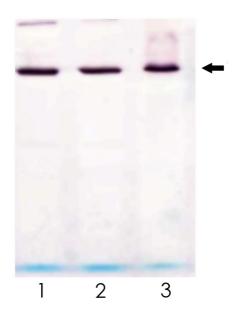
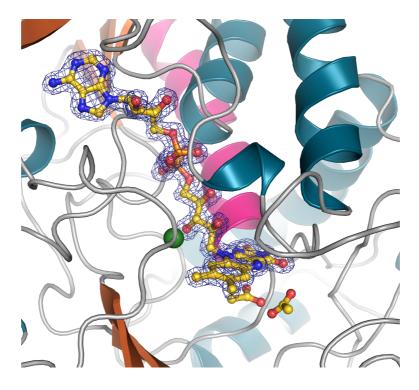
SUPPLEMENTAL DATA

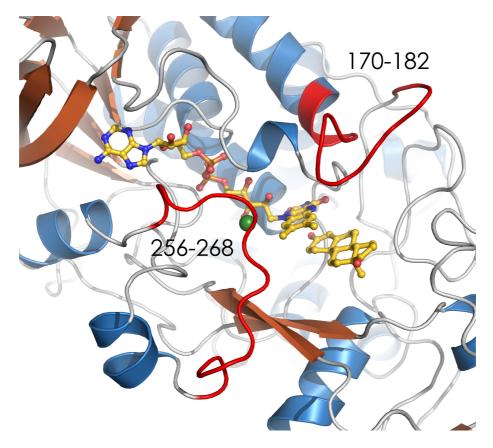

Structure and catalytic mechanism of 3-ketosteroid- $\Delta 4$ -(5α)-dehydrogenase ($\Delta 4$ -(5α)-KSTD) from *Rhodococcus jostii* RHA1*

Niels van Oosterwijk 1,2 , Jan Knol 1,3 , Lubbert Dijkhuizen 3 , Robert van der Geize 3 and Bauke W. Dijkstra 2

²Laboratory of Biophysical Chemistry and ³Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands


TABLE OF CONTENTS

- Supplemental Figure 1
- Supplemental Figure 2
- Supplemental Figure 3
- Supplemental Table I


Supplemental Figure 1

Activity-stained native PAGE gel of $\Delta 4$ -(5α)-KSTDs from *R. erythropolis* SQ1 (lane 1), *R. rhodochrous* DSM43269 (lane 2) and *R. jostii* RHA1 (lane 3). $\Delta 4$ -(5α)-KSTD activity was visualized (black arrow) by incubating a native PAGE gel loaded with cell-free extracts (30-50 µg of protein) in a Tris-HCl buffer containing the electron acceptors phenazine methosulphate and nitro blue tetrazolium, as well as the substrate 1-(5α)-androstene-3,17-dione (1-(5α)-AD).

Supplemental Figure 2

FAD binding in $\Delta 4$ -(5 α)-KSTD. The electron density around the FAD is shown at 1σ . The C-terminal helix, which is thought to provide a helix dipole moment important for the reaction, is shown in pink. The FAD and acetate molecules are yellow and the chloride ion is shown in in green.

Supplemental Figure 3

Two loops (residues 170-182 and 256-268, shown in red) close to the active site. Both show less well-defined electron density, which suggests flexibility of these loops. The FAD and 4AD are shown in yellow and the chloride ion in green.

Supplemental Table I – Sequences of sense primers for site-directed mutagenesis The mutated nucleotides and corresponding amino acids are printed in bold.

Mutation	Primer										
W136A	tgg W	ggc G	gaa E	ccc P	gga G	gcg A	gaa E	ccc P	ccg P	ttc F	gac D
W136F	gg	ggc G	gaa E	ccc P	gga G	ttc F	gaa E	ccc P	ccg P	ttc F	gac D
Y319F	gtt V	ccg P	gag E	gac D	acc T	ttc F	tcc S	ggg G	cgg R	atc I	gg
Y466A	gtg V	tgc C	gcg A	ggc G	ggc G	gcc A	gcc A	agc S	ggc G	acc T	tcg S
Y466F	gtg V	tgc C	gcg A	ggc G	ggc G	ttc F	gcc A	agc S	ggc G	acc T	tcg S
S468T	gcg A	ggc G	ggc G	tac Y	gcc A	а с с Т	ggc G	acc T	tcg S	ctc L	gg