P66, the β_3 -Integrin Ligand of *Borrelia burgdorferi*, is Critical for Infection of Mice but not Ticks

Laura C. Ristow¹, Halli E. Miller², Lavinia J. Padmore², Rekha Chettri², Nita Salzman³, Melissa J. Caimano⁴, Patricia A. Rosa⁵, and Jenifer Coburn^{1,2}*

¹Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI

²Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI

³Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI

⁴Department of Medicine, University of Connecticut Health Sciences Center, Farmington, CT

⁵Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, MT

*Corresponding author: Center for Infectious Disease Research, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53228; phone: 414-955-4116, fax: 414-955-6567, e-mail: jcoburn@mcw.edu

Figure S1. Serologic response to *B. burgdorferi* inoculation Wild-type *B. burgdorferi* lysates were separated by SDS-PAGE on 12.5% acrylamide gels and transferred to Immobilon membranes. The membranes were cut into strips, and each strip was probed with an individual mouse serum as a primary antibody at a dilution of 1:100 for detection of IgM or 1:1,000 for detection of IgG. Sera from 5 mice per strain, WT or △p66, at 2 weeks post-inoculation were analyzed, and sera from 5 control inoculated mice were analyzed as a control. Anti-mouse IgM or IgG antibodies conjugated to alkaline phosphatase at dilutions of 1:10,000 were used as secondary antibodies, and strips were developed using standard colorimetric protocols. Additional strips were probed with anti-flagellin as a primary antibody and detected with an anti-mouse IgG-AP conjugate.

Table S1: Bacterial strains and plasmids used in this study

strain/vector	genotype	source/reference
E. coli JM109	F´ traD36 proA ⁺ B ⁺ lacf ^q ∆(lacZ)M15/ ∆(lac-proAB) glnV44 e14 gyrA96 recA1 relA1 endA1 thi hsdR17	Promega, Madison, WI, USA
E. coli BLR	F ompT hsdS _B (r _B m _B) gal dcm	Novagen (Merck KGaA), Darmstadt, Germany
B. burgdorferi B31-A3	Transformable clonal derivative of the tick isolate B31; missing plasmid cp9	(Elias <i>et al.</i> , 2002)
<i>∆p66</i> clone 2.3	B31-A3 derivative, <i>p66</i> replaced by kanamycin resistance cassette (<i>p66::kan</i>), missing plasmids cp9, cp32-3, lp21	this study
2.3 ^{cc} clone 2	△p66 clone 2.3 with p66 restored to endogenous locus on chromosome, gentamicin resistant, gent in opposite direction to p66, restores P66 levels to WT	this study
2.3 ^{cc} clone 49	△p66 clone 2.3 with p66 restored to endogenous locus on chromosome, gentamicin resistant, gent in same direction as p66, restores P66 levels to WT	this study
B31-A3 MC	plasmid-matched control for <i>∆p66 clone 2.3, p66</i> locus intact, missing plasmids cp9, cp32-3, lp21	this study
<i>∆p66</i> clone C3-14	B31-A3 derivative, <i>p66::kan</i> , missing plasmid cp9	this study
C3-14 ^{cc} clone 5	△p66 clone C3-14 with p66 restored to endogenous locus on chromosome, gentamicin resistant, gent in same direction as p66, restores P66 levels to WT	this study
C3-14 ^{cc} clone 23	△p66 clone C3-14 with p66 restored to endogenous locus on chromosome, gentamicin resistant, gent in opposite direction to p66, restores P66 levels to WT	this study
C3-14 ^{cp} clone 13	△p66 clone C3-14 with p66 restored on shuttle vector pBSV2G, gentamicin resistant, restores P66 levels to approximately 10 x WT	this study
C3-14 ^{cp} clone 25	△p66 clone C3-14 with p66 restored on shuttle vector pBSV2G, gentamicin resistant, restores P66 levels to approximately 10 x WT	this study
C3-14 ^{cp} clone 34	△p66 clone C3-14 with p66 restored on shuttle vector pBSV2G, gentamicin resistant, restores P66 levels to approximately 10 x WT	this study
<i>∆p66</i> clone C6-6	B31-A3 derivative, <i>p66::kan</i> , missing plasmid cp9	this study
C6-6 ^{cc} clone 11	△p66 clone C6-6 with p66 restored to endogenous locus on chromosome, gentamicin resistant, gent in same direction as p66, restores P66 levels to WT	this study
C6-6 ^{cc} clone 46	△p66 clone C6-6 with p66 restored to endogenous locus on chromosome, gentamicin resistant, gent in opposite direction to p66, restores P66 levels to WT	this study
pGEM T Easy	T/A cloning vector, encodes resistance to ampicillin	Promega, Madison, WI, USA
pBSV2G	shuttle vector for <i>E. coli</i> and <i>B. burgdorferi</i> , encodes resistance to gentamicin	(Elias et al., 2003)
p66KO4XS1	replaces <i>p66</i> integrin binding domain-encoding sequences with kanamycin resistance cassette, β-lactamase gene inactivated	(Coburn & Cugini, 2003)

Table S2: Oligonucleotide primers, $5' \rightarrow 3'$

Name	Sequence	Purpose
obb0604m	GAGAGCATGCCAACCTTAACAATACCTTTTGTACTG	Cloning of p66 region in pBSV2G REF and in pGEM T Easy (Promega, Madison, WI)
obb602u	TCTCGAGCTCGGTTGATCTTAGTAGTTCGGATCTC	Cloning of p66 region in pBSV2G REF and in pGEM T Easy (Promega, Madison, WI)
flgBMfe	CAATTGTAATACCCGAGCTTCAAGGAAG	Cloning of flgBp-gent ^R (aacC1) cassette in Mfe I site 3' of p66
aacC1Mfe	CAATTGCGATCTCGGCTTGAACG	Cloning of flgBp-gent ^R (aacC1) cassette in Mfe I site 3' of p66
FlaBpKanR3-2	CGCAGGAACACTGCCAGCGCATCAAC	screening for kanamycin resistance cassette
FlaBpKanR5-2	CATGGAGGAATGACATATGAGCCATATTC	screening for kanamycin resistance cassette
FlgBpGentR3-2	AATTGTTAGGTGGCGGTACTTGGGTCG	screening for gentamicin resistance cassette
FlgBpGentR5-2	AGGTTTCCATATGTTACGCAGCAGCAAC	screening for gentamicin resistance cassette
OLCR01	ATG CCT TGA TTA CGC TGG AG	sequencing of p66 locus
OLCR02	TGC TCC CCA GTT ACA GTT CC	sequencing of p66 locus
OLCR03	AAC TTG AAT CTG ATG GTT ATG AAG C	sequencing of p66 locus
OLCR04	AAC CTC ATC ATC GCT AGC AC	sequencing of p66 locus
OLCR05	ATT TGC AAG GAA AGA AAT ATA AGG	sequencing of p66 locus
OLCR06	TGT TGA AAT GGA TGC TAT TGG	sequencing of p66 locus
OLCR07	TTG AAG ATG CAA TGA AAC TCG	sequencing of p66 locus
OLCR08	GGG ATT ATA AAT GGA TTA GGA TGG	sequencing of p66 locus
OLCR09	TGC ATT TTC AAC AGG AGC AA	sequencing of p66 locus
OLCR10	TCA AGA GAA TGA CAA AGA CAC TCC	sequencing of p66 locus
0LCR11	TTT CAA ACC CAG GAA CAA GC	sequencing of p66 locus
OLCR12	AGC AAT CCT GTT GCT AAA ATG	sequencing of p66 locus
OLCR13	TTA ATC TTG ATA TTG CAA CAA TGC	sequencing of p66 locus
OLCR14	GGA TTA TCT CTC CGG GCT TC	sequencing of p66 locus
OJLC29	ATA AAG GAT TCC TTG ATA TGT TTT ATT	sequencing of p66 locus

OJLC32	CAC TAA AAG CGG AAG GCA AAA AAG GC	sequencing of p66 locus
OJLC35	CGC CCA GGA TTC TTT TTC ACC GGT A	sequencing of p66 locus
ONN660	AAT ATG GCC TTG AAT TTT TAC CTA ATA	sequencing of p66 locus
SP6	GAT TTA GGT GAC ACT ATA G	sequencing of p66 locus
T7 promoter	TAA TAC GAC TCA CTA TAG GG	sequencing of p66 locus