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SUMMARY

Heat-Shock Factor 1 (HSF1), master regulator of the
heat-shock response, facilitates malignant transfor-
mation, cancer cell survival, and proliferation in
model systems. The common assumption is that
these effects are mediated through regulation of
heat-shock protein (HSP) expression. However, the
transcriptional network that HSF1 coordinates
directly in malignancy and its relationship to the
heat-shock response have never been defined. By
comparing cellswith high and lowmalignantpotential
alongside their nontransformed counterparts, we
identify an HSF1-regulated transcriptional program
specific to highly malignant cells and distinct from
heat shock. Cancer-specific genes in this program
support oncogenic processes: cell-cycle regulation,
signaling, metabolism, adhesion and translation.
HSP genes are integral to this program, however,
many are uniquely regulated in malignancy. This
HSF1 cancer program is active in breast, colon and
lung tumors isolated directly from human patients
and is strongly associatedwithmetastasis anddeath.
Thus, HSF1 rewires the transcriptome in tumorigen-
esis, with prognostic and therapeutic implications.
INTRODUCTION

A wide variety of environmental stressors can damage proteins.

These include elevated temperatures, oxidative agents, heavy

metals, and low pH. Organisms respond by inducing heat-shock

proteins (HSPs), which act as molecular chaperones to restore
protein homeostasis (Shamovsky and Nudler, 2008; Whitesell

and Lindquist, 2005). This powerful adaptive mechanism, known

as the heat-shock response, is unleashed by the heat-shock

transcription factor HSF1. Upon heat shock, HSF1 is phosphor-

ylated, trimerizes, and translocates to the nucleus. There, it

induces chaperone gene expression by binding to DNA

sequence motifs known as heat-shock elements (HSEs) (Pel-

ham, 1982; Sakurai and Enoki, 2010). Major aspects of this

classic response are conserved from yeast to humans and are

vital in many stressful environments. HSF1 also functions as

a critical regulator of longevity in some organisms (Chiang

et al., 2012; Volovik et al., 2012). Consistent with this, recent

work indicates that HSF1 helps cells accommodate the complex

pathophysiological derangements in protein homeostasis that

underlie many human diseases, especially those associated

with aging (Morimoto, 2008).

We have previously shown in mice that HSF1 is co-opted by

tumor cells to promote their survival, to the detriment of their

hosts. The importance of HSF1 in supporting carcinogenesis,

at least in model systems, is demonstrated by the dramatically

reduced susceptibility of Hsf1-knockout mice to tumor forma-

tion. This has been established for cancers driven by oncogenic

RAS, tumor suppressor p53 mutations, and chemical carcino-

gens (Dai et al., 2007; Jin et al., 2011; Min et al., 2007). In addition

to its role in tumor formation in mice, HSF1 fosters the growth of

human tumor cells in culture. Depleting HSF1 from established

human cancer lines markedly reduces their proliferation and

survival (Dai et al., 2007; Meng et al., 2010; Min et al., 2007; San-

tagata et al., 2012; Zhao et al., 2011).

Inmousemodels, HSF1 enables adaptive changes in a diverse

array of cellular processes, including signal transduction,

glucose metabolism, and protein translation (Dai et al., 2007;

Khaleque et al., 2008; Lee et al., 2008; Zhao et al., 2009,

2011). The commonly held view is that HSF1 exerts this broad

influence in cancer simply by allowing cells to manage the
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Figure 1. HSF1 Is Activated in Metastatic

and Highly Tumorigenic Human Mammary

Epithelial Cell Lines

(A) Equal amounts of total protein were immuno-

blotted with the indicated antibody.

(B) IHC staining with anti-HSF1 antibody of the

indicated tumors xenografted in mice. Upper

panels show regions of viable tumor (high magni-

fication; scale bar, 20 mm) and lower panels show

the viable tumor/necrotic interface (low magnifi-

cation; scale bar, 50 mm).

(C) Schematic of experimental groups analyzed by

HSF1 ChIP-Seq.

(D) Graph of ChIP-Seq peak heights for each

region of HSF1 occupancy, normalized by the

number of reads in the data set.

(E) Overlap of genes bound in malignant cells

(BPLER, 37�C) and immortalized, nontumorigenic

cells after heat shock (BPE or HME cells, 42�C).
(F) Representative genes bound in BPLER cells

(CKS2, LY6K, RBM23) and bound in both BPLER

cells and heat-shocked HME and BPE cells

(HSPA6, HSPA8, PROM2). x axis: from �2kb from

the transcription start site (TSS) to either +5, +6

or +10kb from the TSS for each gene; genes

diagrams drawn to scale. See also Figure S1 and

Tables S1 and S2.
imbalances in protein homeostasis that arise in malignancy. Ac-

cording to this view, the main impact of HSF1 on tumor biology

occurs indirectly, through the actions of molecular chaperones

like HSP90 and HSP70 on their client proteins (Jin et al., 2011;

Solimini et al., 2007). An alternate, and to date unexplored,

possibility is that HSF1 plays amore direct role, rewiring the tran-

scriptome and, thereby, the physiology of cancer cells.

To investigate the HSF1-regulated transcriptional program in

cancer and how it relates to the classical heat-shock response,

we first took advantage of human breast cancer cell lines with

very different abilities to form tumors and metastasize (Ince

et al., 2007). Two types of primary mammary epithelial cells

(HMEC and BPEC) have been isolated from normal breast tissue

derived from the same donor during reductive mammoplasty

(Ince et al., 2007). These pairs of isogenic cells were established

by using different culture conditions that are believed to have

supported the outgrowth of distinct cell types. The cells were

immortalized (HME and BPE) and then transformed with an

identical set of oncogenes (HMLER and BPLER). The resulting

tumorigenic breast cell lines had very different malignant and
550 Cell 150, 549–562, August 3, 2012 ª2012 Elsevier Inc.
metastatic potentials (low, HMLER, and

high, BPLER) supporting the concept

that the cell type from which a cancer

arises (‘‘cell-of-origin’’) can significantly

influence its ultimate phenotype (Ince

et al., 2007).

Here, using this well-controlled system,

we identify changes in the HSF1 tran-

scriptional program that occur during

transformation and underlie the different

malignant potentials of these cells. Chro-
matin immunoprecipitation coupled with massively parallel DNA

sequencing (ChIP-Seq) revealed a surprisingly diverse transcrip-

tional network coordinated by HSF1 in the highly malignant cells.

We then extend analysis of this HSF1 cancer program to a wide

range of well-established human cancer cell lines and to diverse

types of tumors taken directly from patients. Finally, we establish

the clinical relevance of our findings through in-depth analysis of

HSF1 activation in cohorts of breast, colon, and lung cancer

patients with known clinical outcomes. Thus, the breadth of

HSF1 biology is far greater than previously appreciated.

RESULTS

HSF1 Is Activated in Highly Tumorigenic Cells
We first asked whether HSF1 expression differed in the highly

malignant BPLER and the much less malignant HMLER breast

cancer cells (Ince et al., 2007). We used two sets of such cells,

each pair derived independently from a different donor. In

both, HSF1 protein expression was higher in the more malignant

member of the pair, the BPLER cells (Figure 1A). The BPLER cells



also had more phosphoserine-326-HSF1, a well established

marker of HSF1 activation (Guettouche et al., 2005), than the

HMLER cells (Figure 1A).

To determine whether these differences in HSF1 were simply

an artifact of growth in cell culture, we implanted the cells into

immunocompromised mice and allowed them to form tumors.

HSF1 immunostaining was weak in the HMLER tumors. More-

over, it was largely restricted to nonmalignant, infiltrating stroma

and to tumor areas bordering necrosis (Figure 1B), indicating that

microenvironmental stress can influence the activation of HSF1.

In BPLER tumors, however, HSF1 staining was strong, nuclear

localized and very uniform thoughout (Figure 1B; Figure S1A

available online). Thus, the dramatic difference in HSF1 expres-

sion we observe between BPLER and HMLER cells is due to

stable, cell-autonomous factors intrinsic to these distinct cell

types (Ince et al., 2007).

Given this evidence for the activation of HSF1 in the BPLER

cell type, we asked whether such cells were more dependent

on HSF1 than HMLER cells for growth and survival. Neither cell

type was affected by negative control shRNA.With two indepen-

dent shRNAs that knockdown HSF1 expression, however, cell

growth and viability were farmore strongly reduced in the BPLER

than the HMLER cells (Figure S1B).

HSF1 Genome Occupancy in Cancer Is Distinct from
Heat Shock
To determine whether the transcriptional program driven by

HSF1 in highly malignant cells differs from that driven by a clas-

sical thermal stress, we used chromatin immunoprecipitation

coupled with massively parallel DNA sequencing (ChIP-Seq),

characterizing HSF1-binding sites genome wide. We first as-

sessed the immortalized nontransformed progenitor cells, HME

and BPE, grown at 37�C or following a 42�C heat shock (Fig-

ure 1C). We then related the genome-wide distribution of

HSF1-binding sites to those of the oncogenically transformed

HMLER and BPLER cells grown at 37�C.
In the HME and BPE parental cell lines, a limited number of

genes were bound by HSF1 in the absence of heat shock, and

these were bound weakly (Figure 1D; Table S1). Heat shock

drove robust binding of HSF1 to �800 genes in HME cells and

to�1,100 genes in BPE cells (Figure 1D; Table S1). These obser-

vations are consistent with a previous report that a large number

of genes are bound by HSF1 in the mammalian heat-shock

response (Page et al., 2006).

A small number of genes were bound by HSF1 under basal

conditions in the transformed cells with low malignant potential,

HMLER (37�C; Figure 1D). However, binding was more localized

to promoter regions than in the parental cells (Figure S1C), sug-

gesting some low level of HSF1 activation (MacIsaac et al.,

2010). In sharp contrast, in themetastatic and highly tumorigenic

BPLER cells, we identified �900 genes bound by HSF1 at 37�C
(Figure 1D; Table S1).

Surprisingly, a full 60% of the genes bound by HSF1 in BPLER

cells were not bound in nontransformed parental lines, even after

heat shock (Figure 1E). Examples included (Figure 1F) cyclin-

dependent kinase interacting protein, CKS2, which enables

proliferation under conditions of replicative stress common to

malignant cells (Liberal et al., 2011); LY6K, which encodes a gly-
cosylphosphatidyl-inositol (GPI)-anchored membrane protein

implicated as a biomarker in lung and esophageal carcinomas

(Ishikawa et al., 2007; Maruyama et al., 2010); and RBM23,

which encodes an RNA-binding protein implicated in the regula-

tion of estrogen-mediated transcription (Dowhan et al., 2005).

Using the Molecular Signatures Database (MSigDB) (Subrama-

nian et al., 2005), the genes bound by HSF1 in the BPLER cells,

but not in either of the parental lines after heat shock, were most

highly enriched in protein translation, RNA binding, metabolism,

cell adhesion (Figure S1D; Table S2), and other processes vital in

supporting the malignant state.

We analyzed the 100 bp genomic regions surrounding the

peaks of HSF1 binding unique to BPLER cells using the ab initio

motif discovery algorithm MEME (Machanick and Bailey, 2011).

The canonical HSE was highly enriched in the HSF1-bound

regions (p value = 1.4 3 10�97; Figure S1E), strongly suggesting

the genes that are constitutively bound by HSF1 in malignant

cells are bona fide HSF1-binding targets.

The remaining 40% of genes bound by HSF1 in BPLER cells

under basal conditions were also bound in at least one of the

two parental lines following heat shock. As expected, these

genes included many classical heat-shock genes, including

HSPA8, the constitutively expressed HSC70 protein, and

HSPD1/E1, which encodes HSP60 and HSP10 (Figures 1F and

S1F). By the MSigDB, this large group of genes was enriched

for protein folding categories (Figure S1D; Table S2).

Notably, however, for many of the genes bound in both cancer

and heat shock, HSF1 binding differed. For example, the

strongly heat-shock inducible HSPA6 gene (encoding

HSP70B’) was highly bound in parental lines upon heat shock

but only weakly bound in BPLER cells at 37�C (Figures 1F,

S1G and S1H). Conversely, PROM2, which encodes a basal

epithelial cell membrane glycoprotein, was weakly bound by

HSF1 in parental lines following heat shock, but highly bound

in BPLER cells (Figure 1F). Thus, HSF1 engages a regulatory

program in the highly malignant state that is distinct from the

classic heat-shock response.

To assess the functional significance of the HSF1 cancer

program, we asked whether the genes comprising this program

played a significant role in malignancy and used unbiased data

from an independent investigation. The Elledge lab recently con-

ducted a whole-genome siRNA screen to identify genes that are

required to maintain growth when cells are transformed with

a malignantly activated Ras gene (Luo et al., 2009). Among the

�1,600 genes identified in this screen, our HSF1-bound gene

set was very strongly enriched (73 gene overlap; p value =

7.95 3 10�15, Table S2). The HSF1-bound genes we identified

as unique to the malignant state were more strongly enriched

(49 gene overlap; p value = 1.1 3 10�12) than those shared with

heat-shocked cells (24 gene overlap; p value = .0004), but both

sets of genes were important in supporting the malignant state.

HSF1 Regulates the Transcription of Genes It Binds in
Malignant Cells
To investigate the consequences of HSF1 occupancy on gene

expression, we compared RNA profiles in HMLER and BPLER

cells transduced with control shRNA hairpins to those trans-

duced with hairpins that knockdown HSF1. As we previously
Cell 150, 549–562, August 3, 2012 ª2012 Elsevier Inc. 551
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A B Figure 2. The Expression of HSF1-Bound

Genes Is Altered by HSF1 Depletion

(A) Relative gene expression levels following

shRNA-mediated knockdown of HSF1 in indicated

cells. Scr and GFP were negative control shRNA.

(B) Graph showing the number of genes positively

regulated (reduced expression upon HSF1 deple-

tion) or negatively regulated (increased expression

upon HSF1 depletion) by HSF1 relative to site of

gene occupancy by HSF1 (promoter versus distal).

See also Figure S2 and Table S3.
reported, the growth and survival of malignant cells is compro-

mised by prolonged depletion of HSF1 (Dai et al., 2007). There-

fore, we only analyzed mRNA expression in the early stages of

shRNA inhibition, where HSF1 knockdown was still incomplete

(Figure S2), but cell viability was unimpaired. This provides

a conservative assessment of the effects of HSF1 on gene

expression in malignant cells.

Control hairpins that did not reduce HSF1 levels (Scr and GFP;

Figure S2) hadminimal effects on the expression of HSF1-bound

genes (Figure 2A; Table S3). Targeted hairpins that did reduce

HSF1 had a minor impact in HMLER cells but markedly changed

expression in BPLER cells. The expression of many genes

decreased indicating that they were positively regulated by the

HSF1 transcription factor. Many genes increased, indicating

that a larger number of genes than previously appreciated are

negatively regulated by HSF1. Genes unique to the malignant

state and genes shared by heat-shocked cells were affected

equivalently. For example, expression of themalignancy-associ-

ated genes CKS2 and RBM23 and the heat-shock protein genes

HSPA8 (HSC70) and HSP90AA1 (HSP90) were all reduced (by

�50%) following HSF1 knockdown (Table S3).

Relating the effects of HSF1 knockdown on gene expression to

ourearlierChIP-Seqanalysis,�70%ofgenespositively regulated

by HSF1 were bound at the promoter, whereas only �30% of

these genes were bound in distal regions (Figure 2B). Genes

that were negatively regulated by HSF1 showed the opposite

pattern (Figure 2B). This observation (p value= 0.00004) suggests

that the direction of regulation (positive versus negative) in these

cells is influenced by the location of the HSF1-binding site.

Next we examined the effects of HSF1 knockdown on gene

expression in acell line that hadnotbeendeliberately engineered.

The MCF7 line was established from a human breast cancer

metastasis. Moreover, as an estrogen receptor positive (ER+)

line, its biology is fundamentally distinct from the hormone-
552 Cell 150, 549–562, August 3, 2012 ª2012 Elsevier Inc.
receptor-negative HMLER and BPLER

cell lines. Despite these differences, the

changes in gene expression caused by

HSF1 knockdown was very similar in

BPLER cells and MCF7 cells (Figure 2A).

HSF1 Gene Occupancy Is
Conserved across a Broad Range of
Common Human Cancer Cell Lines
Next we used ChIP-qPCR to monitor

HSF1 binding to a representative set of
the HSF1-target genes in cell lines derived from patients with

breast cancer. We used nine well-studied cancer lines (including

MCF7 cells) representing all three major categories of breast

cancer: ER+, HER2+and Triple-Negative (TN). Under basal

conditions (at 37�C), we detected HSF1 binding in each of the

major breast cancer subtypes (Figure S3A). A range of binding

intensities was observed. Most notably, however, the distinct

pattern of HSF1 gene occupancy we had identified in the highly

malignant BPLER cells was also present in these naturally-

arising malignant cells. This included genes unique to malignant

cells, such as CKS2 and RBM23, and genes shared by heat-

shocked cells, such asHSPD1/E1. Again, the genemost strongly

inducible by heat shock, HSPA6, was minimally bound across

this entire panel of cancer lines under basal conditions (37�C;
Figures S3A, S3B and S3C). We also analyzed HSF1 binding in

the nontumorigenic breast cell line MCF10A. Comparable to

the low malignancy HMLER cells, MCF10A cells had low levels

of HSF1 occupancy across all genes examined (Figures S3A

and S3C).

These ChIP-PCR data spurred us to employ ChIP-Seq to

generate additional genome-wide high-resolution maps of

HSF1 occupancy. We performed ChIP-Seq analysis on the non-

tumorigenic MCF10A cell line grown either at 37�C or following

a 42�C heat-shock. We compared these data with our prior

data from the nontumorigenic cell lines HME and BPE and

weakly tumorigenic HMLER cells. We then assessed HSF1

binding in a panel of human tumor lines that extended to other

types of malignancy: duplicate samples of four breast, three

lung and three colon cancer cell lines (Figures 3A and S3D),

thus covering the human cancers with the highest total mortality

in the developed world.

After heat shock, MCF10A cells exhibited an HSF1-binding

profile that was comparable to that of heat-shocked HME and

BPE cells. In the absence of heat shock, the overall magnitude
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Figure 3. Genome-wide patterns of DNA occupancy by HSF1 across a broad range of common human cancer cell lines

(A) Heatmap of ChIP-Seq read density for all HSF1 target regions (union of all HSF1-bound regions in all data sets). Genomic regions from�1kb to +1kb relative to

the peak of HSF1 binding are shown. Regions are ordered the same in all data sets. Read density is depicted for nontumorigenic cells at 37�C (green), cancer lines

at 37�C (black) and nontumorigenic (nt) lines following heat shock at 42�C (red). Asterisks indicate data sets also used for the analysis in Figure 1E.

(B) Principal component analysis (PCA) of HSF1 binding in heat-shocked parental lines (red) and cancer lines (black).

(C) ChIP-Seq density heat map of genomic regions differentially bound by HSF1 in cancer lines at 37�C, heat-shocked nontumorigenic lines, and regions shared

under both conditions.

(D) HSF1 binding of representative genes in cancer lines at 37�C (black) and heat-shocked nontumorigenic lines (red). Examples of genes with distinct patterns of

binding are presented: Enriched in cancer lines, heat-shocked nontumorigenic lines, or both.

(E) Motif analysis of 100 bp regions surrounding HSF1-binding peaks for genes enriched in cancer lines (BT20, NCIH838 and SKBR3), heat-shocked non-

tumorigenic lines (HME, BPE, MCF10A) and both cancer and heat-shocked nontumorigenic lines. See also Figure S3 and Table S1.
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of HSF1 binding in all of the nontumorigenic cell lines (nt) was

uniformly very weak, and the total number of bound genes was

small (Figure 3A; Table S1). In contrast, in the cancer lines a range

of HSF1 binding was observed at 37�C (Figure 3A). For example,

robust binding was observed in the lung adenocarcinoma line

NCI-H838 and in the TN breast carcinoma line BT20. Less

pronounced overall binding was seen in others lines such as

the weakly malignant HMLER. Binding in BPLER cells was

intermediate.

Irrespective of the level of binding, the distribution of HSF1

occupancy on a genome-wide scale was remarkably similar

among the cancer cell lines and distinct from the pattern of

binding in the heat-shocked cells (Figure 3A). The differences

between the heat-shocked and malignant states were further

probed using principal component analysis (PCA; Figure 3B).

This unsupervised method of clustering sets of data clearly

distinguished one cluster containing all cell lines exposed to

heat-shock and a second cluster containing all cancer cell lines.

This analysis confirmed the global nature of the differences in the

HSF1-binding profiles.

Data from these multiple cell lines allowed us to confidently

identify regions of HSF1 binding that were strong in cancer cells

but not in heat-shocked cells, weak in cancer but strong in heat

shock, or similarly strong in both (Figure 3C). Examples of genes

that were strongly bound in cancer but not in heat shock

included CKS2, LY6K, RBM23, CCT6A, CKS1B, ST13, EIF4A2

(Figures S3E; Figure 3D). Genes that were weakly bound in

cancer lines but strongly bound in heat shock included HSPA6

and DNAJC7 (Figure 3D). Genes that were strongly bound in

both cell types included HSPA4L and HSP90AB1 (Figure 3D).

We performed motif analysis to evaluate the 100 bp genomic

regions surrounding the peaks of HSF1 binding in each of these

groups. The HSE, comprised of adjacent inverted repeats of 50-
nGAAn-30, was the most enriched motif in all three groups (Fig-

ure 3E). The regions strongly bound in cancer but not in heat

shock were enriched in HSEs that had three such repeats (p

value = 8.8 3 10�106). They were also enriched in binding

elements for YY1, the so called ‘‘ying-yang’’ transcription factor

that is involved in activating and repressing a broad range of

genes (p value = 3.7 3 10�7). The regions strongly bound in

heat-shocked cells but not cancer were enriched for expanded

HSEs with a fourth 50-nGAAn-30 repeat (p value = 4.6 3

10�128). They also were enriched in an AP1/Fos/NRF2

(NFE2L2) binding site (p value = 1.4 3 10�24) as previously re-

ported for mammalian heat-shock genes. This variation in

binding motifs suggests the involvement of distinct coregulators

in establishing differential patterns of HSF1 occupancy. The

regions strongly bound by HSF1 in both cancer and in heat

shock, had features of both groups. They were enriched for

HSEs with three inverted repeats (p value = 1.3 3 10�125).

They were not enriched for the YY1 sites but were enriched for

the AP1/Fos and NRF2 binding site (p value = 5.2 3 10�7).

HSF1-Bound Genes form Distinct, Coordinately
Regulated Modules
Integrating our diverse data sets revealed a direct and pervasive

role for HSF1 in cancer biology (Figure 4A). Extending far beyond

protein folding and stress, HSF1-bound genes were involved in
554 Cell 150, 549–562, August 3, 2012 ª2012 Elsevier Inc.
many facets of tumorigenesis, including the cell cycle,

apoptosis, energy metabolism, and other processes. To gain

a more global view of the relationship between the genes most

strongly bound by HSF1 in cancer cell lines, we generated an

RNA expression correlation matrix through meta-analysis of

pre-existing data sets (Figure 4B). We used the UCLA Gene

Expression Tool (UGET) (Day et al., 2009) to query the extent

to which the expression of each HSF1-bound gene correlated

with every other HSF1-bound gene across all of the �12,000

human expression profiles that have been generated with Affy-

metrix HG U133 Plus 2.0 arrays and made available through

the Celsius database (Day et al., 2009). Hierarchical clustering

of this gene-gene correlation matrix revealed five major tran-

scription modules (Figure 4B).

The largest module was enriched for protein folding, transla-

tion, and mitosis. Genes within this dominant module showed

the strongest positive correlation with the expression of HSF1

mRNA itself. Many of these genes had indeed proven to be regu-

lated by HSF1 in our HSF1 shRNA knockdown experiments

(Figures 2, 4A and S4). A second, smaller module was positively

correlated with the first and strongly enriched for RNA-binding

genes. Many of these genes, too, were positively regulated by

HSF1 in our knockdown experiments (Figures 2, 4A, and S4).

The remaining three modules (center to lower right of the matrix)

were enriched for processes involved in immune functions,

insulin secretion, and apoptosis. All three of these modules

were negatively correlated with the largest module, suggesting

negative regulation by HSF1.

Activation of HSF1 in a Broad Range of Cancer
Specimens Taken Directly from Patients
Recently, we evaluated HSF1 expression and localization in

a cohort of breast cancer patients culled from the Nurses’ Health

Study (NHS) (Santagata et al., 2011). In that work, HSF1 was

cytoplasmic and expressed at low levels in normal breast epithe-

lial cells, but it accumulated in the nucleus of the majority of

tumor specimens. Here, we confirm that finding (Figures 5A,

5B and S5), combining samples from two independent breast

cancer collections representing all three major clinical subtypes

(see Extended Experimental Procedures).

Next, because our ChIP-Seq analysis showed that the HSF1

cancer program is engaged not just in breast cancer cell lines

but also in colon and lung cancer cell lines, we examined more

than 300 formalin-fixed surgical specimens taken directly from

patients. We included not only colon and lung cancer but also

a wide variety of other tumor types.

Normal cells adjacent to the tumor demonstrated low HSF1

levels and cytoplasmic localization of the protein. In contrast,

high-level expression of HSF1 and nuclear localization was

common (Figure 5C) across every cancer type we examined,

including carcinomas of the cervix, colon, lung, pancreas, and

prostate as well as mesenchymal tumors such as meningioma.

HSF staining was negative or weak in some tumors from each

cancer type (Figure5C).However, in those tumors,whereexpres-

sion was high, it was remarkably uniform across the sample, with

nearly all tumor cells expressing similar levels of nuclear HSF1.

To determine whether the high-level nuclear localization of

HSF1 detected by immunostaining was truly indicative of its
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Figure 4. Distinct, Coordinately Regulated Modules of HSF1-Bound Genes

(A) Graphical representation of the HSF1 cancer program integrating information on gene binding, regulation and function. The peak height is reflected in the

diameter of the circle (log2 peak height: range �3 to 9) and color intensity reflects gene regulation (average of log2 fold change in BPLER and MCF7 cells upon

HSF1 knockdown; red, positively regulated; green, negatively regulated; gray, no data available). Well-bound, differentially regulated genes as well as several

genes of biological interest are displayed.

(B) Gene-gene expression correlation matrix of HSF1-bound genes. Pair-wise correlation map is presented of the genes that were bound by HSF1 in at least two

of the three cancer cell lines (BT20, NCIH38, and SKBR3). The Pearson correlation coefficient relating normalized mRNA expression data for each gene pair was

assessed in nearly 12,000 expression profiles. Enriched GO (gene-ontology) categories for each module are shown. See also Figure S4.
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Figure 5. HSF1 Is Activated in a Broad Range of Human Tumors

(A) IHC shows strong nuclear HSF1 staining in human breast tumor cells (top) with adjacent normal breast epithelial cells (bottom) showing a lack of nuclear HSF1.

(B) Images of HSF1 IHC on breast cancer tissue microarray (TMA) cores. Heat map shows scoring of three TMAs. The top panel depicts data from two TMAs

(BRC1501 and BRC1502), containing 138 breast tumors of all major breast cancer subtypes. Progesterone receptor (PR), ER, and HER2were also evaluated. The

middle panel shows data from 161 triple-negative (TN) breast cancer cases. The bottom panel shows the lack of HSF1 nuclear expression in 16 normal mammary

tissue sections. A summary is provided in the bar graph (right).

(C) HSF1 IHC showing high-level nuclear staining in indicated tumors; T, Tumor; N, Normal adjacent tissue. A summary is provided in the bar graph.
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activation, we obtained human tumor samples from breast and

colon adenocarcinomas that had been cryopreserved and were

of a quality suitable for ChIP-Seq analysis (Figures 5D and S5).

Obtaining and processing such human tumor specimens for

a technique as demanding as genome-wide ChIP-Seq is highly

challenging. In addition, many potentially confounding factors

areunavoidable (e.g., cell-type heterogeneity due to thepresence

of blood and stromal elements, areas of necrosis andmicro-envi-

ronmental stress). Despite these difficulties, the distinct HSF1-

binding profile we had established with cultured cancer cell lines

was clearly conserved in those tumors that expressed high levels

of HSF1. Genes (such as ST13 and EIF4A2) that were strongly

bound byHSF1 in cancer lines butweakly bound after heat shock

in nontransformedcells,were also strongly bound in these human

tumor samples taken directly from patients (Figure 5E). Genes

that were weakly bound by HSF1 in cancer lines but strongly

bound after heat shock in nontransformed cells (such as HSPA6

and DNAJC7) were also weakly bound in patient tumor samples

(Figure 5E). These global similarities in HSF1-binding profiles

between cancer cell lines and tumor samples, as well as their

divergence from heat-shock profiles, were validated by principal

component analysis (Figure 5F).

An HSF1-Cancer Signature Identifies Breast Cancer
Patients with Poor Outcome
In our prior analysis of the Nurses’ Health cohort, HSF1 overex-

pression and nuclear localization was associated with reduced

survival (Santagata et al., 2011). That work, however, was based

entirely on HSF1 immunohistochemistry, an approach that is

inherently only semiquantitative. To acquire more precise and

molecularly defined information about the effects of HSF1 acti-

vation in cancer, we asked whether malignant potential and

long-term outcomes correlate with the HSF1 transcriptional

program identified above. We distilled an ‘‘HSF1-cancer signa-

ture’’ of 456 genes that were bound by HSF1 near their transcrip-

tion start sites (Figure 2). Expression of these genes (Table S4)

was interrogated in ten publicly available mRNA data sets

derived from breast cancer patients that had been followed for

an average of 7.58 years and had known clinical outcomes (refer-

enced in Table S5). In total, these cohorts encompassed nearly

1,600 individuals of diverse national and ethnic origin. We

divided each data set into two groups, those with high (top

25%) and those with low (bottom 75%) expression of the

HSF1-cancer signature. We performed Kaplan-Meier analysis

independently on each data set to assess potential associations

between the HSF1-cancer signature and patient outcome:

metastasis-free, relapse-free, or overall survival, depending on

the reported outcome parameter for that data set. One represen-

tative analysis is presented in Figure 6A, the remainder are

shown in Figure S6. High expression of our HSF1-cancer signa-
(D) ChIP-Seq analysis of human breast and colon cancer surgical resection speci

target regions defined in Figure 3A. For reference, the binding profiles for cance

parental heat-shocked cell lines (red) are included. HSF1 expression was evaluat

scored as in (B).

(E) HSF1 binding in cell lines compared to patient tumors. Average binding acro

SKBR3), parental heat-shocked cell lines (red), and patient tumors (cyan) are de

(F) PCA of HSF1 binding in heat-shocked parental cell lines (red), cancer cells lin
ture had a remarkable correlation with poor prognosis (HSF1-

CaSig; Figures 6B and S6). In nine of ten independent data

sets reported over the past 10 years, the p values ranged from

0.05 to < 0.0001.

Next, we considered a recent finding that many published

cancer signatures are not significantly better outcome predictors

than random signatures of identical size (Venet et al., 2011). We

performed Kaplan-Meier analysis on independent data sets to

evaluate associations between 10,000 individual randomly

generated gene signatures and patient outcome (compiled

data Table S4, example Figure 6C). Ameta-analysis of the breast

data sets showed that the HSF1-CaSig outperformed all 10,000

randomgene signatures (Monte Carlo p value across breast data

sets < 0.0001, Table S4).

Our HSF1-cancer signature wasmore broadly associated with

outcome than other well-established prognostic indicators

(Figures 6B and S6) including the oncogene MYC, the prolifera-

tion marker Ki67 and even MammaPrint, an expression-based

diagnostic tool used in routine clinical practice (Kim and Paik,

2010). Because various HSPs have been implicated as prog-

nostic markers for a range of cancers, including breast cancer

(Ciocca and Calderwood, 2005), we also tested many individual

HSP transcripts for possible association with outcome. None of

these genes, or even a panel of HSP genes, was as strongly

associated with poor outcome as our broader HSF1-cancer

signature (Figures 6B and S6).

HSF1 Activation Is an Indicator of Poor Outcome in Early
Breast Cancer
At the time of diagnosis, the majority of breast cancer patients

have ER+ tumors and early-stage disease (ER+/lymph-node-

negative tumors). A small fraction of these patients will experi-

ence a recurrence and might benefit from more aggressive

treatment, but it is currently very difficult to identify them in

advance. We found that our HSF1-cancer signature was signifi-

cantly associated with metastatic recurrence in women initially

diagnosed with ER+/lymph-node-negative tumors (p value =

0.0149) (Figure 6D).

To further probe the potential prognostic value of HSF1 in this

particularly challenging population, we returned to the Nurses’

Health Study cohort because it provides one of the largest

collections of patients with ER+/lymph-node-negative tumors

for evaluation (n = 947) and has the longest patient follow up.

Because RNA samples are not available from this collection (initi-

ated in 1976), we could assess only the levels and nuclear local-

ization of HSF1. Survival decreased as HSF1 nuclear levels

increased in a dose-dependent manner (p value = 0.0015; Fig-

ure 6E). This finding was validated by multivariate analysis that

showed high-level nuclear HSF1 to be associated with a nearly

100% increase in mortality (Table S6).
mens (patient tumors). Heat map depicting ChIP-Seq read density for all HSF1

r cell lines in culture (black; average across BT20, NCIH838 and SKBR3) and

ed by IHC in the same patient tumors used for ChIP-Seq (see Figure S5C) and

ss cancer cell lines in cell culture (black; average across BT20, NCIH838 and

picted for the representative target genes indicated.

es (black) and patient tumors (cyan). See also Figure S5 and Table S1.
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Figure 6. An HSF1-Cancer Signature Is Associated with Reduced Survival in Patients with Breast Cancer

(A) Representative data set (Pawitan et al., 2005) is shown from a meta-analysis of 10 publicly available mRNA expression data sets (Table S5) derived from

human breast tumors with known clinical outcome and representing a total of 1594 patients. Each column corresponds to a tumor, and each row corresponds to

a microarray probe for an HSF1-cancer signature (HSF1-CaSig) gene. Median levels of expression are depicted in black, increased expression in yellow, and

decreased expression in blue. Tumors are ordered by average level of expression of the HSF1-cancer signature, from low (blue) to high (yellow). Red bars indicate

deaths. Kaplan-Meier (KM) analysis of the tumors with high expression of the HSF1-cancer signature (top 25%, ‘‘High HSF1-CaSig,’’ yellow) versus low ex-

pressors (bottom 75%, ‘‘Low HSF1-CaSig,’’ blue) is shown.

(B) Log-rank p values for each of the indicated classifiers were calculated for each data set; results are displayed as a heat map. Corresponding KM curves are

provided in Figure S6.

(C) Random gene signature analysis of a representative data set (Pawitan et al., 2005). KM analysis on the data set to evaluate associations between 10,000

individual randomly generated gene signatures and patient outcome. The random signatures are binned and ordered from least significant to most significant by
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Figure 7. An HSF1-Cancer Signature Is

Associated with Reduced Survival in

Patients with Colon or Lung Cancers

(A) KM analysis of survival in patients with colon or

lung cancer based on Low HSF1-CaSig (blue) or

High HSF1-CaSig (yellow). Log-rank p values are

shown.

(B) Heat map of log-rank p values for each of the

indicated classifiers in four data sets is shown.

Corresponding KM curves are in Figure S7. See

also Tables S4 and S5.
HSF1-Cancer Signature Is Associated with Poor
Outcome in Diverse Human Cancers
Next, we asked whether the HSF1-cancer signature might have

prognostic value beyond breast cancer. Analyzing multiple inde-

pendent gene expression data sets that include outcomes data,

increased expression of the HSF1 cancer program in colon and

lung cancers was strongly associated with reduced survival

(Figures 7A and 7B). The HSF1-CaSig outperformed all 10,000

random gene signatures in these data sets (Monte Carlo p value

across data sets < 0.0001, Table S4). Again, our HSF1-cancer

signature was more significantly associated with outcome than

any individual HSP transcript or even a panel of HSP genes

(Figures 7B and S7). As expected, the MammaPrint expression

signature, which was computationally derived by using breast

cancers, was a poor indicator of outcome in lung and colon

cancers (significant in one of four data sets). Additional HSF1

signatures also comprising positively regulated genes (from

Module 1 and 2 of our gene-gene correlation analysis; HSF1-Ca-

Sig2) or containing both positively and negatively regulated

genes (HSF1-CaSig3) were also strongly associated with patient

outcome across tumor types (Table S4). We conclude that the

HSF1 cancer program that we have identified supports the

malignant state in a diverse spectrum of cancers because it

regulates core processes rooted in fundamental tumor biology

that ultimately affect outcome.

DISCUSSION

We have defined a distinct genome-wide transcriptional

program that HSF1 coordinates in malignancy. This program

includes some heat-shock proteins well known to be involved

in oncogenic programs, such as HSP90 (Whitesell and Lindquist,
the KM-generated test statistic. The Red arrow indicates the test statistic of the HSF1-CaSig. For reference, b

signature with the median test statistic (5,000th) and the random signature with the 95th percentile test statis

(D) KM analysis of individuals with ER+/lymph-node-negative tumors (Wang et al., 2005) with Low HSF1-Ca

(E) KM analysis of 947 individuals from the NHS with ER+, lymph-node-negative tumors expressing no, low, o

from the NHS (1976–1997). Log-rank p values are shown. See also Figure S6 and Tables S4, S5, and S6.
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2005). However, it differs fundamentally

from the HSF1 program induced by

thermal stress, in that it includes many

genes that are not induced by heat shock

and does not include many that typically

are. This cancer program is commonly

activated in a wide variety of human
malignancies. It is strongly associated withmetastasis and death

in at least the three cancers responsible for �30% of all cancer-

related deaths worldwide: those of the breast, colon and lung.

The very broad range of tumors in which we see immunohisto-

chemical evidence of HSF1 activation suggests it will play

a pervasive role throughout tumor biology.

What types of cellular processes does HSF1 regulate in

cancer? They constitute an astonishingly diverse group that

extends far beyond protein folding and includes energy metabo-

lism, cell cycle signaling, DNA repair, apoptosis, cell adhesion,

extracellular matrix formation, and translation. Some of these

processes were previously known to be affected by HSF1 (Dai

et al., 2007; Jin et al., 2011; Zhao et al., 2009). However, the

common assumption had been that HSF1’s effects were medi-

ated primarily by HSP chaperone activities (Jin et al., 2011;

Meng et al., 2010; Solimini et al., 2007). The remarkable breadth

of the HSF1 cancer program in humans explains why HSF1 is

such a powerful modifier of tumorigenesis in multiple animal

models (Dai et al., 2007; Jin et al., 2011; Zhao et al., 2009) and

why HSF1 was identified as one of only six potent metastasis-

promoting genes in a genome-wide screen for enhancers of

invasion by malignant melanoma cells (Scott et al., 2011).

Not only is the repertoire of HSF1-regulated genes in cancer

much larger than just heat-shock genes, but even the manner

in which some of the classical heat-shock genes are regulated

differs. For example,HSPA6 (HSP70B’), a pillar of the heat-shock

response, differs dramatically in these two states. Following heat

stress, HSPA6 is the most highly induced of all mRNAs, yet,

surprisingly in cancer, HSPA6 is only bound very weakly by

HSF1. Its expression is not changed following HSF1 depletion

and its transcript level does not correlate with that of HSF1 in

our meta-analysis of 12,000 gene expression experiments.
lack arrows indicate the test statistic of the random

tic.

Sig (blue) or High HSF1-CaSig (yellow).

r high nuclear HSF1 as measured by IHC. Data are
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What could account for activation of a distinct HSF1-regulated

program in cancer? After many years of investigation, we do not

yet fully understand how HSF1 activity is regulated during the

classic heat-shock response. Multiple mechanisms have been

described. These include the release of HSF1 from its normal

sequestration by chaperones when unfolded substrates

compete for chaperone binding. But in addition, HSF1 is subject

to an extensive array of posttranslational modifications (at least

30) including acetylation, sumoylation, and numerous phosphor-

ylations (Anckar and Sistonen, 2011).

Some of these heat-shock regulatory mechanisms are likely

shared by cancer cells. For instance, impaired protein homeo-

stasis driven by the accumulation of mutant, misfolding-prone

oncoproteins, aneuploidy, and the increased rate of translation

in cancer could chronically stimulate HSF1 activation by

releasing it from sequestration from chaperones (Anckar and

Sistonen, 2011). Dysregulation of signaling pathways in cancer

could also drive posttranslational modifications to HSF1. Some

of these (such as those responsible for phosphorylation at serine

326) will likely be shared with heat-shocked cells. But others will

likely be unique to cancer. Indeed, it seems extremely likely that

different mechanisms of activation will operate in different

cancers. Several pathways activated in cancer such as EGFR/

HER2 axis (Zhao et al., 2009), the RAS/MAPK (Stanhill et al.,

2006) or the insulin/IGFI-like growth factor system (Chiang

et al., 2012) have all been reported to alter HSF1 activity. Addi-

tional modes of cancer-specific regulation might include epige-

netic states common to cancer and proliferating cells and tran-

scriptional coregulators.

How might the distinct transcriptional program regulated by

HSF1 in malignancy have arisen? The association of this

program with metastasis and death points to an evolutionary

origin distinct from cancer itself. The broad range of cancer types

in which we find HSF1 activated suggests that this program orig-

inated to support basic biological processes. Indeed, the sole

heat-shock factor in yeast (yHSF), even at basal temperatures,

binds many genes that are involved in a wide-range of core

cellular functions (Hahn et al., 2004). These transcriptional

targets allow yeast not only to adapt to environmental contin-

gencies but also to modulate metabolism and maintain prolifer-

ation under normal growth conditions (Hahn et al., 2004; Hahn

and Thiele, 2004). As a result, yHSF is essential for viability, par-

alleling the importance of HSF1 for the survival and proliferation

of cancer cells (Dai et al., 2007). Activation of HSF1 may also be

required in animals in states of high proliferation and altered

metabolism such as immune activation and wound healing (Ro-

kavec et al., 2012; Xiao et al., 1999; Zhou et al., 2008). Moreover,

in diverse eukaryotes, HSF1 is a well-validated longevity factor;

nonclassical activation of this transcription factor could be highly

relevant in this context (Chiang et al., 2012; Volovik et al., 2012).

Ironically, the evolutionarily ancient role played by HSF1 in

helping cells to adapt, survive, and proliferate is co-opted

frequently to support highly malignant cancers. By enabling

oncogenesis, the activation of this ancient prosurvival mecha-

nism thereby actually impairs survival of the host. HSF1 activa-

tion in a particular tumor may reflect the degree to which

accumulated oncogenic mutations have disrupted normal phys-

iology even before overt invasion or metastasis occurs. This
560 Cell 150, 549–562, August 3, 2012 ª2012 Elsevier Inc.
interpretation would explain the impressively broad prognostic

value of our HSF1-cancer signature across disparate cancers

and even at early stages of disease. Clinical implementation

will require further refinement of the signature and validation in

tissue and RNA samples from multiple clinical cohorts. Such

studies are certainly warranted. As just one potential application,

it might aid in the identification of indolent tumors that do not

require intervention, reducing the burdens of unnecessary treat-

ment (Kalager et al., 2012). In addition to its prognostic value,

HSF1 and diverse regulators that activate it might prove useful

targets for cancer therapeutics.

Our understanding of the extensive role played by HSF1 in

supporting cancers continues to mature. The protein has been

defined for decades by its ability to coordinate chaperone

protein expression and enhance survival in the face of heat

stress (Christians et al., 2002; Ritossa, 1962). Although appreci-

ating the importance of these classical mechanisms, the role of

HSF1 is clearly much broader and deeper.
EXPERIMENTAL PROCEDURES

Cell Culture Methods

Cell lines were cultured as detailed in Extended Experimental Procedures.
ChIP-Seq and ChIP-qPCR

ChIP-qPCR and ChIP-Seq experiments were performed as described previ-

ously (Lee et al., 2006), with modifications detailed in Extended Experimental

Procedures.
Gene Expression Analysis

Lentiviral shRNA methods were described previously (Dai et al., 2007). Gene

expression analysis was performed as described in Extended Experimental

Procedures. Microarray data were deposited in NCBI Gene Expression

Omnibus. RT-PCR analysis, gene-gene correlation analysis of HSF1-bound

genes, and correlation of HSF1-bound gene expression with outcome is

detailed in Extended Experimental Procedures.
Immunohistochemistry and The NHS Analysis

Paraffin sections were stained with HSF1 antibody (Thermo Scientific, RT-629-

PABX) as detailed in Extended Experimental Procedures. The NHS is

a prospective cohort study initiated in 1976 (Hu et al., 2011; Tamimi et al.,

2008). For design and study population, and analysis, see Extended Experi-

mental Procedures.
Statistical Analysis

Correlation of gene expression with location of HSF1 occupancy was per-

formed by using a two-tailed Fisher’s Exact Test. P values for significance of

overlap between pairs of gene sets were generated by using the hypergeomet-

ric distribution. Statistical methods for ChIP-Seq analysis and the Nurses’

Health Study outcome data analysis are detailed in Extended Experimental

Procedures. Kaplan-Meier analysis was used to compare outcome events. P

values were generated by using the logrank test. For all other data, mean ±

standard deviation is reported and statistical significance between means

was determined by using a two-tailed t test.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and seven tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2012.06.031.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Cell Culture Methods
HME, HMLER and MCF10A cells were cultured in MEGMmedium supplemented as specified by the manufacturer (Lonza). BPE and

BPLER cells were cultured in WIT-I and WIT-T medium, respectively, in accordance with recommendations by the manufacturer

(Stemgent). The HME, BPE, HMLER and BPLER cells are available from the Ince laboratory upon request. BT474, H441, H838,

H1703, HCC38, HCC1954, HCT15, HT29, SKBR3, SW620 and ZR75-1 cells were cultured in RPMI-1640 medium supplemented

with 10% fetal bovine serum. BT20,MDA-MB-231, MCF7 and T47D cells were cultured in Dulbecco’smodified Eagle’s medium sup-

plemented with 10% fetal bovine serum.

ChIP Antibodies
For ChIP-Seq, HSF1 antibody (Santa Cruz, sc-9144) and normal rabbit IgG (Santa Cruz, sc-2027) were used. For ChIP-qPCR, HSF1

antibody (Santa Cruz, sc-9144) and, as a control, a second HSF1 antibody (Thermo Scientific, RT-629-PABX), were used. Similar

results were obtained and RT-629-PABX antibody data are reported. Additionally, (RNA polymerase II CTD repeat YSPTSPS anti-

body [4H8] (Abcam, ab5408) and normal rabbit IgG (Santa Cruz, sc-2027) were used, as indicated.

ChIP-Seq and ChIP-qPCR
For ChIP-Seq, 5x107 cells were used for each immunoprecipitation. For heat-shock, cells were transferred to a 42� (5% CO2) incu-

bator for 1 hr. ChIP and ChIP-Seq experiments were performed as described previously (Lee et al., 2006) with several modifications

(Novershtern et al., 2011). In place of RIPA buffer, immunoprecipitations were washed sequentially with buffer B (20mM Tris-HCl, pH

8.0, 150 mM NaCl, 2 mM EDTA, pH 8.0, 0.1% SDS and 1.0% Triton X-100), buffer C (20 mM Tris-HCl, pH 8.0, 500 mM NaCl, 2 mM

EDTA, pH 8.0, 0.1% SDS and 1.0% Triton X-100), buffer D (10 mM Tris-HCl, pH 8.0, 250 mM LiCl, 1 mM EDTA, pH 8.0, 1.0% Na-

Deoxycholate and 1.0% IGEPAL CA-630), and buffer TE (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0, 50 mM NaCl). Preparation

of the ChIP-Seq DNA library and deep sequencing using an Illumina Solexa genome analyzer were performed as described previ-

ously (Yu et al., 2009).

Images acquired from the Illumina sequencer were processed through the bundled Illumina image extraction pipeline. ChIP-Seq

reads were aligned to HG18 with ELAND software (Illumina). Identification of enriched genomic regions was performed as described

previously (Guenther et al., 2008). Briefly, each ChIP-Seq read (a maximum of two repeat reads were allowed) was extended 100 bp

to approximate the middle of the sequenced fragment. The extended fragments were subsequently allocated to 25 bp bins across

the genome. Read density for each bin was calculated and enriched bins were identified by comparison to a Poisson background

model using a p value threshold of 10�12. The minimum ChIP-seq read density required to meet this threshold for each data set

is indicated in Table S1. Enriched bins within 200 bp were combined to form enriched regions. Enriched regions less than 100 bp

were removed. Because of the nonrandom nature of background reads, enriched bins and regions were also required to have an

eight-fold greater ChIP-seq density versus a nonspecific control IgG immunoprecipitation performed under identical conditions.

All RefSeq genes that were within 8 kb of enriched regions were considered to be enriched genes. Enriched genes and regions

for all experiments are listed in Table S1. The raw data have been deposited in a public database (NCBI Gene Expression Omnibus).

The unions of all HSF1 enriched regions identified by ChIP-Seq (Table S1) in each sample were merged to identify a global set of

regions. Short reads overlapping these regions were quantified by using HTSeq-count (http://www-huber.embl.de/users/anders/

HTSeq/doc/count.html). The countsmatrix wasmedian-normalized by using the total number ofmapped reads. After adding 1 pseu-

docount, counts were log2-normalized and analyzed by principal components as implemented by the MADE4 program in Biocon-

ductor (Culhane et al., 2005).

Preparation of human breast and colon tumors for ChIP-seq was performed by using 300 mg of cryopreserved material. Frozen

tumor tissuewas retrieved from the Brigham andWomen’s Hospital (BWH) Tissue Bank in accordancewith the regulations for excess

tissue use stipulated by the BWH institutional review board. Frozen sections for immunohistochemistry were prepared using a cryo-

stat from adjacent tissue. Frozen samples were processed for ChIP-Seq using a tissue pulverizer, and thismaterial was subsequently

suspended in PBS and passed serially through needles of increasing gauge. This suspension was then fixed for 10 min and the pellet

was processed as described above.

For ChIP-qPCR, 53 106 cells were used for each immunoprecipitation. The protocol wasmodified as described above. RT2 SYBR

Green qPCR Mastermix (SABiosciences) was used with the indicated oligo pairs (Table S7) on a 7700 ABI Detection System.

Gene Expression Analysis
Lentiviral shRNA sequences, viral production and transduction of cells have been described previously (Dai et al., 2007). RNA was

purified following extraction with TRIzol reagent (Invitrogen, #15596-026), 60 hr after viral infection. Protein lysates of concurrent

infections were prepared in TNES buffer consisting of 50mMTris, pH 7.4; NP-40 1%; EDTA 2mM; NaCl 200mMplus protease inhib-

itor cocktail (Roche Diagnostics, Cat# 11836153001). Protein concentration was measured by BCA assay (Thermo Fisher Scientific

23227) and 15 mg total protein/lane was analyzed by SDS-PAGE and immunoblotting using rat monoclonal anti-HSF1 antibody cock-

tail (Ab4, Thermo Scientific, 1:1,000 dilution) and Actin Monoclonal Antibody (mAbGEa; clone DM1A, Thermo Scientific, 1:1,000).

Because prolonged depletion of HSF1 is toxic to malignant cells (Dai et al., 2007), we analyzed mRNA expression early, before
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HSF1 knockdown was complete and cell viability was grossly impaired. Thus, results likely underestimate the effects of HSF1 on

gene expression in malignant cells. For gene expression after heat-shock, cells were transferred to a 42�C (5% CO2) incubator for

1 hr and allowed to recover for 30min in a 37�C (5%CO2) incubator before RNA extraction. Gene expression analysis was performed

by using an Affymetrix GeneChip HT Human Genome U133 96-Array Plate and data were analyzed by using previously described

methods (Ince et al., 2007). All microarray raw data were deposited in a public database (NCBI Gene Expression Omnibus

GSE38232).

For evaluating the effects of HSF1 knockdown on the expression of target genes, HSF1 was depleted by using siRNA (Dharmacon,

Lafayette, CO): M012109-01 siGenome SMART pool, Human HSF1 (target sequences: UAGCCUGCCUGGACAAGAA;CCACUUG

GAUGCUAUGGAC; GAGUGAAGACAUAAAGAUC; AGAGAGACGACACGGAGUU). siGLO RISC-Free siRNA (D-001600-01) and

siGENOME Nontargeting siRNA #5 (D-001210-05) were used as controls. Cells were transfected by using Lipofectamine RNAiMAX

Transfection Reagent (Invitrogen, #13778) and were harvested in Trizol (Invitrogen, #15596-026). RNA was purified by using Direct-

zol RNA MiniPrep (Zymo Research, Irving, CA). Quantitative PCR to evaluate mRNA levels was performed as described above by

using RT2 SYBR Green qPCR Mastermix (SABiosciences) and primer assay pairs (SABiosciences; Valencia, CA) on a 7700 ABI

Detection System.

Gene-Gene Correlation Analysis
Correlation values of HSF1-bound genes were determined by using the UCLA Gene Expression Tool (genome.ucla.edu/projects/

UGET) to query gene expression profile data collected in Celsius, a data warehousing system that aggregates Affymetrix CEL files

and associated metadata (Day et al., 2007; Day et al., 2009). Nearly 12,000 Affymetrix HG-U133 Plus 2.0 human gene expression

profiles, predominantly representing neoplasms of highly diverse human origin, were interrogated. A pair-wise correlation matrix

was built by assessing genes bound in at least two of the three cell lines with most robust HSF1 activation (BT20, NCIH838,

SKBR3). This generated 1042 genes. The final map as displayed contains 709 unique genes, with genes required to have an absolute

value of the correlation coefficient > 0.3 (jaj > 0.3) with at least 100 other genes. Data were ordered by using hierarchical clustering

(correlation centered, average linkage).

Correlation of Gene Expression with Outcome
The ‘‘HSF1-CaSig’’ was generated from the 456 genes that were bound in BPLER cells by HSF1 near their transcription start sites

(bound from�8kb to +2kb of the TSS) (Table S4 for list of genes). The HSF1-CaSig2 was generated from the genes found in Modules

1 and 2 of our gene-gene correlation analysis (Figure 4B). Genes within Module 1 showed strong positive correlation with the expres-

sion of HSF1 mRNA itself, and Module 2 was positively correlated with Module 1 (Table S4 for list of genes). The HSF1-CaSig3 was

derived by using three training data sets (Hou et al., 2010; Jorissen et al., 2009; Pawitan et al., 2005) Briefly, the 300 genesmost posi-

tively correlated and the 150 most negatively correlated (by t test statistic) with poor outcome were identified in each data set. Genes

present in at least two of three data sets in each group were assembled in the final HSF1-CaSig3 gene signature (Table S4 for list of

genes).

We used all breast cancer data sets with reported clinical outcome available in the Oncomine database (Rhodes et al., 2007) con-

taining at least 70 tumors, excluding several data sets based on older microarray platforms that were missing many currently anno-

tated genes. This left 10 high-quality data sets, the majority of which contained more than 150 tumors (Table S5). We stratified each

data set into two groups of tumors based on high (highest 25%) and low (lowest 75%) average expression of the gene or gene signa-

ture being queried. For analysis of the MammaPrint and the HSF1-CaSig3 gene signature, the subset of genes that positively corre-

late with poor outcome was positively weighted and the subset of genes that negatively correlate with poor outcome was negatively

weighted, as described previously (van ’t Veer et al., 2002; van de Vijver et al., 2002). Data for the three versions of the HSF1-CaSig for

KM analysis were retrieved from Oncomine (Rhodes et al., 2007).

All data for comparisons with random signatures were obtained from NCBI GEO and KM analysis was repeated (reported in Table

S4). If CEL files were available, Affymetrix microarrays were processed with RMA by using Bioconductor; otherwise, preprocessed

expression matrices were obtained fromNCBI GEO or author web sites. Monte Carlo cross validation was applied to contrast HSF1-

CaSig signatures with random signatures of genes of the same number. Random sets of signatures containing the same number of

probesets as each HSF1 signature were generated for each data set with a particular emphasis on U133A probesets (present on both

U133A and U133 Plus 2.0 arrays). The 10,000 random signatures were processed in the samemanner as the original signature, sort-

ing samples by increasing mean expression of each mean-centered probeset. Cancer samples, partitioned into the high and low

HSF1-CaSig as before, were then analyzed for survival with the log-rank test, producing 10,000 test statistics. Median p values

were calculated across a tumor subtype and Monte Carlo cross validation was applied.

Xenografts
5x106 HMLER and BPLER cells in a 50/50 mix of PBS/Matrigel were inoculated subcutaneously in the right inguinal region of each

mouse by using a 27 g needle. Tumors were removed, and fixed in 10% formalin. Following standard tissue processing, 5mMsections

were cut and immunostained as described below.
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Immunohistochemistry of Tissues and Scoring
Paraffin blocks of human tumor and normal tissue were obtained from the archives of BWH in accordance with the regulations for

excess tissue use stipulated by the BWH institutional review board. Tissue microarrays were purchased from Pantomics (Richmond,

CA) for carcinoma of the breast (BRC1501, BRC1502), cervix (CXC1501), colon (COC1503), lung (LUC1501), pancreas (PAC481) and

prostate (PRC1961). Whole sections of 40meningioma specimens were retrieved from the archives of BWH. A TMA of triple-negative

breast cancer cases was kindly provided by Dr. Andrea Richardson (BWH). Normal tissue cores on the TMAs and adjacent normal

tissues in the whole sections were used to evaluate expression of HSF1 in nonneoplastic tissues.

Formalin-fixed, paraffin-embedded (FFPE) sections were first deparaffinized. Frozen sections were first postfixed in 10% formalin.

FFPE or fixed-frozen sections were blocked with 3% H2O2 and antigen retrieval was performed by using a pressure cooker with

Dako citrate buffer (pH 6.0) at 120�C ± 2�C, 15 ± 5 PSI. Slides were blocked by using 3%normal rabbit serum, primary HSF1 antibody

(1:2000) was applied at room temperature for 40min, followed by a 30min incubationwith Dako Labeled Polymer-HRP anti-rat IgG as

a secondary antibody. Visualization was achieved with 3, 30 - diaminobenzidine (DAB) as a chromogen (Dako Envision+ System).

Counterstaining was performed with Mayer-hematoxylin.

Immunostained sections were scored independently by two pathologists (SS and TAI) by using light microscopy. HSF1 immunos-

tains of FFPE tumor sections were scored by using a 0 to 25 scale in Figure 5. The percent of tumor cells staining with HSF1 was

quantified as (0) = 0%; (1+) = 1%–20%; (2+) = 21%–40%; (3+) = 41%–60%; (4+) = 61%–80%; (5+) = 81%–100%. The intensity of

nuclear staining was quantified 0 to 5+ relative to negative normal cells. The total HSF1 score was derived by multiplying the percent

scorewith the intensity score. Three tiers of HSF1 stainingwere defined based on total combined scores of less than 10 (Weak HSF1);

10-18 (Low-Positive HSF1), > 18 (High-Positive HSF1).

For the Nurses’ Health Study analysis, an individual value was assigned to each tissue core based on a semiquantitative review of

staining intensity with 0 for no nuclear staining, 1 for low-level nuclear staining and 2 for strong nuclear staining. Pathologists were

blinded to the survival outcomes of the participants and to the scores given by the other pathologist. Scoring averages were deter-

mined per case from values assigned to all evaluable cores from the two independent readings. The case status was recorded as

missing if diagnostic tissue was absent or if the staining was uninterpretable for all three cores from a case. The ER, PR and

HER2 status of each case was determined as previously described (Dawood et al., 2011).

Immunofluorescence was performed by using 1:250 dilution of rat monoclonal anti-HSF1-antibody cocktail (Ab4, Thermo Scien-

tific, 1:1,000 dilution), 1:100 dilution of rabbit polyclonal anti-p53 (Santa Cruz, #sc-6243) and with fluorescence labeled secondary

antibodies. The slides were then reviewed by standard fluorescence microscope.

The Nurses’ Health Study Design and Population, Exclusion Criteria and Statistical Analysis
121,700 female US-registered nurses between the ages of 30-55 completed a questionnaire on factors relevant to women’s health

with follow-up biennial questionnaires used to update exposure information and ascertain nonfatal incident diseases. The NHS

breast cancer tissue block collection and tissue microarray (TMA) assembly have been described previously (Hu et al., 2011; Tamimi

et al., 2008). This study included women with invasive breast carcinoma that were diagnosed between 1976 and 1996. Participants

were excluded from outcome analysis if they had in situ carcinoma only, stage IV breast cancer at the time of diagnosis or if HSF1-

status could not be evaluated due to missing cores. Outcome analysis was performed on 947 women. Kaplan-Meier analysis and

multivariate analysis are shown for this subset of early-stage ER-positive participants with lymph-node-negative disease. Covariates

considered in the multivariate model include age and date of diagnosis, estrogen receptor status, disease stage, tumor grade, radi-

ation treatment, chemotherapy and hormonal treatment. For statistical analysis the survival endpoint was death from breast cancer.

Deaths from other causes were censored. Survival curves were estimated by the Kaplan-Meier method and the log-rank test was

used to assess statistical significance. Cox proportional hazards regression models were used to evaluate the relationship between

HSF1-status and breast cancer-specific mortality after adjusting for covariates. All analyses were run with SAS version 9.1 statistical

software.
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Figure S1. BPLER Cells Are Highly Dependent on HSF1 for Survival and HSF1 Activation during Malignancy Is Distinct from its Activation by
Heat Shock

(A) HSF1 (green) and p53 (red) detected by immunofluorescence in HMLER or BPLER xenograft tumors established in mice. Staining for p53 identifies HMLER

and BPLER tumor cells. In HMLER cells, HSF1 signal is predominantly seen in p53-low stromal cells.

(B) Cells were plated and transducedwith either control lentiviral shRNAi constructs (Scramble or GFP) or lentiviral shRNAi constructs that target HSF1 (hA9, ha6).

Four days after transduction, the relative viable cell number was measured by a standard dye reduction assay (Alamar blue).

(C) Genomic distribution of the regions of HSF1 occupancy (promoter, intragenic or intergenic).

(D) Gene set enrichment analysis (GSEA) was performed by using the MSigDB web service (http://www.broadinstitute.org/gsea/index.jsp) on genes bound

strongly by HSF1 in cancer only (BPLER, only) or bound strongly by HSF1 in both cancer and heat-shocked cells (BPLER and HS). Complete GSEA results are

provided in Table S2.

(E) The sequencemotif corresponding to the HSE is strongly enrichedwithin regions bound strongly by HSF1 in BPLER at 37�C (BPLER only, top panel) and genes

that were well bound in both BPLER cells at 37�C and in the parental lines (HME and BPE) following heat shock at 42�C (lower panel). The ab initio motif discovery

algorithm MEME was used to analyze the 100 bp genomic regions surrounding t HSF1-binding peaks.

(F) HSF1 binding of the HSPD1/E1 locus in HMLER, BPLER, HME and BPE cells at 37�C andHME and BPE cells following heat shock at 42�C. Arrows indicate the

transcription start site of each gene. Reads per million total reads are shown.
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(G) ChIP was performed from HME, BPE, HMLER or BPLER cells with or without a 1 hr heat shock at 42�C by using the indicated antibodies (RNA: RNA

polymerase II, IGG: pre-immune control). Quantitative PCR was performed on enriched DNA with primers for either the promoter of HSPA6 (top panel), the

promoter of DHFR (middle panel) or an intergenic region (bottom panel) and normalized to input DNA. For clarity, HSPA6 enrichment in the RNA Polymerase IP

(top panel) is not shown.

(H) mRNA expression analysis showing the effect of heat shock on genes identified as strongly HSF1-bound in BPLER at 37�C (left) and genes identified as bound

strongly in both BPLER cells at 37�C and parental HME and BPE cells following heat shock (right). The latter group is more heat-shock responsive than the former

group. The two probes corresponding to HspA6 (HSP70B’) are indicated by an arrow. Related to Figure 1.
S6 Cell 150, 549–562, August 3, 2012 ª2012 Elsevier Inc.



Figure S2. HSF1 Depletion by shRNA in HMLER, BPLER and MCF7 Cells

Equal amounts of total protein isolated from cells following infection with the indicated lentiviral shRNA constructs were subjected to immunoblotting by using an

HSF1 antibody (Ab4). ACTB (beta-Actin) was used as a loading control. Related to Figure 2.
Cell 150, 549–562, August 3, 2012 ª2012 Elsevier Inc. S7
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Figure S3. Spectrum of HSF1 Binding across Select Genes in Established Breast Cell Lines
(A) ChIP, with indicated antibody, was performed by using chromatin from the indicated cell lines. Quantitative PCRwas performed on enriched DNAwith primers

corresponding to the indicated genomic regions and normalized to input DNA. Two biological replicates, each of which contained three technical replicates were

performed. Data are shown as mean ± standard deviation.

(B) Scatter plot of HSF1 occupancy at the indicated genes in 12 breast cell lines. Genes are ordered by average level of HSF1 binding, from low (intergenic, top) to

high (HspD/E1, bottom).

(C) Heat map of the HSF1-binding data depicted in (A). Low-level HSF1 binding is indicated in black and higher levels of HSF1 binding are depicted in yellow. Cell

lines are ordered by average level of HSF1 occupancy across all genes, from low (MCF10A) to high (SKBR3).

(D) Immunoblot showing HSF1 levels in the cell lines used for the ChIP-Seq experiment presented in Figure 3. Beta-actin (ACTB) was used as a loading control.

(E) HSF1 binding for representative genes (CKS2, LY6K, RBM23, CCT6A, and CKS1B) is shown. Arrows indicate transcription start site of each gene. Reads per

million total reads are shown. Related to Figure 3.
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Figure S4. Regulation of HSF1-Target Genes

(A) Quantitative PCR was performed to evaluate expression of selected genes after knockdown of HSF1 by using siRNA oligos (48 hrs posttransfection) in five

cells lines (Breast: BT20, MCF7; Colon: HCT15, HT29; Lung NCIH838). Heat map depicts the average fold-change following transfection with two control siRNA

(siGLO RISC-Free siRNA and siGENOME Nontargeting siRNA #5) and the fold-change induced by HSF1 knockdown with siGenome SMART pool siRNA-Human

HSF1. Yellow: positively regulated; blue: negatively regulated.

(B) Western blot of HSF1 (Ab4 antibody) from cell lysates harvested in parallel with samples used to generate mRNA for the quantitative PCR shown in (A). siCntrl

1: siGLO RISC-Free siRNA; siCntrl 2: siGENOME Nontargeting siRNA #5. siHSF1: siGenome SMART pool siRNA-Human HSF1. ACTB is the loading control.
Related to Figure 4.
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Figure S5. HSF1 Expression by IHC in Additional ER+, HER2+, Triple-Negative Tumors as Well as Patient Breast and Colon Tumors

Immunohistochemical (IHC) staining (brown) with an anti-HSF1 antibody (Ab4) of formalin-fixed paraffin-embedded human surgical specimens of (A) normal

mammary tissue or (B) the indicated breast cancer subtypes. Blue staining nuclei with Mayer-hematoxylin counterstain are negative for HSF1. ER+ (estrogen

receptor positive); TN (triple negative).

(C) IHC staining of frozen sections of breast and colon tumors used for tumor ChIP-seq analysis in Figure 5D. The level of nuclear HSF1 signal is reported in

Figure 5D as HSF1 IHC Grade. Related to Figure 5.
S10 Cell 150, 549–562, August 3, 2012 ª2012 Elsevier Inc.
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Figure S6. Kaplan-Meier Outcome Curves for Each of the Breast Cancer Data Sets Evaluated in Figure 6B

Meta-analysis of 10 publicly available mRNA expression data sets of breast cancer patients. Kaplan-Meier (KM) analysis of patient outcome using the indicated

classifiers is shown. For HSF1 activation, tumors with an average expression value of the HSF1-cancer signature in the top 25th percentile were called ‘‘High
HSF1-CaSig’’ (red) and the remaining tumors were called ‘‘Low HSF1-CaSig’’ (green). KM curves highlighted in yellow had log-rank p values < 0.05. Related to

Figure 6.
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Figure S7. Kaplan-Meier Outcome Curves for Each of the Colon and Lung Cancer Data Sets Evaluated in Figure 7B

Meta-analysis of four publicly available mRNA expression data sets of colon and lung cancer patients. Kaplan-Meier (KM) analysis of patient outcome using the

indicated classifiers is shown. For HSF1 activation, tumors with an average expression value of the HSF1-cancer signature in the top 25th percentile were called

‘‘High HSF1-CaSig’’ (red) and the remaining tumorswere called ‘‘LowHSF1-CaSig’’ (green). KM curves highlighted in yellow had log-rank p values < 0.05. Related

to Figure 7.
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