Supplemental Materials

Figure Legends

Supplemental Figure 1: Flowchart of phiSpy.

Supplemental Figure 2: An example of how to calculate the parameter transcriptional

strand orientation.

Supplemental Figure 3: Permutation distribution for four different test statistics. The blue

line indicates the observed difference of the mean/median of the two distribution of skew.

The permutation Achieved Significant Level (ASL_{perm}) leads to rejection of the null

hypothesis for all four statistics. (A) the distribution for customized AT skew and the

observed differences of mean. (B) the distribution for customized AT skew and the

observed differences of median. (C) the distribution for customized GC skew and the

observed differences of mean. (D) the distribution for customized AT skew and the

observed differences of median.

Supplemental Figure 4: Median protein length difference for bacteria (■) and phages

 (\Box) . For bacteria, the difference is the median length of all proteins in the genome and

the median of all bacterial proteins in the genome. For phages, the difference is the

median length of all proteins in the genome and the median of all phage proteins in the

genome. The median difference is higher for phage proteins than bacterial proteins.

Supplemental Figure 5: Flowchart of performance analysis.

1

Supplimental Table 1: List of 41 bacterial genomes, which have manually annotated prophages.

Bacillus halodurans C-125

Bacillus subtilis subsp. subtilis str. 168

Bifidobacterium longum NCC2705

Brucella melitensis 16M

Caulobacter crescentus CB15

Clostridium perfringens str. 13

Clostridium tetani E88

Deinococcus radiodurans R1

Escherichia coli CFT073

Escherichia coli K12

Escherichia coli O157:H7

Escherichia coli O157:H7 EDL933

Haemophilus influenzae Rd KW20

Lactococcus lactis subsp. lactis Il1403

Listeria innocua Clip11262

Listeria monocytogenes EGD-e

Mesorhizobium loti MAFF303099

Mycobacterium tuberculosis CDC1551

Mycobacterium tuberculosis H37Rv

Neisseria meningitidis MC58

Neisseria meningitidis Z2491

Pasteurella multocida subsp. multocida str. Pm70

Pseudomonas aeruginosa PAO1

Pseudomonas putida KT2440

Ralstonia solanacearum GMI1000

Salmonella enterica subsp. enterica serovar Typhi str. CT18

Shewanella oneidensis MR-1

Shigella flexneri 2a str. 301

Staphylococcus aureus subsp. aureus Mu50

Staphylococcus aureus subsp. aureus MW2

Streptococcus agalactiae 2603V/R

Streptococcus pyogenes M1 GAS

Streptococcus pyogenes MGAS315

Streptococcus pyogenes MGAS8232

Streptomyces coelicolor A3(2)

Vibrio cholerae O1 biovar eltor str. N16961

Xanthomonas axonopodis pv. citri str. 306

Xylella fastidiosa 9a5c

Xylella fastidiosa Temecula l

Yersinia pestis CO92

Yersinia pestis KIM

Supplemental Table 2: Prophage prediction in 45 complete bacterial genomes, which has a closely related training organism

Training Organism	Organism	Known Prophage	Probable Prophage	Undefined
Brucella melitensis	Brucella suis 1330	0	0	0
Caulobacter crescentus	Caulobacter sp. K31	1	0	0
Escherichia coli K12	Escherichia coli ATCC 8739	3	0	0
Escherichia coli K12	Escherichia coli CFT073	5	0	0
Escherichia coli K12	Escherichia coli E24377A	6	1	0
Escherichia coli K12	Escherichia coli 0157:H7	16	0	0
Escherichia coli K12	Escherichia coli W3110	3	0	0
Listeria innocua	Listeria monocytogenes EGD-e	1	0	0
Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis CDC1551	2	0	0
Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis CDC1331 Mycobacterium tuberculosis H37Ra	2	0	0
Pseudomonas putida KT2440	,	3	0	0
	Pseudomonas putida W619	3	0	0
Pseudomonas putida KT2440	Pseudomonas syringae pv. phaseolicola 1448A	-	-	_
Pseudomonas putida KT2440	Pseudomonas syringae pv. tomato str. DC3000	4	0	0
Escherichia coli K12	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67		1	0
Escherichia coli K12	Salmonella enterica subsp. enterica serovar Typhi str. CT18	11	0	0
Escherichia coli K12	Salmonella typhimurium LT2	6	0	0
Shewanella oneidensis	Shewanella baltica OS185	4	0	0
Shewanella oneidensis	Shewanella baltica OS195	3	0	0
Shewanella oneidensis	Shewanella sp.ANA-3	0	0	0
Escherichia coli K12	Shigella flexneri 2a str. 2457T	20	0	0
Escherichia coli K12	Shiqella flexneri 2a str. 301	8	0	0
Staphylococcus aureus subsp. aureus Mu50	Staphylococcus aureus RF122	2	0	0
Staphylococcus aureus subsp. aureus Mu50	Staphylococcus aureus subsp. aureus COL	1	0	0
Staphylococcus aureus subsp. aureus Mu50		3	0	0
Staphylococcus aureus subsp. aureus MW2	Staphylococcus aureus subsp. aureus Mu50	3	0	0
Staphylococcus aureus subsp. aureus Mu50		3	0	0
Staphylococcus aureus subsp. aureus Mu50	1 ' '	2	0	0
Staphylococcus aureus subsp. aureus Mu50		0	0	0
		2	0	0
Staphylococcus aureus subsp. aureus Mu50	Staphylococcus haemolyticus JCSC1435		-	
Staphylococcus aureus subsp. aureus Mu50	Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305	0	0	0
Xanthomonas axonopodis	Stenotrophomonas maltophilia K279a	3	0	0
Streptococcus agalactiae 2603V/R	Streptococcus agalactiae NEM316	0	0	3
Streptococcus pyogenes MGAS8232	Streptococcus pyogenes MGAS10394	6	1	0
Streptococcus pyogenes MGAS8232	Streptococcus uberis 0140J	0	1	0
Streptomyces coelicolor	Streptomyces avermitilis MA-4680	1	0	0
Xanthomonas axonopodis	Xanthomonas campestris pv. campestris ATCC 33913	1	1	0
Xanthomonas axonopodis	Xanthomonas campestris pv. campestris str. 8004	0	2	0
Xanthomonas axonopodis	Xanthomonas campestris pv. vesicatoria str. 85-10	1	0	0
Xylella fastidiosa 2a str. 301	Xylella fastidiosa M12	3	0	0
Xylella fastidiosa 2a str. 301	Xylella fastidiosa Temecula1	7	0	0
Yersinia pestis CO92	Yersinia enterocolitica 8081	3	1	0
Yersinia pestis CO92	Yersinia pestis biovar Medievalis str. 91001	5	0	0
Yersinia pestis CO92	Yersinia pestis KIM	4	0	0
Yersinia pestis CO92	Yersinia pseudotuberculosis IP 32953	5	1	0
Yersinia pestis CO92	Yersinia pseudotuberculosis IP 32933 Yersinia pseudotuberculosis YPIII	6	1	0
rersiiia pestis CO32	Total	166	10	3

Supplemental Figures:

Supplemental Figure 1

Supplemental Figure 2

Maximum consecutive genes in the same direction

Total # of genes = 17

- # of adjacent genes on opposite strands = 8
- % of adjacent genes on opposite strands = 8/17 %
- % of the maximum consecutive genes in the same direction = 4/17 %

Supplemental Figure 3

Supplemental Figure 4

Supplemental Figure 5

6

Permutation test for customized AT/GC skew:

For permutation test, two samples (F and G) were created. To create sample F, 190 prophages in 41 complete bacterial genomes were considered. Sample F consists of the absolute difference between the customized AT/GC skew of prophage genes and the customized AT/GC skew of prophages' flanking genes (same length of corresponding prophage). The size of sample F is 190.

To make the sample G, 800 different bacterial regions were randomly selected from 41 bacterial genomes. The absolute differences of the customized AT/GC skew of these regions and the customized AT/GC skew of the flanking genes of these regions was calculated for sample G. The sample size of G is 800.

Null hypothesis, H_0 : F = G

To test the null hypothesis we did the permutation test using both the difference of mean (mean of F – mean of G) and the difference of median (median of F – median of G). The test was done as follows:

- 1. The difference in means/medians between the two samples was calculated, which was the observed value of the test statistic.
- 2. Sample F and G were combined and randomly divided them into two groups (A and B) of size 190 and 800.
- 3. The difference in means/medians of group A and B was calculated and recorded.
- 4. Step 2 and 3 were repeated for 100,000 times.

Customized AT skew (mean)

Sampled permutation size, s = 100,000

Mean of Sample F = 0.06627

Mean of Sample G = 0.0555

The difference in mean between sample F and G, (say T) = 0.01076

The sampled permutation values where the difference in means is greater than T = 294

P value = 294/100000 = 0.00294 < 0.01

So we can reject the null hypothesis.

Customized AT skew (median)

Sampled permutation size, s = 100,000

Median of Sample F = 0.0539

Median of Sample G = 0.04408

The difference in median between sample F and G, (say T) = 0.0099

The sampled permutation values where the difference in medians is greater than T = 742

P value = 742/100000 = 0.00742 < 0.01

So we can reject the null hypothesis.

Customized GC skew (mean)

Sampled permutation size, s = 100,000

Mean of Sample F = 0.05445

Mean of Sample G = 0.04537

The difference in mean between sample F and G, (say T) = 0.00908

The sampled permutation values where the difference in means is greater than T = 830

P value = 830/100000 = 0.00830 < 0.01

So we can reject the null hypothesis.

Customized GC skew (median)

Sampled permutation size, s = 100,000

Median of Sample F = 0.04099

Median of Sample G = 0.03304

The difference in median between sample F and G, (say T) = 0.00794

The sampled permutation values where the difference in medians is greater than T = 1441

P value = 1441/100000 = 0.01441 < 0.05

So we can reject the null hypothesis.

T-test for the slope of the model of Shannon's index and the frequency of phage words:

There are two samples: bacteria and phages.

The sample size of bacteria, m = 401

The linear model of bacterial sample:
$$F = 5.85 \text{ H} + 0.014$$
 ... (1)

The sample size of phages, n = 600

The linear model of phage sample:
$$F = 8.57 H + 0.047$$
 ... (2)

We want to test whether the slope of these two equations are significantly different or not.

$$H_0$$
: $\beta_b = \beta_p$

$$H_A$$
: $\beta_b \neq \beta_p$

where, β_b is the slope of bacterial sample and β_p is the slope of phage sample.

T test for two independent unequal sample sizes:

$$t = \frac{\bar{\beta}_p - \bar{\beta}_b}{\sqrt{SE(\beta_p)^2 + SE(\beta_b)^2}}$$
 where, SE is the standard error.
$$t = \frac{8.9288 - 5.708284}{\sqrt{0.0224^2 + 0.02371^2}} = 9.87$$

Degree of freedom = m-2 + n - 2 = 997

In t table, for degree of freedom 1000 and p = 0.001, the value is 3.3. Our t = 9.87 > 3.3. So we can reject the null hypothesis.

That means the slope of the bacterial and phage samples are different.