Hydrogen Bond Formation between the Naturally Modified Nucleobase and Phosphate Backbone

Jia Sheng¹, Wen Zhang¹, Abdalla E. A. Hassan¹, Jianhua Gan¹, Alexei S. Soares², Geng Song³, Ren Yi³ and Zhen Huang¹*

¹Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA; ²Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA; ³College of Chemistry, and Key State Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China.

*To whom correspondence should be addressed. Tel: +1 404 413 5535; Fax: +1 404 413 5535; Email: Huang@gsu.edu

Modified Nucleosides and Nucleobases	No. in tRNA	No. in rRNA	No. in mRNA	No. in tmRNA	No. in snRNA	No. in chromosomal RNA	No. in other small RNA	Total No. in all RNA modifications (%) ^{b-d}
Uridine	35	11	2	2	4	2	1	41 (37.6)
Uracil	34	10	1	2	3	2	1	40 (36.7)
Uracil Position-5	26	2	0	1	0	1	0	28 (25.7)
Adenosine	18	5	4	0	3	0	0	21 (19.3)
Adenine	16	5	3	0	2	0	0	20 (18.3)
Cytidine	11	8	2	0	1	0	0	14 (12.8)
Cytosine	11	7	1	0	0	0	0	14 (12.8)
Guanidine	18	5	4	0	3	0	0	20 (18.3)
Guanine	16	4	3	0	2	0	0	18 (16.5)
Inosine	3	1	1	0	0	0	0	4 (3.7)
7-deazaguanine	7	0	0	0	0	0	0	7 (6.4)

Table S1. Numbers of Types of Modified Natural RNAs^a

a: based on the RNA modification database (http://rna-mdb.cas.albany.edu/RNAmods/)

b: no modification has been found on the phosphate backbones.

c: the total number of nucleoside modification types is 109

d: the total number of nucleobase modification types is 103

Figure S1. (A) X-ray crystal structure of A-form DNA **3b** $[5'-G(dU_{se})G(ms^5dU)ACAC-3']_2$ at 1.38 Å resolution (PDB ID: 3IKI). (B) Electron density map of ms⁵dU/A base pair, $\delta = 1.0$. (C) X-ray crystal structure of A-form DNA **3c** $[5'-G(dU_{se})G(mSe^5dU)ACAC-3']_2$ at 1.40 Å resolution (PDB ID: 3LTU). (D) Electron density map of mSe⁵dU/A base pair, $\delta = 1.0$. Yellow and green balls represent selenium and sulfur atoms of the modified moieties, respectively.

Entry	Oligonucleotides	Base Pair	Tm (°C)
1	5'-ATGGTGCTC-3' 3'-TACCACGAG-5'	T/A	40.3
2	5'-ATGG(⁵⁻⁰ T)GCTC-3' 3'-TACCA-CGAG-5'	^{5-O} T/A	40.1
3	5'-ATGG(^{5-S} T)GCTC-3' 3'-TACCA-CGAG-5'	^{5-S} T/A	39.8
4	5'-ATGG(^{5-Se} T)GCTC-3' 3'-TACCA-CGAG-5'	^{5-Se} T/A	39.3

Table S2. UV melting temperatures of the DNA duplexes containing 5-O-Me, 5-S-Me and 5-Se-Me

The melting temperatures of the 5-modified DNA duplexes were measured. Denaturation curves were acquired at 260 nm and with 1 cm path length at heating or cooling rates of 0.5 °C/min, using a UV-Vis spectrophotometer equipped with a six-sample thermo-stated cell block and a temperature controller. The experiments were performed using the DNA samples (duplexes, 1.0 μ M) dissolved in the buffer of 50 mM NaCl, 10 mM NaH₂PO₄-Na₂HPO₄ (pH 6.5), 0.1 mM EDTA, and 10 mM MgCl₂.