (c 0.90, MeOH). 1 H NMR (500 MHz, CD₃OD): δ 8.16 (s, 1H), 7.49 (s, 1H), 4.04 (d, J = 13.7 Hz, 1H), 3.99 (d, J = 13.7 Hz, 1H), 3.71 (dd, J = 11.3, 5.0 Hz, 1H), 3.62 (dd, J = 11.3, 5.5 Hz, 1H), 2.83 (m, 1H), 2.66 (dd, J = 13.6, 6.5 Hz,1H), 2.57 (dd, J = 13.6, 6.8 Hz, 1H), 1.94 (s, 3H). 13 C NMR (125.7 MHz, CD₃OD): δ 152.1 (C), 150.9 (CH), 146.6 (C), 129.0 (CH), 115.4 (C), 114.7 (C), 63.7 (CH₂), 57.7 (CH), 41.2 (CH₂), 36.5 (CH₂), 15.5 (CH₃). ESI-HRMS for C₁₁H₁₈N₅OS⁺ (M+H)⁺ calcd. 268.1227, found 268.1231.

tert-Butyl (4*S*)-2,2-dimethyl-4-[(methylsulfanyl)methyl]-1,3-oxazolidine-3-carboxylate (12 II). tert-Butyl (4*R*)-4-(hydroxymethyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate⁵⁴ (11 II, 0.72 g, 3.12 mmol) was converted into 12 II as a colourless oil (0.75 g, 91%) in the same way as that described for the preparation of enantiomer 12 I. [α]_D²⁰ -42.3 (c 1.13, CHCl₃). The ¹H and ¹³C NMR spectra were identical to those of the enantiomer 12 I. ESI-HRMS for $C_{12}H_{23}NNaO_3S^+$ (M+Na)⁺ calcd. 284.1291, found 284.1289.

(2S)-2-Amino-3-(methylsulfanyl)propan-1-ol hydrochloride (14 II). Compound 12 II (0.70 g, 2.68 mmol) was converted into 14 II as a colourless solid (0.422 g, 100%) in the same way as that described for the preparation of enantiomer 14 I. $[\alpha]_D^{20}$ +40.5 (c 1.19, H₂O).

The 1 H and 13 C NMR spectra were identical to those of enantiomer **14 I**. ESI-HRMS for $C_{4}H_{12}NOS^{+}$ (M+H) $^{+}$ calcd. 122.0635, found 122.0631.

Prep of the (R, S) **Mosher amide**. Compound **14 II** (4 mg, 0.025 mmol) was dissolved in CDCl₃ (0.6 mL), spiked with CFCl₃ then Et₃N (10.5 μ L, 0.075 mmol) and (S)-MTPACl⁵⁶ (7.5 mg, 0.03 mmol) added. After 30 min at rt the sample was analysed by ¹⁹F NMR. ¹⁹F NMR (470.5 MHz, CDCl₃, internal CFCl₃): δ , -69.3 (s, 3%), -69.4 (s, 97%). The % d. e. = 94%. See **14 I** for the preparation of the (R, R) diastereomer.

$(2S) - 2 - [(\{5 - [(Benzyloxy)methyl] - 4 - chloro - 5H - pyrrolo[3, 2 - d]pyrimidin - 7 - (2S) - 2 - [(\{5 - [(Benzyloxy)methyl] - 4 - chloro - 5H - pyrrolo[3, 2 - d]pyrimidin - 7 - (2S) - 2 - [(\{5 - [(Benzyloxy)methyl] - 4 - chloro - 5H - pyrrolo[3, 2 - d]pyrimidin - 7 - (2S) - 2 - [(\{5 - [(Benzyloxy)methyl] - 4 - chloro - 5H - pyrrolo[3, 2 - d]pyrimidin - 7 - (2S) - 2 - [(\{5 - [(Benzyloxy)methyl] - 4 - chloro - 5H - pyrrolo[3, 2 - d]pyrimidin - 7 - (2S) - 2 - [(\{5 - [(Benzyloxy)methyl] - 4 - chloro - 5H - pyrrolo[3, 2 - d]pyrimidin - 7 - (2S) - 2 - [(\{5 - [(Benzyloxy)methyl] - 4 - chloro - 5H - pyrrolo[3, 2 - d]pyrimidin - 7 - (2S) -$

yl}methyl)amino]-3-(methylsulfanyl)propan-1-ol (15 II). Compound 14 II (0.12 g, 0.76 mmol) was converted into 15 II as a yellow solid (0.24 g, 78%) in the same way as that described for enantiomer 15 I. [α]_D²⁰ +19.6 (c 0.58, MeOH). The ¹H and ¹³C NMR spectra were identical to those of enantiomer 15 I. ESI-HRMS for C₁₉H₂₄³⁵ClN₄O₂S⁺ (M+H)⁺ calcd. 407.1304, found 407.1311.

$(2S) - 2 - [(\{4\text{-}Amino-5\text{-}[(benzyloxy)methyl]\text{-}5H\text{-}pyrrolo[3,2\text{-}d]pyrimidin-7\text{-}1]) - [(\{4\text{-}Amino-5\text{-}[(benzyloxy)methyl]\text{-}5H\text{-}pyrrolo[3,2\text{-}d]pyrimidin-7\text{-}1]])] - [(\{4\text{-}Amino-5\text{-}[(benzyloxy)methyl]\text{-}5H\text{-}pyrrolo[3,2\text{-}d]pyrrolo[3,2\text{-}d]pyrrolo[3,2\text{-}d]$

yl}methyl)amino]-3-(methylsulfanyl)propan-1-ol (16 II). Compound 15 II (0.22 g, 0.54 mmol) was converted into 16 II as a yellow solid (0.18 g, 86%) in the same way as that described for enantiomer 16 I. $[\alpha]_D^{20}$ +37.8 (c 0.50, MeOH). The 1 H and 13 C NMR spectra were identical to those of enantiomer 16 I. ESI-HRMS for $C_{19}H_{26}N_5O_2S^+$ (M+H) $^+$ calcd. 388.1802, found 388.1803.

$(2S)-2-[(\{4-Amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl\}methyl)amino]-3-$

(methylsulfanyl)propan-1-ol (17 II). Compound 16 II (0.168 g, 0.43 mmol) was converted into 17 II as a colourless solid (0.091 g, 79%) in the same way as that described for enantiomer 17 I. $[\alpha]_D^{20}$ +43.8 (c 0.90, MeOH). The 1 H and 13 C NMR spectra were identical to those of enantiomer 17 I. ESI-HRMS for $C_{11}H_{18}N_5OS^+$ (M+H) $^+$ calcd. 268.1227, found 268.1225.

(±)-(2*R/S*)-2-[({5-[(Benzyloxy)methyl]-4-chloro-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)amino]-3-(methylsulfanyl)propan-1-ol [15 III] (±)-*tert*-Butyl *N*-{1-[(*tert*-butyldimethylsilyl)oxy]-3-(methylsulfanyl)propan-2-yl}carbamate (13 III, 0.200 g, 0.597 mmol)⁵² was converted into 14 III under the same conditions used to convert 12 I to 14 I. Compound 14 III was then transformed into 15 III (0.173 g, 71%) in the same way as that described for the preparation of 15 I except that NaCNBH₃⁵³ was used instead of 2-picoline-

borane complex and NaHCO₃ was used instead of Et₃N. The 1 H NMR (300 MHz) and 13 C NMR (75.5 MHz) were in agreement with the data recorded for **15 I**. ESI-HRMS for $C_{19}H_{24}N_4O_2S^{35}Cl^+$, (M+H)⁺ calcd. 407.1304, found 407.1297.

(±)-(2R/S)-2-[({4-Amino-5-[(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-yl}methyl)amino]-3-(methylsulfanyl)propan-1-ol [16 III]. Compound 15 III (0.17 g, 0.418 mmol) was converted into 16 III as a yellow solid (0.095 g, 59%) in the same way as that described for the preparation of 16 I. The 1 H NMR (300 MHz) and 13 C NMR (75.5 MHz) were in agreement with the data recorded for 16 I. ESI-HRMS for $C_{19}H_{26}N_{5}O_{2}S^{+}$ (M+H) $^{+}$ calcd. 388.1802, found 388.1795.

(±)-(2R/S)-2-[({4-Amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl}methyl)amino]-3-(methylsulfanyl)propan-1-ol [17 III]. Compound 16 III (0.092 g, 0.237 mmol) was converted into 17 III as a colourless solid (0.048 g, 76%) in the same way as that described for the preparation of 17 I. The ^{1}H NMR (300 MHz) and ^{13}C NMR (75.5 MHz) were in agreement with the data recorded for 17 I. ESI-HRMS $C_{11}H_{18}N_{5}OS^{+}$ (M+H) $^{+}$ calcd. 268.1227, found 268.1228.

2,2-Dimethyl-5-[(methylsulfanyl)methyl]-1,3-dioxane (**19**). Methanesulfonyl chloride (0.97 mL, 12.40 mmol) was added dropwise to a stirred solution of (2,2-dimethyl-1,3-dioxan-5-yl)methanol⁵⁷ (**18**, 1.51 g, 10.33 mmol) and Et₃N (2.18 mL, 15.49 mmol) in CH₂Cl₂ (10 mL) at 0 °C. The mixture was warmed to rt and stirred for 30 min then diluted with CH₂Cl₂ (20 mL) and washed with aq. NaHCO₃ (sat., 3 x 10 mL) then dried and the solvent evaporated to give the crude mesylate as an oil. The latter was dissolved in DMF (7 mL), sodium thiomethoxide (1.45 g, 20.66 mmol) added and the mixture stirred at rt for 16 h. Diethyl ether (100 mL) was added and the solution washed with H₂O (4 x 15 mL), brine (15 mL), dried and the solvent evaporated. The residue was chromatographed (EtOAc-hexanes, 5:95) to give **19** as a colourless oil (1.38 g, 76%). ¹H NMR (300 MHz, CDCl₃): δ 4.01 (dd, J = 11.8, 4.3 Hz, 2H), 3.70 (dd, J = 11.8, 7.1 Hz, 2H), 2.54 (d, J = 7.3 Hz, 2H), 2.10 (s, 3H), 1.92 (m, 1H), 1.42 (s, 3H), 1.41 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 98.0 (C), 63.6 (2 x CH₂), 33.8 (CH₂), 33.6 (CH), 24.7 (CH₃), 23.0 (CH₃), 16.0 (CH₃). ESI-HRMS for C₈H₁₆O₂NaS⁺ (M+Na)⁺ calcd. 199.0764 found 199.0768.

(±)-(2*R*/*S*)-3-[(*tert*-Butyldimethylsilyl)oxy]-2-[(methylsulfanyl)methyl]propan-1-ol [(±)-20]. Compound 19 (1.35 g, 7.66 mmol) was dissolved in MeOH (100 mL) and acetyl chloride (5.45 mL, 77 mmol) added. The solution was stirred at rt for 1 h then neutralized

with Amberlyst A21 resin. The solids were filtered off and the solvent evaporated to leave an oil (1.05 g) which was dissolved in THF (3 mL) and added to a stirred suspension of sodium hydride (60%, 0.31 g, 7.66 mmol) in dry THF (12 mL) with ice-cooling. After 30 min *tert*-butyldimethylsilyl chloride (1.154 g, 7.66 mmol) was added and the mixture stirred for 2 h. After quenching with H₂O (6 mL) and extracting with Et₂O the organic layer was washed with brine then dried and the solvent evaporated. The residue was chromatographed (EtOAchexanes, 1:9) to give (\pm)-20 as a colourless oil (1.44 g, 75%). H NMR (300 MHz, CDCl₃): δ 3.86-3.64 (m, simplified after D₂O exchange, 4H), 2.62 (t, J = 5.6 Hz, exchanged to D₂O, 1H), 2.61-2.52 (m, 2H), 2.11 (s, 3H), 1.92 (m, 1H), 0.90 (s, 9H), 0.08 (s, 6H). NMR (75.5 MHz, CDCl₃): δ 65.1 (2 x CH₂), 41.8 (CH), 33.1 (CH₂), 25.8 (CH₃), 18.2 (C), 16.1 (CH₃), -5.6 (CH₃). ESI-HRMS for C₁₁H₂₆NaO₂SSi⁺ (M+Na)⁺ calcd. 273.1316, found 273.1311.

(\pm) -[(2R/S)-2-(Azidomethyl)-3-(methylsulfanyl)propoxy](tert-butyl)dimethylsilane

[(±)-21]. Methanesulfonyl chloride (0.48 mL, 6.18 mmol) was added dropwise to a stirred solution of (±)-20 (1.29 g, 5.15 mmol) and Et₃N (1.09 mL, 7.73 mmol) in CH₂Cl₂ (25 mL) at 0 °C. The solution was warmed to rt and stirred for 30 min then washed with aq. NaHCO₃ (sat., 3 x 5 mL), dried and the solvent evaporated. The resulting crude mesylate was dissolved in DMF (15 mL), sodium azide (1.00 g, 15.45 mmol) added and the mixture stirred and heated at 80 °C for 3 h. After cooling, H₂O (15 mL) was added to the mixture extracted with Et₂O (100 mL). The extract was washed with H₂O (4 x 15 mL) then brine (15 mL), dried and the solvent evaporated. The residue was chromatographed (CH₂Cl₂-hexanes, 5:95 then 1:9) to give (±)-21 as a colourless oil (1.14 g, 80%). ¹H NMR (300 MHz, CDCl₃): δ 3.71-3.62 (m, 2H), 3.51-3.40 (m, 2H), 2.55 (dd, J = 13.3, 7.0 Hz, 1H), 2.50 (dd, J = 13.3, 6.8 Hz, 1H), 2.10 (s, 3H), 1.92 (m, 1H), 0.90 (s, 9H), 0.06 (s, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 62.1 (CH₂), 51.5 (CH₂), 40.9 (CH), 33.5 (CH₂), 25.8 (CH₃), 18.2 (C), 16.2 (CH₃), -5.5 (CH₃). ESI-HRMS for C₁₁H₂₅OSSi⁺ (M-HN₃+H)⁺ calcd. 233.1390, found 233.1386.

(±)-[(2R/S)-2-(Aminomethyl)-3-(methylsulfanyl)propoxy](tert-butyl)dimethylsilane

[(\pm)-22]. Pd-Black (100 mg) was added to a stirred solution of (\pm)-21 (0.99 g, 3.59 mmol) and hydrazine hydrate (55% in hydrazine, 10 mL) in MeOH (80 mL). After 1 h more Pd-black (100 mg) was added and after a further 30 min the solids were filtered off and the solvent evaporated. The residue was chromatographed (CH₂Cl₂-MeOH-Et₃N, 94:5:1) to give (\pm)-22 as a yellow oil (0.731g, 82%). ¹H NMR (300 MHz, CDCl₃): δ 3.74-3.65 (m, 2H), 2.86-2.75 (m, 2H), 2.57 (dd, J = 13.0, 7.1 Hz, 1H), 2.50 (dd, J = 13.0, 6.6 Hz, 1H), 2.10 (s,

3H), 1.75 (m, 1H), 1.33 (s, exchanged to D_2O , 2H), 0.89 (s, 9H), 0.06 (s, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 63.3 (CH₂), 43.3 (CH), 43.0 (CH₂), 34.2 (CH₂), 25.9 (CH₃), 18.2 (C), 16.2 (CH₃), -5.5 (CH₃). ESI-HRMS for $C_{11}H_{28}NOSSi^+$ (M+H)⁺ calcd. 250.1656, found 250.1650.

(\pm) -(2R/S)-3- $[(\{4-Amino-5-[(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-$

yl $\}$ methyl)amino]-2-[(methylsulfanyl)methyl]propan-1-ol $[(\pm)$ -24]. Compound (\pm) -22 (0.16 g, 0.64 mmol) was dissolved in a 1:1 mixture of aq. HCl (37%)-MeOH (6 mL) and left at rt for 2 h. The solvent was evaporated and the residue dissolved in MeOH (4 mL) to which were added aldehyde 10 (0.258 g, 0.64 mmol), NaHCO₃ (0.036 g, 0.42 mmol) and NaCNBH₃⁵³ (0.052 g, 0.83 mmol). The mixture was stirred at rt for 16 h then the solvent was evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 99:1 then 98:2) to (\pm) -(2R/S)-3-[($\{5$ -[(benzyloxy)methyl]-4-chloro-5*H*-pyrrolo[3,2give intermediate d[pyrimidin-7-yl}methyl)amino]-2-[(methylsulfanyl)methyl]propan-1-ol [(±)-23] as a yellow gum (100 mg). This was dissolved in NH₃-MeOH solution (7M, 10 mL) and heated at 135 °C for 24 h in a sealed tube. After cooling, the solvent was evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 98:2) to give (±)-24 as a yellow gum (0.051 g, 20%). ¹H NMR (300 MHz, CD₃OD): δ 8.17 (s, 1H), 7.45 (s, 1H), 7.32-7.23 (m 5H), 5.64 (s, 2H), 4.57 (s, 2H), 3.90 (s, 2H), 3.67 (dd, J = 10.9, 5.1 Hz, 1H), 3.61 (dd, J = 10.9, 5.9 Hz, 1H), 2.88-2.69 (m, 2H), 2.55 (dd, J = 13.2, 6.8 Hz, 1H), 2.48 (dd, J = 13.2, 6.6 Hz, 1H), 2.04 (s, 3H), 1.94 (m, 1H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.8 (C), 151.6 (CH), 149.4 (C), 137.7 (C), 133.5 (CH), 129.6 (CH), 129.3 (CH), 129.2 (CH), 116.1 (C), 114.4 (C), 78.6 (CH₂), 71.3 (CH₂), 64.7 (CH₂), 51.5 (CH₂), 43.7 (CH₂), 41.4 (CH), 35.6 (CH₂), 16.0 (CH₃). ESI-HRMS for $C_{20}H_{28}N_5O_2S^+$ (M+H)⁺ calcd. 402.1959, found 402.1957.

(\pm) -(2R/S)-3- $[(\{4-Amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl\}methyl)amino]-2-$

[(methylsulfanyl)methyl]propan-1-ol [(\pm)-25]. Pd Black (30 mg) was added to a stirred solution of (\pm)-24 (0.05 g, 0.125 mmol) and hydrazine hydrate (55% in hydrazine, 0.7 mL) in NH₃-MeOH (7M, 4 mL) and the mixture stirred at rt 1 h. After filtering the solids off over Celite the solvent was evaporated and the residue chromatographed (CHCl₃-7M NH₃ in MeOH, 9:1 then 85:15) to give (\pm)-25 (0.019 g, 54%) as a colourless solid. ¹H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.48 (1H), 3.94 (2H), 3.67 (dd, J = 11.0, 5.0 Hz, 1H), 3.60 (dd, J = 11.0, 6.0 Hz, 1H), 2.82-2.71 (m, 2H), 2.58-2.44 (m, 2H), 2.05 (s, 3H), 1.95 (m, 1H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.1 (C), 150.9 (CH), 146.6 (C), 129.1 (CH), 115.4 (C),

114.2 (C), 64.6 (CH₂), 51.6 (CH₂), 43.9 (CH₂), 41.2 (CH), 35.5 (CH₂), 16.0 (CH₃). ESI-HRMS for $C_{12}H_{20}N_5OS^+$ (M+H)⁺ calcd. 282.1384, found 282.1384.

(4R)-4-[(4S)-2,2-Dimethyl-1,3-dioxolan-4-yl]-1,3-oxazolidin-2-one (27). (2R)-2-Amino-2-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]ethan-1-ol benzoate (26, 7.2 g, 25.4 mmol, prepared in the same way as that described for its enantiomer⁶¹) was dissolved in MeOH (30 mL) and eluted from a column of Amberlyst A26 resin (OH) (5 x 18 cm) with MeOH. Fractions containing product were collected and the solvent evaporated to give the free base form of 26 as a yellow gum (4.1 g, 25.4 mmol). It was dissolved in dry CH₂Cl₂ (60 mL), cooled in an ice bath and Et₃N (10.75 mL, 76 mmol) added followed by triphosgene (2.72 g, 9.18 mmol) in portions over 60 min. The mixture was stirred for 20 min then the solvent was evaporated and the residue chromatographed (EtOAc-hexanes, 8:2) to give 27 as a colourless solid (4.4 g, 92%). An analytical sample was recrystallized from EtOAc-hexanes. MP 126-127 °C. $[\alpha]_{D}^{21}$ -50.7 (c 0.8, MeOH). ¹H NMR (300 MHz, CDCl₃): δ 6.18 (bs, exchanged to D₂O, 1H), 4.44 (t, J = 8.8 Hz, 1H), 4.20-4.06 (m, 3H), 3.91 (m, 1H), 3.74 (dd, J = 8.5, 4.7 Hz, 1H), 1.44(s, 3H), 1.35 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 159.6 (C), 110.2 (C), 76.6 (CH), 66.2 (CH₂), 65.4 (CH₂), 54.5 (CH), 26.4 (CH₃), 24.8 (CH₃). ESI-HRMS for C₈H₁₃NNaO₄⁺ $(M+Na)^{+}$ calcd. 210.0737, found 210.0732. Anal. calcd. for $C_8H_{13}NO_4$: C, 51.33, H, 7.00, N, 7.48. Found C, 51.46, H, 6.79, N, 7.49.

(4*R*)-4-[(1*S*)-1,2-Dihydroxyethyl]-1,3-oxazolidin-2-one (28). Acetyl chloride (0.44 mL, 6.20 mmol) then acetal 27 (5.8 g, 31.0 mmol) were added successively to MeOH (80 mL) and the solution was stirred at rt for 4 h then the solvent was evaporated. The residue was again dissolved in MeOH (80 mL) to which more acetyl chloride (0.5 mL) had been added. The mixture was stirred a further 1 h then the solvent was evaporated and the residue chromatographed (CH₂Cl₂-MeOH, 9:1 then 85:15) to give 28 as a colourless gum (4.23 g, 93%). [α]_D²¹ -63.0 (c 0.9, MeOH). ¹H NMR (300 MHz, CD₃OD): δ 4.47 (t, J = 8.8 Hz, 1H), 4.30 (dd, J = 8.7, 6.0 Hz, 1H), 3.97 (m, 1H), 3.62-3.49 (m, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 162.7 (C), 73.6 (CH), 68.6 (CH₂), 64.3 (CH₂), 55.9 (CH). ESI-HRMS for C₅H₉NNaO₄⁺ (M+Na)⁺ calcd. 170.0424, found 170.0426.

(4R,5S)-4-(Hydroxymethyl)-5-[(methylsulfanyl)methyl]-1,3-oxazolidin-2-one (29). p-Toluenesulfonyl chloride (2.21 g, 11.58 mmol) was added to a solution of 28 (1.42 g, 9.65 mmol) in dry pyridine (10 mL) at 0 °C. The mixture was warmed to rt and stirred for 3 h then more p-toluenesulfonyl chloride (442 mg, 2.3 mmol) added and the mixture stirred a further

16 h. The solvent was evaporated and the residue chromatographed (EtOAc-hexane, 6:4, then EtOAc) to give the intermediate primary tosylate as a colourless solid (1.77 g, 5.9 mmol). It was dissolved in DMF (7 mL) and sodium thiomethoxide (827 mg, 11.8 mmol) added. The mixture was stirred at rt for 3 h then the solvent evaporated and the residue chromatographed (CH₂Cl₂-MeOH, 98:2 then 95:5) to give **29** as a colourless gum which solidified on standing a short while (0.75 g, 44%). An analytical sample was recrystallized from EtOH-hexanes. MP 71-72 °C. $[\alpha]_D^{21}$ +79.5 (c 0.8, MeOH). ¹H NMR (300 MHz, CDCl₃): δ 6.46 (s, exchanged to D₂O, 1H), 4.56 (m, 1H), 3.82-3.73 (m, became a changed m after D₂O exchange, 2H), 3.63 (m, became a changed m after D₂O exchange, 1H), 3.41 (bt, exchanged to D₂O, 1H), 2.88 (dd, J = 14.0, 4.9 Hz, 1H), 2.75 (dd, J = 14.0, 7.5 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 159.9 (C), 77.7 (CH), 63.5 (CH₂), 58.7 (C), 37.6 (CH₂), 16.2 (CH₃). ESI-HRMS for C₆H₁₁NNaO₃S⁺ (M+Na)⁺ calcd. 200.0352, found 200.0353. Anal. calcd. for C₆H₁₁NO₃S: C, 40.66, H, 6.26, N, 7.90. Found C, 40.84, H, 6.46, N, 7.85. X-ray crystal structure. ⁶²

(2*R*,3*S*)-2-Amino-4-(methylsulfanyl)butane-1,3-diol (30). Compound 29 (1.16 g, 6.55 mmol) was dissolved in a mixture of *i*-PrOH (32 mL) and aq. KOH (2M, 14 mL) and stirred at 80 °C for 4 h. The solvent was evaporated and the residue chromatographed (CH₂Cl₂-MeOH-28% aq. NH₄OH, 9:1:0.1) to give 30 as a yellow solid (0.932 g, 94%). [α] $_{\rm D}^{21}$ +3.7 (c 1.11, MeOH). 1 H NMR (300 MHz, CD₃OD): δ 3.75 (m, 1H), 3.60 (dd, J = 10.8, 5.7 Hz, 1H), 3.51 (dd, J = 10.8, 6.4 Hz, 1H), 2.84 (m, 1H), 2.72 (dd, J = 13.6, 5.5 Hz, 1H), 2.61 (dd, J = 13.6, 7.5 Hz, 1H), 2.13 (s, 3H). 13 C NMR (75.5 MHz, CD₃OD): δ 71.0 (CH), 65.1 (CH₂), 56.5 (CH), 39.2 (CH₂), 15.9 (CH₃). ESI-HRMS for C₅H₁₄NO₂S⁺ (M+H)⁺ calcd. 152.0740, found 152.0745.

(2R,3S)-2- $[(\{5-[(Benzyloxy)methyl]-4-chloro-5H-pyrrolo[3,2-d]pyrimidin-7-$

yl}methyl)amino]-4-(methylsulfanyl)butane-1,3-diol (31). Acetyl chloride (10 μL, 0.14 mmol) was added to MeOH (5 mL) then amine **30** (0.066 g, 0.44 mmol), aldehyde **10** (0.132 g, 0.44 mmol) and NaCNBH₃⁵³ (0.036 g, 0.57 mmol) were added. The mixture was stirred at rt for 3 h then the solvent evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 97:3) to give **31** as a yellow gum (0.099 g, 52%). ¹H NMR (300 MHz, CD₃OD): δ 8.60 (s, 1H), 7.87 (s, 1H), 7.20 (s, 5H), 5.86 (s, 2H), 4.54 (s, 2H), 4.12 (d, J = 13.8 Hz, 1H), 3.99 (d, J = 13.8 Hz, 1H), 3.84-3.73 (m, 2H), 3.64 (dd, J = 11.2, 5.1 Hz, 1H), 2.82-2.72 (m, 2H), 2.55 (dd, J = 13.5, 7.4 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.9 (C), 150.5 (CH), 143.7 (C), 138.6 (CH), 138.4 (C), 129.2 (CH), 128.8 (CH), 128.6 (CH),

125.5 (C), 116.6 (C), 78.2 (CH₂), 71.6 (CH₂), 71.2 (CH), 62.2 (CH), 62.0 (CH₂), 41.9 (CH₂), 39.2 (CH₂), 16.0 (CH₃). ESI-HRMS for $C_{20}H_{26}^{35}ClN_4O_3S^+$ (M+H)⁺ calcd. 437.1409, found 437.1411.

(2R,3S)-2-[({4-Amino-5-[(benzyloxy)methyl]-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-

yl}methyl)amino]-4-(methylsulfanyl)butane-1,3-diol (32). Compound **31** (0.19 g, 0.44 mmol) was stirred in NH₃-MeOH solution (7M, 25 mL) for 24 h in a sealed tube at 135 °C (oil bath). After cooling to rt the solvent was evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃-MeOH 96.5:3.5 then 95:5) to give **32** as a yellow gum (0.108 g, 60%). ¹H NMR (300 MHz, CD₃OD): δ 8.17 (s, 1H), 7.46 (s, 1H), 7.28 (m, 5H), 5.63 (s, 2H), 4.57 (s, 2H), 4.07 (d, J = 13.6 Hz, 1H), 3.91 (d, J = 13.7 Hz, 1H), 3.81-3.73 (m, 2H), 3.64 (dd, J = 11.4, 5.0 Hz, 1H), 2.81-2.69 (m, 2H), 2.54 (dd, J = 13.5, 7.3 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.8 (C), 151.5 (CH), 149.4 (C), 137.8 (C), 133.6 (CH), 129.5 (CH), 129.3 (CH), 129.2 (CH), 116.2 (C), 115.1 (C), 78.6 (CH₂), 71.4 (CH₂), 71.3 (CH), 62.1 (CH), 62.0 (CH₂), 42.0 (CH₂), 39.3 (CH₂), 16.0 (CH₃). ESI-HRMS for C₂₀H₂₈N₅O₃S⁺ (M+H)⁺ calcd. 418.1908, found 418.1902.

$(2R,3S)-2-[({4-Amino-5}H-pyrrolo[3,2-d]pyrimidin-7-yl}methyl)amino]-4-$

(methylsulfanyl)butane-1,3-diol (33). Compound 32 (0.106 g, 0.25 mmol) was dissolved in NH₃-MeOH solution (7M, 10 mL), Pd black (106 mg) was added followed by hydrazine hydrate (55% in hydrazine, 1.5 mL). The mixture was stirred for 1 h then filtered and the solvent evaporated. The residue was chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 85:15) to give 33 as a colourless solid (0.056 g, 74%). $[\alpha]_D^{20}$ -8.4 (c, 0.70, MeOH). ¹H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.47 (s, 1H), 4.11 (d, J = 13.6 Hz, 1H), 3.97 (d, J = 13.5 Hz, 1H), 3.84-3.74 (m, 2H), 3.64 (dd, J = 11.5, 5.0 Hz, 1H), 2.81 (q, J = 5.1 Hz, 1H), 2.72 (dd, J = 13.6, 4.7 Hz, 1H), 2.55 (dd, J = 13.6, 7.6 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.0 (C), 150.8 (CH), 146.5 (C), 129.1 (CH), 115.5 (C), 114.9 (C), 71.2 (CH), 62.5 (CH), 61.8 (CH₂), 42.2 (CH₂), 39.3 (CH₂), 16.0 (CH₃). ESI-HRMS for C₁₂H₂₀N₅O₂S⁺ (M+H)⁺ calcd. 298.1333, found 298.1328.

(4*S*)-4-[(4*R*)-2,2-Dimethyl-1,3-dioxolan-4-yl]-1,3-oxazolidin-2-one (*ent*-27). (2*S*)-2-Amino-2-[(4*R*)-2,2-dimethyl-1,3-dioxolan-4-yl]ethan-1-ol benzoate (*ent*-26)⁶¹ was converted into *ent*-27 in the same way as that described for enantiomer 27. The 1 H and 13 C NMR spectra were identical to those of enantiomer 27. [α] $_{\rm D}^{21}$ + 50.5 (c 0.80, MeOH). ESI-HRMS for C₈H₁₃NNaO₄⁺ (M+Na)⁺ calcd. 210.0737, found 210.0736.

- (4*S*)-4-[(1*R*)-1,2-Dihydroxyethyl]-1,3-oxazolidin-2-one (*ent*-28). Compound *ent*-27 was converted into *ent*-28 in the same way as that described for enantiomer 28. The 1 H and 13 C NMR spectra were identical to those of enantiomer 28. [α] $_{\rm D}^{21}$ +62.8 (c 0.90, MeOH). ESI-HRMS for C₅H₉NNaO₄, (M+Na)⁺ calcd. 170.0424, found 170.0422.
- (4S,5R)-4-(Hydroxymethyl)-5-[(methylsulfanyl)methyl]-1,3-oxazolidin-2-one (*ent*-29). Compound *ent*-28 was converted into *ent*-29 in the same way as that described for enantiomer 29. The 1 H and 13 C NMR spectra were identical to those of enantiomer 29. [α] $_{D}^{21}$ -77.5 (c 0.60, MeOH). ESI-HRMS for C₆H₁₁NNaO₃S⁺ (M+Na)⁺ calcd. 200.0352, found 200.0352.
- (2S,3R)-2-Amino-4-(methylsulfanyl)butane-1,3-diol (*ent*-30). Compound *ent*-29 was converted into *ent*-30 in the same way as that described for enantiomer 30. The 1 H and 13 C NMR spectra were identical to those of enantiomer 30. [α] $_{D}^{21}$ -3.5 (c1.09, MeOH). ESI-HRMS for $C_5H_{14}NO_2S^+$ (M+H) $^{+}$ calcd. 152.0740, found 152.0739.

(2S,3R)-2-[($\{5$ -[(Benzyloxy)methyl]-4-chloro-5H-pyrrolo[3,2-d]pyrimidin-7-

yl}methyl)amino]-4-(methylsulfanyl)butane-1,3-diol (*ent*-31). Compound *ent*-30 was converted into *ent*-31 in the same way as that described for enantiomer 31. The 1 H and 13 C NMR spectra were identical to those of enantiomer 31. ESI-HRMS for $C_{20}H_{26}^{35}ClN_4O_3S^+$ (M+H) $^{+}$ calcd. 437.1409, found 437.1417.

$(2S,3R)-2-[(\{4-Amino-5-[(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-(benzyloxy)methyl]-5H-pyrroloxymethyll[3,2-d]-pyrroloxymethyll[3,2-d]-py$

yl}methyl)amino]-4-(methylsulfanyl)butane-1,3-diol (*ent*-32). Compound *ent*-31 was converted into *ent*-32 in the same way as that described for enantiomer 32. The 1 H and 13 C NMR spectra were identical to those of enantiomer 32. ESI-HRMS for $C_{20}H_{28}N_{5}O_{3}S^{+}$ (M+H) $^{+}$ calcd. 418.1908, found 418.1904.

(2S,3R)-2-[({4-Amino-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)amino]-4-

(methylsulfanyl)butane-1,3-diol (*ent*-33). Compound *ent*-32 was converted into *ent*-33 in the same way described for the synthesis of enantiomer 33. The 1 H and 13 C NMR spectra were identical to those of enantiomer 33. [α] $_{D}^{20}$ +8.2 (c, 0.68, MeOH). ESI-HRMS for $C_{12}H_{20}N_5O_2S^+$ (M+H) $^{+}$ calcd. 298.1332, found 298.1330.

(2R,3R)-3-Azido-2,4-dihydroxybutyl methanesulfonate (35). A suspension of (2R,3R)-3-azidobutane-1,2,4-triol⁶³ (34, 1.0 g, 6.80 mmol) and dibutyltin oxide (1.93 g, 7.77 mmol) in toluene (60 mL) was heated under reflux in a Dean-Stark trap. After 30 min the resulting

clear solution was cooled to rt and methanesulfonyl chloride (1.0 mL, 12.95 mmol) was added. The solution was stirred overnight and then evaporated on to silica gel and the residue chromatographed (EtOAc-hexanes, 1:1) to give **35** as a pale yellow oil (1.05 g, 72%). ¹H NMR (300 MHz, CD₃OD): δ 4.36 (dd, J = 10.7, 3.2 Hz, 1H), 4.30 (dd, J = 10.7, 5.6 Hz, 1H), 3.94 (dd, J = 11.6, 3.6 Hz, 1H), 3.84 (m, 1H), 3.73 (dd, J = 11.6, 7.0 Hz, 1H), 3.56 (m, 1H), 3.13 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 72.6 (CH₂), 69.8 (CH), 65.9 (CH), 62.8 (CH₂), 37.3 (CH₃). ESI-HRMS for C₅H₁₁N₃NaO₅S⁺ (M+Na)⁺ calcd. 248.0312, found 248.0315.

(2*R*,3*R*)-2-Azido-4-(methylsulfanyl)butane-1,3-diol (36). The mesylate 35 (1.00 g, 4.44 mmol) was dissolved in dry DMF (12 mL), sodium thiomethoxide (0.62 g, 8.88 mmol) added and the mixture stirred for 2 h. H₂O (100 mL) was added and the mixture extracted with EtOAc (5 x 5 mL) then the combined extracts were dried, the solvent evaporated and the residue chromatographed (EtOAc-hexanes, 1:1) to give 36 as a pale yellow syrup (0.40 g, 51%). ¹H NMR (300 MHz, CDCl₃): δ 3.91-3.68 (m, 3H), 3.45 (m, 1H) 3.06 (d, J = 3.2 Hz, 1H), 2.80 (dd, J = 13.9, 3.3 Hz, 1H), 2.55 (dd, J = 13.9, 9.1 Hz, 1H), 2.36 (t, J = 5.7 Hz, 1H), 2.07 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 69.1 (CH), 65.8 (CH), 62.8 (CH₂), 38.9 (CH₂), 15.5 (CH₃). ESI-HRMS for C₅H₁₁N₃NaO₂S⁺ (M+Na)⁺ calcd. 200.0465, found 200.0467.

(2*R*,3*R*)-2-Amino-4-(methylsulfanyl)butane-1,3-diol (37). Lithium aluminium hydride (2M in THF, 1.79 mL, 3.58 mmol) was added to a solution of azide 36 (0.4 g, 2.26 mmol) in dry THF (12 mL) cooled in an ice bath. The solution was bought to room temperature and stirred for 1 h and then H₂O (0.5 mL) was added. The resulting slurry was concentrated to dryness on silica gel and the residue chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 8:2) to give 36 as a yellow oil (0.22 g, 65%). ¹H NMR (300 MHz, CD₃OD): δ 3.73 (dd, J = 10.8, 4.3 Hz, 1H), 3.69 (m, 1H), 3.51 (dd, J = 10.8, 7.0 Hz, 1H), 2.86 (ddd, J = 7.0, 5.7, 4.2 Hz, 1H), 2.76 (dd, J = 13.7, 4.2 Hz, 1H), 2.59 (dd, J = 13.7, 8.2 Hz, 1H), 2.13 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 73.1 (CH), 64.2 (CH₂), 57.3 (CH), 39.2 (CH₂), 16.0 (CH₃). ESI-HRMS for C₅H₁₄NO₂S⁺ (M+H)⁺ calcd. 152.0740, found 152.0734.

(2R,3R)-2-[({5-[(Benzyloxy)methyl]-4-chloro-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-

yl}methyl)amino]-4-(methylsulfanyl)butane-1,3-diol (38). A stirred solution of amine 37 (85 mg, 0.56 mmol), aldehyde 10 (170 mg, 0.56 mmol) and NaCNBH₃⁵³ (42.4 mg, 0.67 mmol) in methanol (5 mL) was brought to pH 7 by addition of HCl (2M in ether, 0.10 mL). After 3 h the solvent was evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 97:3) to give 38 as a yellow solid (149 mg, 61%). ¹H NMR (300 MHz, CD₃OD): δ 8.62 (s,1H), 7.91 (s, 1H), 7.27-7.17 (m, 5H), 5.90 (s, 2H), 4.56 (s, 2H), 4.04 (s, 2H), 3.90 (dt,

J = 9.5, 4.8 Hz, 1H), 3.76 (dd, J = 11.3, 4.6 Hz, 1H), 3.66 (dd, J = 11.3, 5.9 Hz, 1H), 2.81-2.71 (m, 2H) 2.61 (dd, J = 13.6, 7.8 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 153.0 (C), 150.5 (CH), 143.9 (C), 138.7 (CH), 138.5 (C), 129.3 (CH), 128.8 (CH), 128.7 (CH), 125.6 (C), 116.5 (C), 78.3 (CH₂), 71.7 (CH₂), 71.5 (CH), 62.5 (CH), 61.3 (CH₂), 41.3 (CH₂), 39.2 (CH₂), 16.1 (CH₃). ESI-HRMS for C₂₀H₂₆³⁵ClN₄O₃S⁺ (M+H)⁺ calcd. 437.1409, found 437.1407.

(2R,3R)-2- $[(\{4-Amino-5-[(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-$

yl}methyl)amino]-4-(methylsulfanyl)butane-1,3-diol (39). A solution of chloride **38** (120 mg, 0.28 mmol) in NH₃-EtOH solution (6M, 15 mL) was heated in a sealed tube at 130 °C for 48 h, cooled to rt, then the solvent evaporated. The residue was chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 93:7) to give **39** as a yellow oil (84 mg, 73%). ¹H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.47 (s, 1H), 7.33-7.23 (m, 5H), 5.63 (s, 2H), 4.56 (s, 2H), 3.97 (s, 2H), 3.91 (dt, J = 9.4, 4.7 Hz, 1H), 3.78 (dd, J = 11.3, 4.6 Hz, 1H), 3.68 (dd, J = 11.3, 5.9 Hz, 1H), 2.82 (m, 1H) 2.74 (dd, J = 13.5, 4.8 Hz, 1H) 2.62 (dd, J = 13.5, 7.9 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.8 (C), 151.5 (CH), 149.4 (C), 137.7 (C), 133.5 (CH), 129.5 (CH), 129.3 (CH), 129.2 (CH), 116.1 (C), 115.0 (C), 78.6 (CH₂), 71.6 (CH), 71.3 (CH₂), 62.5 (CH), 61.3 (CH₂), 41.5 (CH₂), 39.2 (CH₂), 16.1 (CH₃). ESI-HRMS for C₂₀H₂₈N₅O₃S⁺ (M+H)⁺ calcd. 418.1903, found 418.1898.

(2R,3R)-2-[({4-Amino-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)amino]-4-

(methylsulfanyl)butane-1,3-diol (40). Pd black (34 mg, 0.33 mmol) and hydrazine hydrate (55% in hydrazine, 0.75 mL) were added to a solution of compound 39 (34 mg, 0.081 mmol) in NH₃-MeOH (7M, 3 mL). After 0.5 h the mixture was filtered through a plug of Celite, the solvent evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 8:2) to give 40 as a pale yellow foam (14 mg, 61%). ¹H NMR (300 MHz, CD₃OD): δ 8.15 (s, 1H), 7.49 (s, 1H), 4.02 (s, 2H), 3.92 (dt, J = 9.2, 4.6 Hz, 1H), 3.78 (dd, J = 11.4, 4.7 Hz, 1H), 3.68 (dd, J = 11.4, 5.9 Hz, 1H), 2.84 (m, 1H), 2.73 (dd, J = 13.6, 4.8 Hz, 1H) 2.59 (dd, J = 13.6, 8.0 Hz, 1H) 2.09 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.1 (C), 150.8 (CH), 146.6 (C), 129.1 (CH), 115.4 (C), 114.8 (C), 71.4 (CH), 62.6 (CH), 61.2 (CH₂), 41.8 (CH₂), 39.1 (CH₂), 16.0 (CH₃). ESI-HRMS for C₁₂H₂₀N₅O₂S⁺ (M+H)⁺ calcd. 298.1333, found 298.1333.

(2S,3S)-3-Azido-2,4-dihydroxybutyl methanesulfonate (ent-35). (2R,3R)-3-Azidobutane-1,2,4-triol (ent-34)⁶³ was converted into ent-35 in the same way as that described for enantiomer 35. The 1 H and 13 C NMR spectra were identical to those of enantiomer 35. ESI-HRMS for $C_5H_{11}N_3O_2NaS^+$ (M+Na) $^+$ calcd. 248.0312, found 238.0308.

(2S,3S)-2-Azido-4-(methylsulfanyl)butane-1,3-diol (ent-36). Compound ent-35 was converted into ent-36 in the same way as that described for enantiomer 36. The 1 H and 13 C NMR spectra were identical to those of enantiomer 36. ESI-HRMS for $C_5H_{11}N_3O_2NaS^+$ (M+Na) $^{+}$ calcd. 200.0465, found 200.0466.

(2S,3S)-2-Amino-4-(methylsulfanyl)butane-1,3-diol (*ent*-37). Compound *ent*-36 was converted into *ent*-37 in the same way as that described for enantiomer 37. The 1 H and 13 C NMR spectra were identical to those of enantiomer 37. ESI-HRMS for $C_5H_{14}NO_2S^+$ (M+H) $^{+}$ calcd. 152.0740, found 152.0742

(2S,3S)-2-[($\{5$ -[(Benzyloxy)methyl]-4-chloro-5H-pyrrolo[3,2-d]pyrimidin-7-

yl}methyl)amino]-4-(methylsulfanyl)butane-1,3-diol (*ent*-38). Compound *ent*-37 was converted into *ent*-38 in the same way as that described for enantiomer 38. The 1 H and 13 C NMR spectra were identical to those of enantiomer 38. ESI-HRMS for $C_{20}H_{26}^{35}ClN_4O_3S^+$ (M+H) $^{+}$ calcd. 437.1409, found 437.1416.

$(2S,3S)-2-[(\{4-Amino-5-[(benzyloxy)methyl]-5H-pyrrolo[3,2-d]pyrimidin-7-$

yl}methyl)amino]-4-(methylsulfanyl)butane-1,3-diol (*ent*-39). Compound *ent*-38 was converted into *ent*-39 in the same way as that described for enantiomer 39. The 1 H and 13 C NMR spectra were identical to those of enantiomer 39. ESI-HRMS for $C_{20}H_{28}N_{5}O_{3}S^{+}$ (M+H) $^{+}$ calcd 418.1908, found 418.1903.

(2S,3S)-2-[({4-Amino-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)amino]-4-

(methylsulfanyl)butane-1,3-diol (*ent*-40). Compound *ent*-39 was converted into *ent*-40 in the same way as that described for enantiomer 40. The 1 H and 13 C NMR spectra were identical to those of enantiomer 40. ESI-HRMS for $C_{12}H_{20}N_{5}O_{2}S^{+}$ (M+H) $^{+}$ calcd. 298.1333, found 298.1334.

2-Amino-2-[(methylsulfanyl)methyl]propane-1,3-diol hydrochloride **(44)**. Methanesulfonyl chloride (0.43 mL, 5.46 mmol) was added dropwise to a stirred solution of tert-butyl N-[5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxan-5-yl]carbamate⁶⁴ (41, 1.03 g, 4.66 mmol) and Et₃N (1.52 mL, 10.9 mmol) in CH₂Cl₂ (10 mL) at 0 °C. The reaction was allowed to warm to rt and after 1.5 h the mixture was diluted with CH₂Cl₂, washed with H₂O then brine, dried and the solvent evaporated to yield *tert*-butyl [(methanesulfonyloxy)methyl]-2,2-dimethyl-1,3-dioxan-5-yl}carbamate (42, 1.35 g, 85%) as a pale yellow solid. To a solution of this material (0.566 g, 1.67 mmol), in DMF (3 mL) was added sodium thiomethoxide (0.292 g, 4.17 mmol) and after stirring at rt for 15 h, ethyl

acetate was added. The mixture was washed with aq. NaHCO₃ (sat., 3 x) then brine, dried and the solvent evaporated. The resulting pale yellow solid was chromatographed (EtOAchexanes, 1:5) to give *tert*-butyl N-{2,2-dimethyl-5-[(methylsulfanyl)methyl]-1,3-dioxan-5-yl}carbamate (**43**, 0.460 g, 95%) as a white solid. A solution of this material (2.64 g, 9.06 mmol) in MeOH (10 mL) was added to a solution of aq. HCl (37%, 8 mL) in MeOH (100 mL) and after 10 mins the solvent was evaporated and the oily residue chromatographed (CH₂Cl₂-MeOH-7 M NH₃ in MeOH, 5:2:1) to give the free base form of the product. Addition of aq. HCl (37%, 1 mL) in MeOH (5 mL) followed by evaporation of the solvent gave **44** as a colourless solid (1.37 g, 81%). ¹H NMR (300 MHz, D₂O): δ 3.83 (s, 4H), 2.97 (s, 2H), 2.28 (s, 3H). ¹³C NMR (75.5 MHz, DMSOd₆): δ 64.2 (2 x CH₂), 57.7 (C), 39.3 (CH₂), 17.3 (CH₃). ESI-HRMS for C₅H₁₄NO₂S⁺ (M-HCl+H)⁺ calcd. 152.0739, found 152.0740.

2-[({4-Amino-5-[(benzyloxy)methyl]-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)amino]-2-[(methylsulfanyl)methyl]propane-1,3-diol (46). A mixture of 36 (60.0 mg, 0.32 mmol), aldehyde 10 (97 mg, 0.32 mmol) and NaCNBH₃⁵³ (27.4 mg, 0.436 mmol) was stirred in MeOH (4 mL) for 15 h at rt. The solvent was evaporated and the residue chromatographed MeOH (CH_2Cl_2-7M) NH_3 in 10:1) to give *tert*-butyl *N*-{2,2-dimethyl-5-[(methylsulfanyl)methyl]-1,3-dioxan-5-yl}carbamate (45) as a yellow gum (110 mg, 79%). ESI-HRMS for C₂₀H₂₆³⁵ClN₄O₃S (M+H)⁺ calcd. 437.1414, found 437.1407. A portion of **45** (20.0 mg, 0.046 mmol) in NH₃-MeOH solution (7M, 3 mL) was stirred in a sealed pressure tube at 135 °C for 20 h. After cooling to rt the solvent was evaporated and the residue chromatographed (CHCl₃-7 M NH₃ in MeOH, 9:1 then 8:2) to give **46** (19.0 mg, 99%) as a yellow gum. 1 H NMR (500 MHz, CD₃OD): δ 8.15 (s, 1H), 7.47 (s, 1H), 7.33-7.21 (m, 5H), 5.65 (s, 2H), 4.58 (s, 2H), 3.91 (s, 2H), 3.67 (d, J = 11.4 Hz, 2H), 3.64 (d, J = 11.4 Hz, 2H), 2.75 (s, 2H), 2.16 (s, 3H). ¹³C NMR (125.7 MHz, CD₃OD): δ 152.8 (C), 151.5 (CH), 149.2 (C), 137.8 (C), 133.2 (CH), 129.5 (CH), 129.3 (CH), 129.2 (CH), 116.1 (C), 115.1 (C), 78.6 (CH₂), 71.4 (CH₂), 62.8 (2 x CH₂), 62.2 (C), 37.8 (CH₂), 35.9 (CH₂), 17.3 (CH₃). ESI-HRMS for $C_{20}H_{28}N_5O_3S^+$ (M+H)⁺ calcd. 418.1902, found 418.1908.

2-[({4-Amino-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)amino]-2-

[(methylsulfanyl)methyl]propane-1,3-diol (47). To a stirred suspension of 46 (75 mg, 0.18 mmol) and Pd-black (75 mg) in NH₃-MeOH solution (7M, 2 mL) was added hydrazine hydrate (55% in hydrazine, 0.5 mL) dropwise. After 1 h at rt the mixture was filtered through Celite, the solvent evaporated and the residue chromatographed (CHCl₃-7M NH₃ in MeOH,

9:1 then 8:2) to give **47** as a colourless crystalline solid (30 mg, 56%). ¹H NMR (500 MHz, DMSO d_6): δ 10.67 (s, exchanged D₂O, 1H), 8.07 (s, 1H), 7.40 (s, 1H), 6.71 (s, exchanged D₂O, 1H), 4.92 (s, exchanged D₂O, 1H), 3.79 (s, 2H), 3.42 (m, 4H), 3.32 (d, J = 10.9 Hz, exchanged D₂O, 3H), 2.62 (s, 2H), 2.08 (s, 3H). ¹³C NMR (125.7 MHz, DMSO d_6): δ 150.4 (C), 149.7 (CH), 145.2 (C), 125.6 (d, J = 20.5 Hz, s after D₂O exchange, CH), 114.6 (C), 113.9 (d, J = 17.5 Hz, s after D₂O exchange, C), 61.2 (CH₂), 60.2 (C), 36.8 (CH₂), 35.0 (CH₂), 16.7 (CH₃). ESI-HRMS for C₁₂H₂₀N₅O₂S⁺ (M+H)⁺ calcd. 298.1333, found 298.1329.

tert-Butyl N-[(2S)-2,3-dihydroxypropyl]carbamate (49). Benzyl($\{[(4S)-2,2-dimethyl-1]\}$ 1,3-dioxolan-4-yl]methyl})amine⁴⁸ (48, 1.5 g, 6.78 mmol) was dissolved in EtOH (30 mL), 10% Pd-C (200 mg) added and the mixture stirred under a hydrogen atmosphere at rt for 16 h. The mixture was filtered through Celite and the solvent evaporated to give [(4S)-2,2dimethyl-1,3-dioxolan-4-yl]methanamine as a colourless oil (840 mg). The ¹H NMR (300 MHz) was in agreement with that reported in the literature.⁶⁹ The oil was dissolved in ag. HCl (6M, 2 mL) and heated at 100 °C for 30 min. The solvent was evaporated to give (2S)-3aminopropane-1,2-diol hydrochloride as an oil (720 mg, 5.65 mmol). The ¹H (300 MHz) and ¹³C NMR(75.5 MHz) spectra were in agreement with those reported.⁶⁹ The HCl salt (0.71 g, 5.57 mmol) was dissolved in MeOH (20 mL) and Et₃N (1.5 mL, 11.1 mmol) added followed by di-tert-butyl dicarbonate (1.33 g, 6.1 mmol). The mixture was stirred at rt for 2 h then the solvent evaporated. The residue was chromatographed (CH₂Cl₂-MeOH, 92:8) to give crude 49 as a colourless gum contaminated with some Et₃NHCl. The products were dissolved in MeOH and stirred with Amberlyst A26 (OH) resin, filtered and the solvent evaporated to give pure **49** (0.849 g, 66%). The ¹H (300 MHz) and ¹³C NMR(75.5 MHz) spectra were in agreement with those reported.⁶⁵ $[\alpha]_D^{21}$ +7.8 (c 0.90, CHCl₃). Lit⁶⁵ $[\alpha]_D^{21}$ +6.7 (c 0.50, CHCl₃). ESI-HRMS for C₈H₁₇NNaO₄⁺ (M+Na)⁺ calcd. 214.1050, found 214.1048.

tert-Butyl N-[(2R)-2-hydroxy-2-(methylsulfanyl)ethyl]carbamate (50). p-Toluenesulfonyl chloride (0.812 g, 4.26 mmol) was added to a solution of 49 (0.74 g, 3.87 mmol) in dry pyridine (15 mL) at 0 °C. After 15 mins the solution was warmed to rt and stirred for 2 h. More p-toluenesulfonyl chloride (400 mg) was added and the mixture stirred for 16 h. An additional quantity of p-toluenesulfonyl chloride (800 mg) was added and the mixture stirred a further 24 h. The solvent was evaporated and the residue chromatographed (EtOAc-hexanes, 1:1, then EtOAc) to give first the intermediate tosylate (490 mg) then recovered alcohol (49) (223 mg). The latter was dissolved in dry pyridine (10 mL) and p-

toluenesulfonyl chloride (446 mg) added and the mixture stirred for 16 h at rt. Work-up and chromatography as above gave another 179 mg of tosylate. The combined tosylate products (625 mg 1.8 mmol) were dissolved in DMF (5 mL) cooled in an ice-bath then NaSMe (257 mg, 3.6 mmol) added. The mixture was stirred at rt for 2 h then the solvent evaporated and the residue chromatographed (EtOAc-hexanes, 2:8) to give 50 as a colourless oil (0.189 g, 22%). $[\alpha]_{D}^{21}$ -9.2 (c 0.65, MeOH). ¹H NMR (300 MHz, CDCl₃): δ 5.02 (bs, exchanged to D₂O, 1H), 3.80 (bm, 1H), 3.42 (bm, 1H), 3.22 (bs, exchanged to D₂O, 1H), 3.14 (m, 1H), 2.65 (dd, J = 13.8, 4.6 Hz, 1H), 2.51 (dd, J = 13.8, 8.3 Hz, 1H), 2.12 (s, 3H), 1.45 (s, 9H).¹³C NMR (75.5 MHz, CDCl₃): δ 156.7 (C), 79.7 (C), 68.6 (CH), 45.2 (CH₂), 38.9 (CH₂), 28.3 (CH₃), 15.5 (CH₃). ESI-HRMS for C₉H₁₉NNaO₃S⁺ (M+Na)⁺ calcd. 244.0978, found 244.0975. The column was further eluted with EtOAc to give the by-product (5S)-5-[(methylsulfanyl)methyl]-1,3-oxazolidin-2-one (51) as a yellow oil (88 mg, 16%). ¹H NMR (300 MHz, CDCl₃): δ 6.46 (bs, exchanged to D₂O, 1H), 4.80 (m, 1H), 3.74 (t, J = 8.7 Hz, 1H), 3.44 (dd, J = 8.7, 6.5 Hz, 1H), 2.87 (dd, J = 14.0, 5.1 Hz, 1H), 2.76 (dd, J = 14.0, 7.2 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 159.8 (C), 75.7 (CH), 45.1 (CH₂), 37.6 (CH₂), 16.2 (CH₃). ESI-HRMS for $C_5H_{10}NO_2S^+$ (M+H)⁺ calcd. 148.0427, found 148.0421.

(({5-[(Benzyloxy)methyl]-4-chloro-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)[(2*S*)-2-hydroxy-3-(methylsulfanyl)propyl]amine (52). Compound 50 (0.18 g, 0.813 mmol) was dissolved in a mixture of MeOH (3 mL) and aq. HCl (37%, 2 mL) and after 5 min the solvent was evaporated. The residue of was dissolved in MeOH (8 mL) then aldehyde 10 (0.270 g, 0.895 mmol) and NaCNBH₃⁵³ (0.066 g, 1.057 mmol) were added and the mixture stirred at rt for 60 h. The solvent was evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃-MeOH 98:2) to give 52 as a colourless gum (0.146 g, 44%). ¹H NMR (300 MHz, CD₃OD): δ 8.62 (s, 1H), 7.89 (s, 1H), 7.21 (m, 5H), 5.90 (s, 2H), 4.56 (s, 2H), 4.03 (d, J = 13.8 Hz, 1H), 3.96 (d, J = 13.8 Hz, 1H), 3.87 (m, 1H), 2.85 (dd, J = 12.1, 3.5 Hz, 1H), 2.63 (dd, J = 12.1, 8.3 Hz, 1H), 2.55 (d, J = 6.4 Hz, 2H), 2.09 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 153.0 (C), 150.6 (CH), 143.9 (C), 138.7 (CH), 138.5 (C), 129.3 (CH), 128.8 (CH), 128.7 (CH), 125.5 (C), 115.6 (C), 78.3 (CH₂), 71.7 (CH₂), 70.3 (CH), 54.6 (CH₂), 43.1 (CH₂), 40.3 (CH₂), 16.2 (CH₃). ESI-HRMS for (M+H)⁺ C₁₉H₂₄³⁵ClN₄O₂S⁺ calcd. 407.1304, found 407.1305.

5-[(Benzyloxy)methyl]-7-({[(2S)-2-hydroxy-3-(methylsulfanyl)propyl]amino}methyl)- 5H-pyrrolo[3,2-d]pyrimidin-4-amine (53). Compound **52** (0.124 g, 0.305 mmol) was stirred in a solution of NH₃-MeOH (7M, 25 mL) for 24 h in a sealed tube at 135 °C (oil bath).

After cooling to rt the solvent was evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 98:2) to give **53** as a colourless gum (0.085 g, 72%). ¹H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.47 (s, 1H), 7.28 (m, 5H), 5.66 (s, 2H), 4.58 (s, 2H), 3.97 (d, J = 13.8 Hz, 1H), 3.91-3.83 (m, 2H), 2.84 (dd, J = 12.2, 3.5 Hz, 1H), 2.62 (dd, J = 12.1, 8.4 Hz, 1H), 2.56 (d, J = 6.4 Hz, 2H), 2.09 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.8 (C), 151.6 (CH), 149.4 (C), 137.7 (C), 133.5 (CH), 129.5 (CH), 129.3 (CH), 129.2 (CH), 116.0 (C), 114.2 (C), 78.6 (CH₂), 71.3 (CH₂), 70.3 (CH), 54.6 (CH₂), 43.3 (CH₂), 40.4 (CH₂), 16.2 (CH₃). ESI-HRMS for C₁₉H₂₆N₅O₂S⁺ (M+H)⁺ calcd. 388.1802, found 388.1808.

7-({[(2S)-2-Hydroxy-3-(methylsulfanyl)propyl]amino}methyl)-5H-pyrrolo[3,2-

d]**pyrimidin-4-amine** (**54**). Pd black (80 mg) and hydrazine hydrate (55% in hydrazine, 1.2 mL) were added to a stirred solution of **53** (0.08 g, 0.206 mmol) in NH₃-MeOH solution (7M, 8 mL). After 40 min the solids were filtered off and the solvent evaporated. The residue was chromatographed (CH₂Cl₂-7M NH3 in MeOH, 85:15) to give **54** as a colourless solid (0.042 g, 76%). [α] $_{\rm D}^{20}$ -12.4 (c, 0.36, MeOH). 1 H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.48 (s, 1H), 4.00 (d, J = 13.5 Hz, 1H), 3.92-3.84 (m, 2H), 2.85 (dd, J = 12.2, 3.5 Hz, 1H), 2.65 (dd, J = 12.2, 8.5 Hz, 1H), 2.55 (d, J = 6.5 Hz, 2H), 2.10 (s, 3H). 13 C NMR (75.5 MHz, CD₃OD): δ 152.1 (C), 150.9 (CH), 146.6 (C), 129.1 (CH), 115.4 (C), 114.2 (C), 70.2 (CH), 54.5 (CH₂), 43.5 (CH₂), 40.4 (CH₂), 16.1 (CH₃). ESI-HRMS for C₁₁H₁₈N₅OS⁺ (M+H)⁺ calcd. 268.1227, found 268.1236.

(\pm)-Benzyl N-{[(5R/S,6R/S)-6-hydroxy-2,2-dimethyl-1,3-dioxepan-5-

yl]methyl]carbamate [(±)-57]. A mixture of *N*-benzylhydroxylamine hydrochloride (22.4 g, 140 mmol) and NaOAc (15.36 g, 187 mmol) in EtOH (120 mL) was stirred at rt for 15 mins and then aq. formaldehyde (37%, 20.91 mL, 281 mmol) was added and the resulting mixture stirred for 30 mins. 2,2-Dimethyl-4,7-dihydro-2*H*-1,3-dioxepine⁶⁶ (55, 12 g, 94 mmol) was added and the mixture was stirred and heated under reflux for 6 h before evaporating to dryness. The residue was partitioned between CHCl₃ and H₂O with the aq. phase adjusted to pH 8 with aq. NaOH. The organic phase was separated and washed with aq. NaHCO₃ (sat.) then dried and the solvent evaporated to a syrup. Chromatography (EtOAc-hexanes, 1:2, then 1:1) gave (±)-(5'a*R*/*S*,10'a*R*/*S*)-8',8'-dimethyl-1',3',4',5'a,6',8',10',10'a-octahydro-5',7',9'-trioxa-4'-azaspiro[benzene-1,2'-heptalene] [(±)-56] as a yellow solid (10.47 g, 43%). To a solution of this material (10.4 g, 39.5 mmol) in EtOH (150 mL) was added 10% Pd/C (2.5 g) and the mixture was stirred under a hydrogen atmosphere for 2 days. The solids were filtered off and the solvent evaporated. The residue was dissolved in MeOH (100 mL), cooled in an ice bath

then Et₃N (11.01 mL, 79 mmol) and benzyl chloroformate (7.3 mL, 51.3 mmol) added. After stirring at rt for 30 mins, CHCl₃ was added and the solution was washed with H₂O then dried and the solvent evaporated and the resulting residue triturated with hexanes to give the carbamate (±)-**57** (7.73 g, 63%) as a white solid which was recrystallized from EtOH. M.P. 123-124 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.28 (m, 5H), 5.31 (bt, J = 5.5 Hz, 1H), 5.08 (s, 2H), 3.83-3.61 (m, 4H), 3.38 (dd, J = 12.5, 2.4 Hz, 1H), 3.33-3.14 (m, 2H), 3.00 (bd, J = 7.6 Hz, 1H), 1.90 (bm, 1H), 1.33, 1.32 (2s, 6H); ¹³C NMR (75.5 MHz, CDCl₃): δ 156.8 (C), 136.4 (C), 128.5 (CH), 128.1 (2 x CH), 101.7 (C), 68.7 (CH), 66.7 (CH₂), 64.2 (CH₂), 59.4 (CH₂), 45.9 (CH), 39.5 (CH₂), 24.8 (CH₃), 24.5 (CH₃). Anal. calcd for C₁₆H₂₃NO₅: C, 62.12, H, 7.49; N, 4.53. Found C, 62.41, H, 7.32, N, 4.54.

(±)-Benzyl $N-\{[(4R/S,5R/S)-4-(hydroxymethyl)-2,2-dimethyl-1,3-dioxan-5$ yl]methyl}carbamate $[(\pm)$ -58] and (\pm) -benzyl N-[(2R/S)-2-[(4R/S)-2,2-dimethyl-1,3dioxolan-4-yl]-3-hydroxypropyl]carbamate $[(\pm)$ -59]. Camphorsulfonic acid (0.069 g, 0.296 mmol) was added to a solution of (±)-57 (1.83 g, 5.92 mmol) in acetone (50 mL) and the solution was stirred at rt for 40 mins. Chloroform was added and the solution was washed with aq. NaHCO₃ (sat.) then dried and the solvent evaporated to leave a syrup. Chromatography (EtOAc-hexanes 1:1 then 3:1) gave firstly (±)-59 (0.86 g, 44%) as a syrup. ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.28 (m, 5H), 5.36 (bt, J = 5.0 Hz, 1H), 5.09 (s, 2H), 4.14-4.03 (m, 2H), 3.72 (bt, J = 5.1 Hz, 3H), 3.27 (bt, J = 6.2 Hz, 2H), 3.05 (bt, J = 5.2 Hz, 1H), 1.85 (m, 1H), 1.39 (s, 3H), 1.33 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 157.2 (C), 136.3 (C), 128.5 (CH), 128.1 (CH), 128.0 (CH), 108.8 (C), 75.9 (CH), 67.5 (CH₂), 66.9 (CH₂), 60.8 (CH₂), 43.8 (CH), 39.5 (CH₂), 26.5 (CH₃), 25.2 (CH₃). Further elution gave (±)-**58** (0.942 g, 52%) as a syrup. ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.29 (m, 5H), 5.19 (bt, J =5.8 Hz, 1H), 5.08 (s, 2H), 3.81 (dd J = 11.7, 5.3 Hz, 1H), 3.75-3.58 (m, 4H), 3.17-3.05 (m, 2H) 2.49 (bt, J = 5.0 Hz, 1H), 1.98 (bm, 1H), 1.40 (s, 3H), 1.37 (s, 3H). ¹³C NMR (75.5) MHz, CDCl₃): δ 156.6 (C), 136.3 (C), 128.5 (CH), 128.1 (CH), 128.0 (CH), 98.6 (C), 72.0 (CH), 66.8 (CH₂), 63.8 (CH₂), 61.8 (CH₂), 39.8 (CH₂), 36.3 (CH), 24.5 (CH₃), 19.8 (CH₃).

(\pm)-Benzyl N-[(2S/R)-2-[(4R/S)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-(methylsulfanyl)propyl]carbamate [(\pm)-60]. Methanesulfonyl chloride (0.274 mL, 3.54 mmol) was added to a solution of (\pm)-59 (0.843 g, 2.73 mmol) and i-Pr₂NEt (1.35 mL, 8.18 mmol) in dry CH₂Cl₂ (30 mL) and the resulting solution was stirred at rt for 15 mins. The mixture was washed successively with H₂O, aq. HCl (5%), then aq. NaHCO₃ (sat.), dried and the solvent evaporated. The residue was dissolved in DMF (15 mL) and sodium

thiomethoxide (0.57 g, 8.18 mmol) added. After stirring the mixture at rt for 1 h, toluene was added and the mixture was washed with H₂O (x 2), dried and the solvent evaporated. The residue was chromatographed (EtOAc-hexanes, 1:2) to give (\pm)-**60** as a syrup (0.77 g, 83%). ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.28 (m, 5H), 5.21 (bt, $J \sim 5.0$ Hz, 1H), 5.10 (s, 2H), 4.16-4.06 (m, 2H), 3.74 (m, 1H), 3.33 (t, J = 5.8 Hz, 2H), 2.74 (dd, J = 13.3, 4.4 Hz, 1H), 2.51 (dd, J = 13.3, 8.3 Hz, 1H), 2.10 (s, 3H), 1.98 (bm, 1H), 1.40 (s, 3H), 1.33 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 156.5 (C), 136.5 (C), 128.5 (CH), 128.1 (2 x CH), 108.9 (C), 76.4 (CH), 67.2 (CH₂), 66.7 (CH₂), 41.4 (CH + CH₂), 33.2 (CH₂), 26.5 (CH₃), 25.1 (CH₃), 16.6 (CH₃).

(±)-(2*S/R*)-2-[(4*R/S*)-2,2-Dimethyl-1,3-dioxolan-4-yl]-3-(methylsulfanyl)propan-1-amine [(±)-61]. A solution of (±)-60 (50 mg, 0.15 mmol) and potassium hydroxide (248 mg, 4,42 mmol) in *i*-PrOH (2 mL) was heated under reflux for 2 h. Silica gel was added and the solvent evaporated and the residue chromatographed (CH₂Cl₂-MeOH, 95:5, then CH₂Cl₂- 7M NH₃ in MeOH, 93:7) to give (±)-61 as a syrup (25 mg, 83%). ¹H NMR (300 MHz, CDCl₃): δ 4.21 (q, J = 6.6 Hz, 1H), 4.06 (dd, J = 6.3, 8.1 Hz, 1H), 3.70 (t, J = 7.7 Hz, 1H); 2.82-2.74 (m, 3H); 2.61 (dd, J = 13.0, 8.0 Hz, 1H); 2.13 (s, 3H); 1.80 (m, 1H), 1.48 (bs, 2H), 1.41 (s, 3H), 1.35 (s, 3H,). ¹³C NMR (75.5 MHz, CDCl₃): δ 108.6 (C), 76.5 (CH), 67.5 (CH₂), 44.1 (CH), 41.9 (CH₂), 33.3 (CH₂), 26.5 (CH₃), 25.3 (CH₃), 16.4 (CH₃).

[($\{5\text{-}[(Benzyloxy)methyl]-4\text{-}chloro-5H\text{-}pyrrolo[3,2-d]pyrimidin-7-yl\}methyl)[(2S/R)-2-[(4R/S)-2,2\text{-}dimethyl-1,3\text{-}dioxolan-4-yl]-3\text{-}(methylsulfanyl)propyl]amine} [(±)-62].$ Sodium triacetoxyborohydride⁶⁷ (152 mg, 0.68 mmol) was added to a solution of (±)-61 (70 mg, 0.34 mmol) and aldehyde 10 (129 mg, 0.34 mmol) in 1,2-dichloroethane (5 mL) at rt. After stirring for 40 min aq. NaHCO₃ (sat., 10 mL) was added to the vigorously stirred mixture then the organic layer was separated, dried and the solvent evaporated. The residue was chromatographed CHCl₃-EtOAc-MeOH, 5:2:1) to give (±)-62 as a colourless oil (107 mg, 64%). 1 H NMR (300 MHz, CDCl₃): δ 8.72 (s, 1H), 7.53 (s, 1H), 7.35-7.21 (m, 5H), 5.82 (s, 2H), 4.53 (s, 2H), 4.18 (q, J = 6.7 Hz, 1H), 4.04 (dd, J = 8.1, 6.3, Hz, 1H), 4.00 (s, 2H), 3.69 (t, J = 7.8 Hz, 1H), 2.83-2.67 (m, 3H), 2.61 (dd, J = 13.1, 7.8, Hz, 1H), 2.09 (s, 3H), 2.07-1.89 (m, 2H), 1.38 (s, 3H), 1.33 (s, 3H). 13 C NMR (75.5 MHz, CDCl₃): δ 151.8, 149.9, 142.4, 136.4, 135.0, 128.5, 128.1, 127.6, 124.4, 116.3, 108.5, 76.7, 76.5, 70.4, 67.6, 49.4, 43.4, 42.0, 34.1, 26.6, 25.3, 16.5. ESI-HRMS for C₂₄H₃₂ 35 ClN₄O₃S⁺ (M+H)⁺ calcd. 491.1879, found 491.1859.

({4-Azido-5-[(benzyloxy)methyl]-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)[(2*S/R*)-2-[(4*R/S*)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-(methylsulfanyl)propyl]amine [(±)-63]. Sodium azide (50 mg, 0.77 mmol) was added to a solution of (±)-62 (100 mg, 0.20 mmol) in dry DMF (3 mL) and the mixture was heated at 90 °C for 1 h. After cooling the reaction mixture to rt the solvent was evaporated and the residue was suspended in CHCl₃/MeOH and concentrated onto silica gel. The residue was chromatographed (EtOAc, then CHCl₃-MeOH, 5:1) to give (±)-63 as a colourless oil (101 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ 9.38 (s, 1H), 7.55 (s, 1H), 7.30-7.15 (m, 5H), 6.05 (s, 2H), 4.64 (s, 2H), 4.20 (q, J = 6.7, Hz, 1H), 4.14-4.00 (m, 3H), 3.71 (t, J = 7.7 Hz, 1H), 2.98-2.69 (m, 3H), 2.62 (dd, J = 13.1, 7.8, Hz, 1H), 2.24 (bs, 1H), 2.10 (s, 3H), 2.07-1.91 (m, 1H), 1.38 (s, 3H), 1.33 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 141.7, 138.3, 136.3, 131.1, 129.0, 128.2, 127.9, 127.5, 119.7, 113.4, 108.5, 77.9, 76.7, 71.4, 67.6, 49.3, 43.5, 41.9, 34.1, 26.5, 25.2, 16.4. ESI-HRMS for C₂₄H₃₂N₇O₃S⁺ (M+H)⁺ calcd. 498.2282, found 498.2271.

5-[(Benzyloxy)methyl]-7-({[(2S/R)-2-[(4R/S)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-(methylsulfanyl)propyl]amino}methyl)-5*H*-pyrrolo[3,2-*d*]pyrimidin-4-amine $[(\pm)-64].$ Trimethylphosphine (1.0M in THF, 0.5 mL, 0.50 mmol) was added to a solution of (±)-63 (90 mg, 0.18 mmol) in THF (2 mL) at rt and the mixture stirred for 1.5 h. Further trimethyl phosphine (1.0M in THF, 0.3 mL, 0.30 mmol) was added then after 2 h aq. NH₄OH (28%, 1.5 mL) was added and the mixture stirred for an additional 15 min. The solvent was evaporated and the residue chromatographed (CH₂Cl₂-7M. NH₃ in MeOH, 15:1) to give (±)-**64** as a colourless oil (78 mg, 91%). ¹H NMR (300 MHz, CDCl₃): δ 8.38 (s, 1H), 7.42-7.33 (m, 3H), 7.32-7.24 (m, 2H), 7.11 (s, 1H), 5.81 (bs, exchanged to D₂O, 2H), 5.49 (s, 2H), 4.56 (s, 2H), 4.19 (q, J = 6.9 Hz, 1H), 4.05 (dd, J = 8.1, 6.3, Hz, 1H), 3.95 (s, 2H), 3.70 (t, J = 7.7Hz, 1H), 2.85-2.68 (m, 3H), 2.62 (dd, J = 13.1, 7.6, Hz, 1H), 2.21 (bs, exchanged to D₂O, 1H), 2.10 (s, 3H), 2.03-1.90 (m, 1H), 1.38 (s, 3H), 1.33 (s, 3H), ¹³C NMR (75.5 MHz, $CDCl_3$): δ 151.3, 150.9, 149.5, 135.4, 130.1, 128.7, 128.6, 128.3, 115.3, 114.9, 108.5, 76.8, 76.7, 69.8, 67.7, 49.3, 43.6, 42.0, 34.2, 26.6, 25.4, 16.5 ESI-HRMS for $C_{24}H_{34}N_5O_3S^+$ $(M+H)^{+}$ calcd. 472.2377, found 472.2365.

(2R/S,3S/R)-4-[({4-Amino-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}methyl)amino]-3-[(methylsulfanyl)methyl]butane-1,2-diol trifluoroacetate salt [(±)-65]. A solution of (±)-64 (78 mg, 0.16 mmol) in trifluoroacetic acid-H₂O (9:1 2.0 mL) was allowed to stand at rt for 10 min then the solvent was evaporated. A portion (70 mg, 0.11 mmol) was dissolved in NH₃-MeOH solution (7M, 5 mL) and Pd-black (95 mg) was added, followed by hydrazine hydrate (55% in hydrazine, 0.5 mL). After 15 min, more Pd-black (101 mg) was added then after 45 min the mixture was filtered through Celite and the residue washed with MeOH. The combined filtrates were evaporated and the residue was triturated with CHCl₃ (5 mL). After decanting the solvent (\pm)-65 was obtained as a colourless oil after drying (57 mg, 100%). ¹H NMR (500 MHz, D₂O): δ 8.40 (s, 1H), 7.92 (s, 1H), 4.48 (d, J = 14.4 Hz, 1H), 4.45 (d, J = 14.4 Hz, 1H), 3.89 (dt, J = 6.1, 4.3 Hz, 1H), 3.63 (dd, J = 11.9, 4.6 Hz, 1H), 3.59 (dd, J = 11.9, 6.2 Hz, 1H), 3.35 (dd, J = 13.0, 7.1 Hz, 1H), 3.31 (dd, J = 13.0, 5.4 Hz, 1H), 2.70 (dd, J = 13.8, 4.7 Hz, 1H), 2.48 (dd, J = 13.8, 9.4 Hz, 1H), 2.26 (m, 1H), 2.05 (s, 3H). ¹³C NMR (125.7 MHz, D₂O): δ 163.6 (q, J = 36 Hz), 151.0, 145.4, 138.6, 134.7, 117.0 (q, J = 292 Hz), 113.5, 103.5, 72.3, 62.8, 48.1, 41.5, 38.5, 32.1, 15.1. ESI-HRMS for C₁₃H₂₂N₅O₂S⁺ (M-CF₃CO₂H+H)⁺ calcd. 312.1489, found 312.1494.

(\pm) -[(2S/R)-2-[(4R/S)-2,2-Dimethyl-1,3-dioxolan-4-yl]-3-

(methylsulfanyl)propyl](methyl)amine [(\pm)-66] Sodium hydride (60%, 34.6 mg, 0.87 mmol) was added to a solution of (\pm)-60 (210 mg, 0.62 mmol) in dry THF (5 mL) then CH₃I (0.077 mL, 1.24 mmol) added and the mixture was stirred at rt for 30 mins. Chloroform was added to the mixture which was then washed with H₂O, dried and the solvent evaporated. The residue was dissolved in *i*-PrOH (8 mL) and KOH (1.0 g, 17.8 mmol) added. The solution was heated under reflux for 5 h, silica gel was added and the solvent evaporated. The residue was chromatographed (CH₂Cl₂-MeOH, 95:5 then CH₂Cl₂-7M NH₃ in MeOH, 93:7) to give (\pm)-66 as a syrup (105 mg, 77%). ¹H NMR (300 MHz, CDCl₃): δ 4.19 (q, J = 6.7 Hz, 1H), 4.06 (dd, J = 8.1, 6.3 Hz, 1H), 3.70 (dd, J = 8.0, 7.3 Hz, 1H), 2.76 (dd, J = 13.1, 4.4 Hz, 1H), 2.70-2.56 (m, 3H), 2.42 (s, 3H), 2.12 (s, 3H), 1.92 (m, 1H), 1.40 (s, 3H), 1.34 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 108.6 (C), 76.7 (CH), 67.6 (CH₂), 52.2 (CH₂), 41.8 (CH), 36.8 (CH₃), 34.1 (CH₂), 26.6 (CH₃), 25.3 (CH₃), 16.4 (CH₃).

(\pm) -7- $(\{[(3S/R)-3-[(4R/S)-2,2-Dimethyl-1,3-dioxolan-4-yl]-4-$

(methylsulfanyl)butyl]amino}methyl)-5*H*-pyrrolo[3,2-*d*]pyrimidin-4-amine [(±)-68]. 9-Deazaadenine (73 mg, 0.55 mmol), (±)-66 (80 mg, 0.37 mmol) and aq. formaldehyde (37%, 044 mL, 0.55 mmol) were stirred for 1 h in a mixture of 1,4-dioxane (2 mL) and H₂O (0.5 mL) at 90 °C (bath temp). The reaction mixture was cooled to rt and NH₃ in MeOH solution (7M, 2.5 mL) was added and the resulting reaction left to stir for a further 1 h. The solvent was evaporated and the residue chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 9:1 then CH₂Cl₂-7M NH₃ in MeOH, 8:2) to afford (±)-67 as a syrup (110 mg) which by ¹H NMR was contaminated with paraformaldehyde. A portion of crude (±)-67 (65 mg) was dissolved in

MeOH (5 mL) and aq. HCl (37%, 0.5 mL) added. The solvent was evaporated and the residue dissolved in more aq. HCl (37%, 0.5 mL) then the solvent evaporated again. The residue was chromatographed (CH₂Cl₂-7M NH₃ in MeOH, 85:15 then CH₂Cl₂-7M NH₃ in MeOH, 8:2) to give (±)-**68** as a syrup (35 mg, 61%). 1 H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.49 (s, 1H), 3.84 (d, J = 13.5 Hz, 1H), 3.72-3.63 (m, 2H), 3.54 (d, J = 4.8 Hz, 2H), 2.78-2.66 (m, 2H), 2.53 (dd, J = 12.8, 3.8 Hz, 1H), 2.39 (dd, J = 13.1, 8.1 Hz, 1H), 2.28 (s, 3H), 2.14 (m, 1H), 2.08 (s, 3H). 13 C NMR (75.5 MHz, CD₃OD): 152.1 (C), 151.0 (CH), 147.2 (C), 130.2 (CH), 115.2 (C), 112.5 (C), 75.0 (CH), 65.3 (CH₂), 59.3 (CH₂), 51.6 (CH₂), 42.3 (CH₃), 40.6 (CH), 35.6 (CH₂), 16.2 (CH₃). ESI-HRMS for C₁₄H₂₃N₅O₂S⁺ (M+H)⁺ calcd, 326.1646, found 312.1650.

(±)-Benzyl N-{[(4R/S,5R/S)-2,2-dimethyl-4-[(methylsulfanyl)methyl]-1,3-dioxan-5-yl]methyl}carbamate [(±)-69]. Alcohol (±)-58 (0.884 g, 2.86 mmol) was converted into syrupy (±)-69 (0.839 g, 86%) in the same way as that described for the preparation of (±)-60. 1 H NMR (300 MHz, CDCl₃): 7.36-7.28 (m, 5H), 5.09 (s, 2H), 5.02 (bt, J = 6.2 Hz, 1H), 3.85-3.76 (m, 2H), 3.62 (t, J = 10.6 Hz, 1H), 3.24-3.06 (m, 2H), 2.77 (dd, J = 13.8, 2.4 Hz, 1H), 2.63 (dd, J = 13.8, 6.4 Hz, 1H), 2.15 (s, 3H), 1.99 (bm, 1H), 1.40 (s, 3H), 1.37 (s, 3H). 13 C NMR (75.5 MHz, CDCl₃): δ 156.5 (C), 136.3 (C), 128.5 (CH), 128.1 (CH), 128.0 (CH), 98.7 (C), 71.9 (CH), 66.8 (CH₂), 61.9 (CH₂), 40.0 (CH₂), 39.4 (CH), 37.9 (CH₂), 28.5 (CH₃), 19.8 (CH₃), 16.8 (CH₃).

(\pm) -{[(4R/S,5R/S)-2,2-Dimethyl-4-[(methylsulfanyl)methyl]-1,3-dioxan-5-

yl]methyl}(methyl)amine [(±)-**70**]. Lithium aluminium hydride in THF (2.0M 1.2 mL, 2.42 mmol) was added to a solution of (±)-**69** (82 mg, 0.242 mmol) in dry THF (1.5 mL) and stirred at rt for 18 h. Water (0.12 mL), aq. NaOH (15%, 0.12 mL) and H₂O (0.36 mL) were added successively. The resulting mixture was filtered, the solids were washed with warm EtOAc and the filtrate was evaporated. The residue was chromatographed (CH₂Cl₂-MeOH, 95:5 then CH₂Cl₂-7M NH₃ in MeOH, 95:5) to give (±)-**70** as a syrup (30 mg, 57%). ¹H NMR (300 MHz, CDCl₃): δ 3.91 (dd, J = 11.7, 5.3 Hz, 1H), 3.84 (ddd, J = 9.9, 7.0, 3.0 Hz, 1H), 3.69-3.62 (m, 2H), 2.82 (dd, J = 13.8, 2.9, Hz, 1H), 2.64 (dd, J = 13.8, 6.9 Hz, 1H), 2.55 (dd, J = 12.0, 4.7, Hz, 1H), 2.44-2.38 (m, 4H), 2.18 (s, 3H), 1.95 (m, 1H), 1.44 (s, 3H), 1.39 (s, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 98.4 (C), 73.2 (CH), 62.9 (CH₂), 51.1 (CH₂), 38.8 (CH), 38.1 (CH₂), 36.9 (CH₃), 28.9 (CH₃), 19.6 (CH₃), 16.9 (CH₃).

 $(\pm)-7-[(\{[(4R/S,5R/S)-2,2-Dimethyl-4-[(methylsulfanyl)methyl]-1,3-dioxan-5-yl]methyl\}(methyl)amino)methyl]-5H-pyrrolo[3,2-d]pyrimidin-4-amine [(\pm)-71]. A$

mixture of (\pm)-**70** (30 mg, 0.14 mmol), 9-deazaadenine (27.5 mg, 0.21 mmol) and aq. formaldehyde (37%, 15.9 µL, 0.21 mmol) in 1,4-dioxane (2 mL) and H₂O (0.5 mL) was heated at 85 °C for 15 min, cooled to rt and NH₃ in MeOH solution (7M, 2.5 mL) added. The solution was allowed to stand at rt for 3 days then the solvent evaporated. Chromatography of the residue (CH₂Cl₂-7M NH₃ in MeOH, 9:1) gave (\pm)-**71** as a syrup (34 mg, 68%). ¹H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.45 (s, 1H), 3.86 (dd, J = 11.9, 5.2, Hz, 1H) 3.73-3.65 (m, 3H), 3.52 (dd, J = 11.7, 10.6, Hz, 1H), 2.79 (dd, J = 14.0, 2.5, Hz, 1H), 2.53 (dd, J = 14.0, 7.1, Hz, 1H), 2.32 (dd, J = 12.7, 5.5, Hz, 1H), 2.24 (s, 3H), 2.16 (dd, J = 12.4, 8.1, Hz, 1H), 2.06 (s, 3H), 2.01 (m, 1H), 1.36 (s, 3H), 1.31 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.1 (C), 150.9 (CH), 147.2 (C), 130.1 (CH), 115.2 (C), 112.9 (C), 99.6 (C), 75.4 (CH), 64.2 (CH₂), 56.8 (CH₂), 51.9 (CH₂), 43.1 (CH₃), 38.8 (CH₂), 37.8 (CH), 29.4 (CH₃), 19.9 (CH₃) 16.9 (CH₃).

(\pm) -(2R/S,3R/S)-2-{[({4-Amino-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-

yl}methyl)(methyl)amino]methyl}-4-(methylsulfanyl)butane-1,3-diol [(±)-72]. Aqueous hydrochloric acid (37%, 0.5 mL) was added to a solution of (±)-71 (34 mg, 0.093 mmol) in MeOH (2 mL) and the solution was allowed to stand at rt for 2 h, then the solvent was evaporated. Chromatography (CH₂Cl₂-7M NH₃ in MeOH, 85:15 then 75:25) gave (±)-72 as a syrup (24 mg, 79%). 1 H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.49 (s, 1H), 3.83-3.75 (m, 3H), 3.67 (dd, J = 10.9, 5.0 Hz, 1H), 3.56 (dd, J = 10.8, 7.1 Hz, 1H), 2.64 (d, J = 7.2 Hz, 2H), 2.57 (dd, J = 13.6, 4.6 Hz, 1H), 2.41 (dd, J = 13.5, 8.3 Hz, 1H), 2.34 (s, 3H); 2.15 (m, 1H), 2.05 (s, 3H). 13 C NMR (75.5 MHz, CD₃OD): δ 152.1 (C), 151.1 (CH), 147.2 (C), 130.2 (CH), 115.3 (C), 112.3 (C), 72.4 (CH), 63.4 (CH₂), 58.4 (CH₂), 51.9 (CH₂), 42.9 (CH), 42.7 (CH₃), 39.7 (CH₂), 16.0 (CH₃).

(±)-tert-Butyl N-{[(4S/R,5R/S)-2,2-dimethyl-5-[(methylsulfanyl)methyl]-1,3-dioxolan-4-yl]methyl}carbamate [(±)-74]. Di-tert-butyl dicarbonate (1.096 g, 5.02 mmol) and amine (±)-73⁴⁸ (0.736 g, 4.57 mmol) were stirred together in MeOH (10 mL) for 1 h. The solvent was evaporated and the residue chromatographed on silica gel (gradient 0 \rightarrow 100% EtOAc in hexanes) to give (±)-74 as a colourless gum (1.01 g, 85%). ¹H NMR (300 MHz, CD₃OD): δ 3.91-3.85 (m, 1H), 3.82-3.77 (m, 1H), 3.68 (dd, J = 11.8, 3.9 Hz, 1H), 3.61 (dd, J = 11.8, 5.2 Hz, 1H), 3.31 (dd, J = 14.2, 4.6 Hz, 1H + residual CD₃OD), 3.24 (dd, J = 14.2, 5.3 Hz, 1H), 1.44 (s, 9H), 1.37 (s, 6H). ¹³C NMR (75.5 Mz, CD₃OD): δ 158.5 (C), 110.2 (C), 80.8 (CH), 80.3 (C), 78.3 (CH), 63.2 (CH₂), 43.3 (CH₂), 28.7 (CH₃), 27.42 (CH₃), 27.35 (CH₃). ESI-HRMS for C₁₂H₂₃NNaO₅⁺ (M+Na)⁺, calcd. 284.1463, found 284.1467.

 (\pm) -tert-Butyl $N-\{[(4S/R,5R/S)-2,2-\text{dimethyl-5-}[(\text{methylsulfanyl})\text{methyl}]-1,3-\text{dioxolan-}$ **4-yl]methyl}carbamate** [(\pm) -75]. Methanesulfonyl chloride (0.35 mL, 4.48 mmol) was added dropwise to a stirred solution of (±)-74 (0.975 g, 3.73 mmol) and triethylamine (1.05 mL, 7.46 mmol) in CH₂Cl₂ (10 mL) cooled in an ice-bath. The mixture was warmed to rt and stirred for 30 min then diluted with CH₂Cl₂ (40 mL) and washed with aq. NaHCO₃ (sat., 3 x 25 mL), dried and the solvent evaporated to give the intermediate mesylate as a yellow gum. The gum was dissolved in DMF (8 mL), sodium thiomethoxide (0.523 g, 7.46 mmol) added and the mixture stirred at rt for 2 h. Diethyl ether (100 mL) was added and the mixture washed with H₂O (4 x 10 mL), brine, dried and the solvent evaporated. Chromatography of the residue (gradient $0 \rightarrow 30\%$ EtOAc in hexanes) gave (±)-75 as a colourless oil (0.653 g, 60%). ¹H NMR (300 MHz, CDCl₃): δ 4.90 (bs, exchanged D₂O, 1H), 3.96-3.85 (m, 1H), 3.47 (ddd, J = 14.1, 5.9, 2.5 Hz, 1H), 3.31 (ddd, J = 14.2, 6.0, 5.5 Hz, 1H), 2.72 (d, J = 5.4 (ddd, J = 14.2, 6.0, 5.5 Hz)Hz, 2H), 2.18 (s, 3H), 1.45 (s, 9H), 1.41 (s, 6H). ¹³C (75.5 MHz, CDCl₃): δ 155.9 (C), 109.1 (C), 79.6 (CH), 79.5 (C), 77.2 (CH), 41.9 (CH₂), 36.5 (CH₂), 28.3 (CH₃), 27.13 (CH₃), 27.11 (CH₃), 16.4 (CH₃). ESI-HRMS for C₁₃H₂₅NNaO₄S⁺ (M+Na)⁺, calcd. 314.1397, found 314.1396.

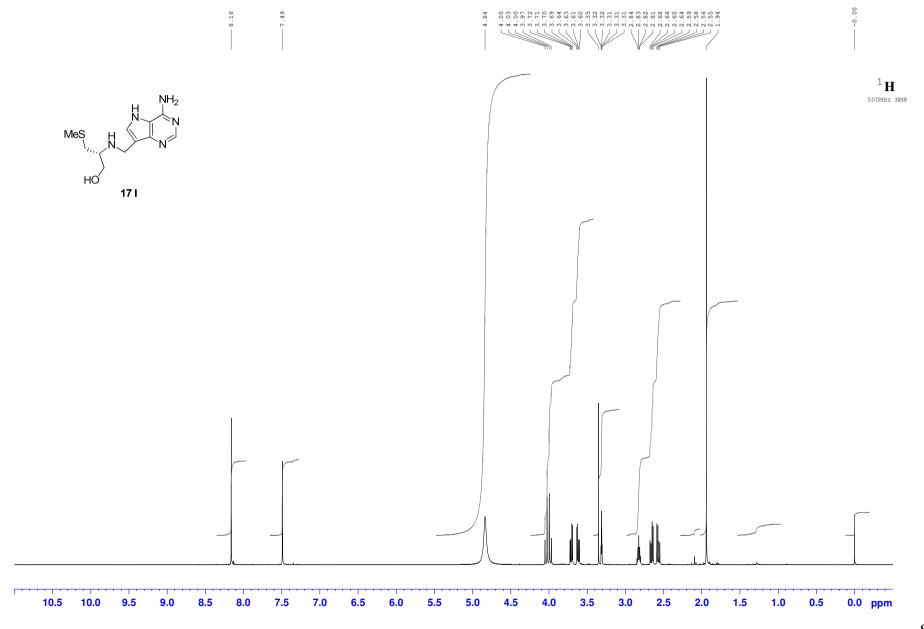
(\pm) -{[(4S/R,5R/S)-2,2-Dimethyl-5-[(methylsulfanyl)methyl]-1,3-dioxolan-4-

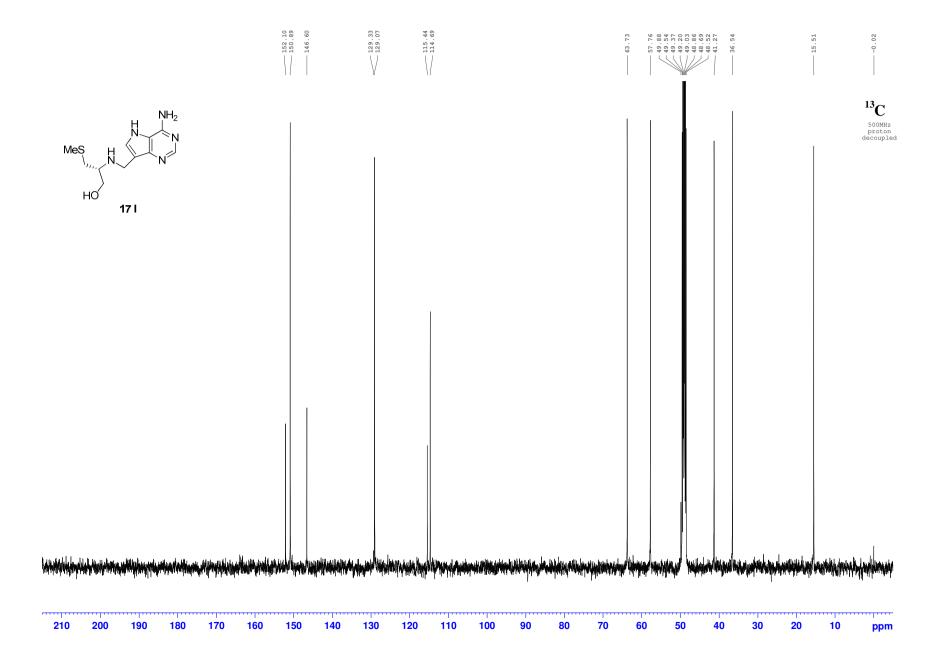
yl]methyl}(methyl)amine [(±)-76]. Lithium aluminum hydride (2M in THF, 3.67 mL, 7.34 mmol) was added dropwise to a stirred solution of (±)-75 (0.60 g, 2.45 mmol) in THF (5 mL) then heated under reflux for 16 h. The mixture was cooled in an ice-bath and H₂O (0.3 mL), aq. NaOH (15%, 0.3 mL) and H₂O (0.9 mL) added successively then filtered through Celite and the solids washed with hot EtOAc (3 x 50 mL). The combined filtrates were evaporated and the oily residue chromatographed on silica gel (gradient of 0 \rightarrow 10% 3M NH₃/MeOH in CHCl₃) to give (±)-76 as a colourless oil (0.37 g, 74%). ¹H NMR (300 MHz, CDCl₃): δ 4.01-3.91 (m, 2H), 2.86 (dd, J = 12.4, 3.2 Hz, 1H), 2.78-2.66 (m, 3H), 2.47 (s, 3H), 2.18 (s, 3H), 1.53 (s, exchanged D₂O, 1H), 1.412, 1.410 (2s, 6H). ¹³CNMR (75.5 MHz, CDCl₃): δ 109.0 (C), 80.0 (CH), 78.2 (CH), 54.0 (CH₂), 36.9 (CH₂), 36.7 (CH₃), 27.3 (CH₃), 27.1 (CH₃), 16.6 (CH₃). ESI-HRMS for C₉H₂₀NO₂S⁺ (M+H)⁺, calcd. 206.1210, found 206.1211.

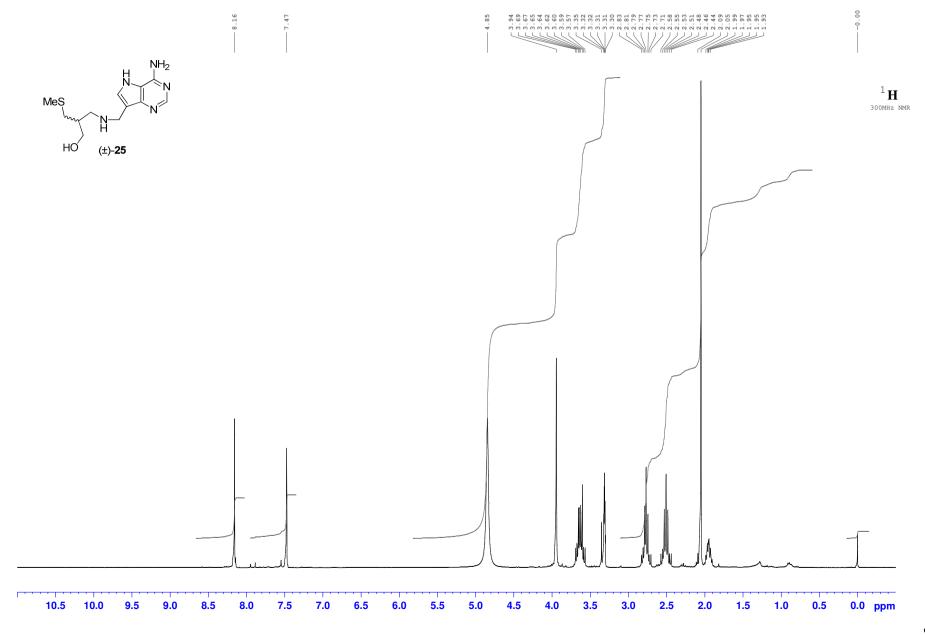
(\pm)-7-({[(2*S/R*,3*R/S*)-2,3-Dihydroxy-4-(methylsulfanyl)butyl](methyl)amino}methyl)-5*H*-pyrrolo[3,2-*d*]pyrimidin-4-amine [(\pm)-78]. A mixture of (\pm)-76 (0.08 g, 0.39 mmol), 9-deazaadenine (0.078 g, 0.58 mmol) and aq. formaldehyde solution (37%, 0.036 mL, 0.43 mmol) were heated in a 4:1 mixture of 1,4-dioxane:H₂O (2.5 mL) at 90 °C (bath temp.) for 1 h. Silica gel was added then the volatiles evaporated. The residue was chromatographed on

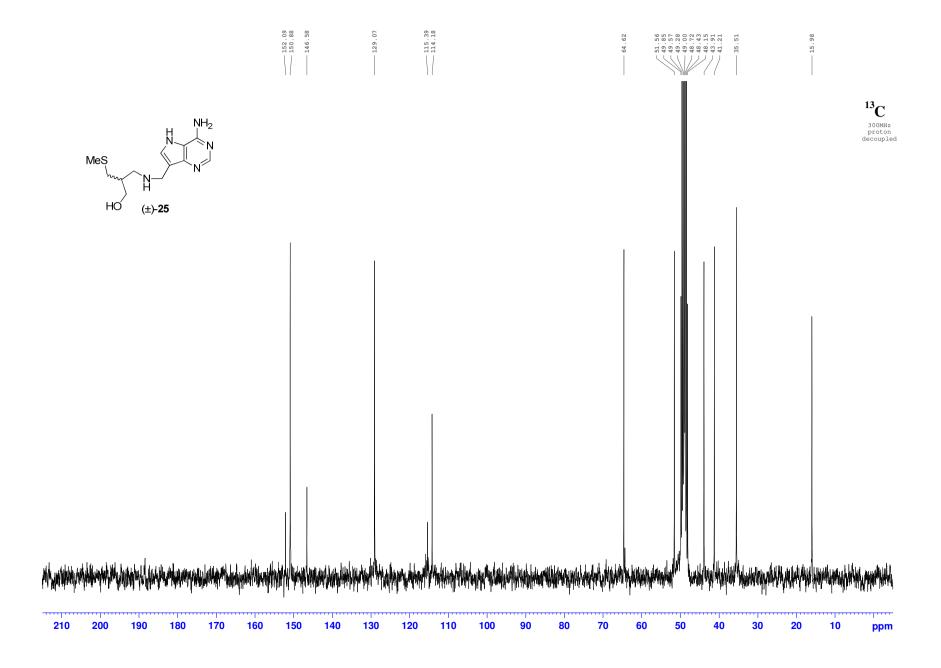
silica gel (CHCl₃-7M NH₃ in MeOH, 93:7) to give (\pm)-77 as a colourless solid. This was dissolved in a mixture of MeOH (3 mL) and aq. HCl (37%, 0.75 mL) and left to stand at rt for 30 min. The solvent was evaporated to a colourless solid which was dissolved in MeOH (5 mL) and neutralized with Amberlyst A21 resin. After filtering off the solids the filtrate was evaporated and the residue chromatographed on silica gel (CHCl₃-7M NH₃ in MeOH, 8:2) to give (\pm)-78 as a colourless solid (0.076 g, 63%). ¹H NMR (300 MHz, CD₃OD): δ 8.16 (s, 1H), 7.47 (s, 1H), 3.94-3.83 (m, 2H), 3.78 (d, J = 13.5 Hz, 1H), 3.64 (m, 1H), 2.73-2.48 (m, 4H), 2.32 (s, 3H), 2.08 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.1 (C), 150.9 (CH), 147.2 (C), 130.2 (CH), 115.3 (C), 112.5 (C), 73.3 (CH), 70.5 (CH), 60.4 (CH₂), 51.8 (CH₂), 43.0 (CH₃), 38.2 (CH₂), 15.9 (CH₃). ESI-HRMS for C₁₃H₂₁N₅NaO₂S⁺ (M+Na)⁺, calcd. 334.1309, found 334.1308.

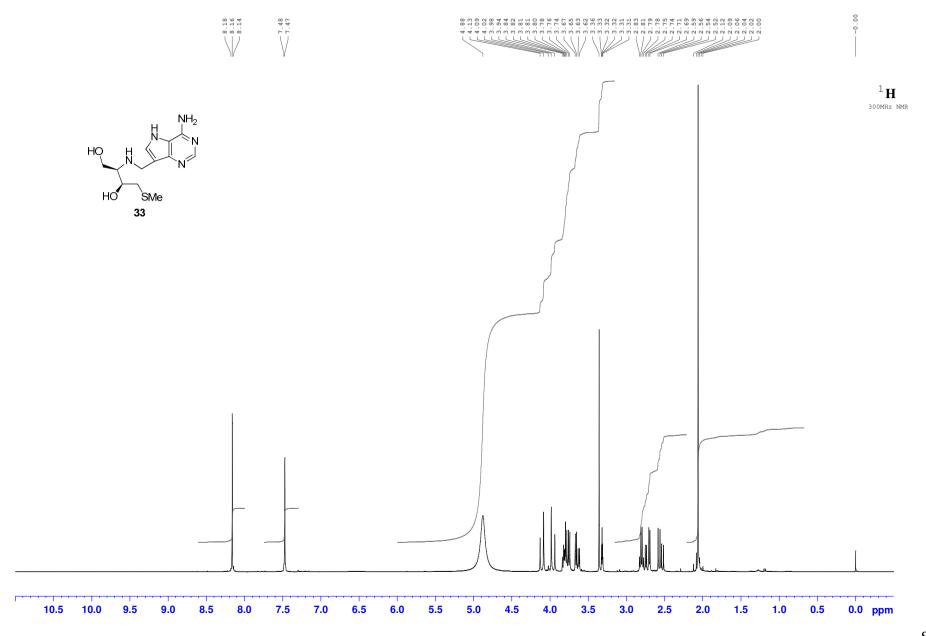
(2S)-2-{[(1S)-1-{4-Amino-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}-2-hydroxyethyl]amino}-3-(methylsulfanyl)propan-1-ol (79). Sodium periodate (0.070 g, 0.326 mmol) was added to a (2*S*,3*S*,4*R*,5*S*)-2-{4-amino-5*H*-pyrrolo[3,2-*d*]pyrimidin-7-yl}-5stirred solution of [(methylsulfanyl)methyl]pyrrolidine-3,4-diol dihydrochloride³⁴ (3, 0.1g, 0.272 mmol), in H₂O (3 mL). After 1 h, sodium borohydride (0.051 g, 1.358 mmol) was added in small portions and the solution, which momentarily darkened then became almost colourless, was Silica gel was added, the solvent evaporated and the residue stirred for 15 mins. chromatographed (CH₂Cl₂-MeOH-28% aq. NH₄OH, 50:10:1). The fractions containing product were evaporated to a gum (70 mg) which was dissolved in MeOH and eluted through Amberlyst A26 (OH) resin with MeOH. The solvent was evaporated to a yellow gum, dissolved in water and freeze dried to give **79** as a cream coloured solid (38 mg, 47%). ¹H NMR (300 MHz, CD₃OD): δ 8.14 (s, 1H), 7.54 (s, 1H), 4.26 (dd, J = 6.5, 4.6 Hz, 1H), 3.85 (dd, J = 10.9, 4.6 Hz, 1H), 3.77 (dd, J = 10.9, 6.6 Hz, 1H), 3.67 (dd, J = 11.1, 5.1 Hz, 1H), $3.61 \text{ (dd, } J = 11.1, 4.2 \text{ Hz, } 1\text{H}), 2.77-2.66 \text{ (m, } 1\text{H}), 2.64 \text{ (dd, } J = 13.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{H}), 2.41 \text{ (dd, } J = 1.4, 5.6 \text{ Hz, } 1\text{Hz, } 1\text{Hz,$ J = 13.3, 7.6 Hz, 1H, 1.72 (s, 3H). ¹³C NMR (75.5 MHz, CD₃OD): δ 152.1 (C), 150.7 (CH), 146.3 (C), 128.8 (CH), 116.5 (C), 115.5 (C), 66.8 (CH₂), 63.5 (CH₂), 55.9 (CH), 54.5 (CH), 37.6 (CH₂), 15.1 (CH₃). ESI-HRMS for $C_{12}H_{19}N_5NaO_2S^+$ (M+Na)⁺ calcd. 320.1152, found 320.1149.


Protein Expression and Inhibition Assays. Human MTAP, *E. coli* MTAN and *N. meningitidis MC58* MTAN used in the biological evaluation of the compounds were expressed and purified as previously described. Enzyme inhibition assays were carried out using a xanthine oxidase-coupling enzyme that converts the adenine product of the


MTAP and MTAN reactions to 2,8-dihydroxyadenine; monitored at 293 nM (E293 = 15.2 mM⁻¹cm⁻¹). The $K_{\rm m}$ values used were 5.28 μ M (human MTAP), 0.43 μ M (E.~coli MTAN) and 1.4 μ M (N.~meningitidis MTAP). Details of the assay and experimental determination of $K_{\rm i}$ and $K_{\rm i}^*$ have been reported.⁷⁰


References


- 34 Evans, G. B.; Furneaux, R. H.; Schramm, V. L.; Singh, V.; Tyler, P. C. *J. Med. Chem.* **2004**, *47*, 3275.
- Gutierrez, J. A.; Luo, M.; Singh, V.; Li, L.; Brown, R. L.; Norris, G. E.; Evans, G. B.; Furneaux, R. H.; Tyler, P. C.; Painter, G. F.; Lenz, D. H.; Schramm, V. L. ACS Chemical Biology 2007, 2, 725.
- 50 Evans, G. B.; Furneaux, R. H.; Hutchison, T. L.; Kezar, H. S.; Morris, P. E.; Schramm, V. L.; Tyler, P. C. *J. Org. Chem.* **2001**, *66*, 5723.
- Gainsford, G. J.; Mason, J. M.; Gulab, S. A. Acta Crystallogr. Sect. E 2010, 66, o138.
- 52 Murkin, A. S.; Clinch, K.; Mason, J. M.; Tyler, P. C.; Schramm, V. L. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 5900.
- 53 Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.
- 54 Dondoni, A.; Perrone, D. *Org. Synth.* **2004**, *Coll. Vol. 10*, 320; *Org. Synth.* **2000**, 77, 64.
- Sato, S.; Sakamoto, T.; Miyazawa, E.; Kikugawa, Y. *Tetrahedron*, **2004**, *60*, 7899. 2-Picoline-borane complex is now the reagent of choice for conducting reductive amination/alkylation reactions in our laboratories.
- 56 Ward, D. E; Rhee, C. K. *Tetrahedron Lett.* **1991**, *32*, 7165.
- 57 Harnden, M. R.; Wyatt, P. G.; Boyd, M. R.; Sutton, D. J. Med. Chem. 1990, 33, 187.
- 58 McDougal, P. G.; Rico, J. G.; Oh, Y. I.; Condon, B. D. J. Org. Chem. 1986, 51, 3388.
- 61 Inaba, T.; Yamada, Y.; Abe, H.; Sagawa, S.; Cho, H. J. Org. Chem. 2000, 65, 1623.
- Gainsford, G. J.; Clinch, K. Acta Crystallogr. Sect. E 2012, 68, o2082.
- 63 Calderón, F.; Doyagüez, E. G.; Fernández-Mayoralas, A. J. Org. Chem. 2006, 71, 6258.
- 64 Ooi, H.; Ishibashi, N.; Iwabuchi, Y.; Ishihara, J.; Hatakeyama, S. *J. Org. Chem.* **2004**, *69*, 7765.
- 65 Kokotos, G.; Verger, R.; Chiou, A. *Chem. Eur. J.* **2000**, *6*, 4211.
- 66 Elliott, W. J.; Fried, J. J. Org. Chem. 1976, 41, 2469.


- 67 Abdel-Magid, A. F.; Maryanoff, C. A.; Carson, K. G. Tetrahedron Lett. 1990, 31, 5595.
- 69 Wang, G.; Hollingsworth, R. I. J. Org. Chem. 1999, 64, 1036.
- Longshaw, A. I.; Adanitsch, F.; Gutierrez, J. A.; Evans, G. B.; Tyler, P. C.; Schramm,V. L. *J. Med. Chem.* 2010, *53*, 6730.

