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- Supplementary Ma‘tenal bimodal, making it straightforward to separate the segment

into two classes, the ones with high or low read density
(Fig. S1). The segments with low read density are considered

SUPPLEMENTARY METHODS background or noise and hence they are ignored. The
) remaining high read density segments are retained, anaif tw
Source and Treatment of Annotations of them are directly adjacent, they are merged. Following

We wanted to take a conservative approach when identifyingg@ch iteration, the reads overlapping transcribed regioas
transcribed regions to avoid erroneously labeling trabedr ~ reémoved, and in the next iteration, regions with lower dgnsi
regions as 'novel’. Hence, we used the union of the RefsedNI” be deemed S|gn!f|cant. The algorithm terminates when no
(71), UCSC (72) and Ensembl (73) annotations for bothNeW transcribed regions are detected.

human and mouse. Our representation is such that each The algorithm takes as input a set of mapped RNA-Seq

isoform is represented separately in the annotation ancehen féads from one strand of one chromosome. This speeds up
many of the entries in our annotation will be mutually thecomputations significantly as each strand and chromesom

overlapping. To improve the coverage of the less well €an be analyzed independently. Add|t|onally, HaTriC has fo
annotated ncRNAs, we decided to include two collections ofParameters that need to be specified by the user, a lengéh scal
long ncRNAs from mouse that have previously been reported?Ver Which the data is coarse grained to reduce the noise
in the literature: the macroRNAs (74) and the lincRNAs (75). (Lbin), @ minimum () and a maximum Lax) length

In addition to protein-coding genes and ncRNAs, we alsoscale for the wavelets and a false detection rate (FDR) type
considered distal enhancers that had previously been definecut-off for the number of breakpoints and what densities to
experimentally. For mouse neurons, we used the list fromnclude (Prpr). The steps are outlined below:
Kim et al(76) and for HeLa cells, we used the list from . L
Heintzmanet al(77). Since the latter list contained many loci 1+ Calculate a histogram for each hinwith ¢; =log(1+
near annotated TSSs and close to H3K4me3 peaks, we first Z(”l)Lb“‘ rj), Where r; is the number of reads

X . . J=iLpin

filtered the list to remove any peaks that were near either of overlapping binj. In regions with high expression

those two elements. levels, such as exons, the variability can be very high.
In the human and mouse genomes there are a few thousand  Empirically, we have found that the performance of

very short (100 bp) ncRNAs (sRNA, snRNA, rRNA, tRNA, the algorithm is improved significantly if the reads are

snoRNAs) and some of them are expressed at extremely high  ayeraged over non-overlapping bins of lengftri».
levels. A complete list of these was obtained from the repeat

masker (78). Many of these very short RNAs overlap much 2. Calculate the Haar-wavelet coefficients (78);, for
longer annotated genes and hence they will cause a spike in each bini and length scal¢ = Lin .. Lmax

the read density profile which complicates the identifigatio

of transcribed regions. We address this issue by assigning ) k4291 k—i_9J
reads to these regions prior to any further analyzes and then s — log(1477.) — log(1+
removing the reads overlapping these regions before rgnnin RN oY S| ;::Z g(1+7%) ; g(1+7%)

HaTriC. A summary of the statistics for this category can be
found on the third line in Tab. 1 in the main text and Tab. S8. _ _
There are still a handful of short regions with very highread 3. Next, we collect a set of break poinks, corresponding

densities not just for the RNA-Seq data, but also for all ef th to locations with abrupt changes of the read density. For
ChIP-Seq data sets, including the negative control ChlP-Se each scalej, we first find all extrema of;; (i.e. local
input. Closer inspection of the DNA sequences at these loci minima and local maxima) and starting from the largest
reveals that they are identical to mitochondrial DNA or that absolute value, th&rpg fraction of the extrema with
they code for enzymes that are exported to the mitochondria. the highesth; ;| are selected. Since the same break point
We assume that these regions are experimental artifacts and ~ can be picked up by different length scales, a break point
the reads are removed altogether from the analysis. will only be included if there are no other points on the

list within 27— bps.

HaTriC algorithm for de novo transcript calling 4. At this point we may opt to add additional break
We have developed an iterative algorithm that can detect points that have been obtained through other means,
transcribed regionsi.e. regions with high RNA-seq read such as RNAPII peaks or transcription start sites from
densities, without relying on the annotation. For eaclatten, the annotation. We have found that the performance
the algorithm first uses a multi-scale wavelet-based agproa of the algorithm can be significantly improved by
for detecting break points; sites with sharp changes in RNA- incorporating RNAPII ChlP-Seq data. For each RNAPII
seq read-densities. A wavelet (79) can be thought of as & brie peak we add two break points, one halfway between
oscillation, and they are frequently used in signal pracgs® the center of the peak and its 5° edge and one
extract features with certain characteristics. The Hamarelet halfway between the center of the peak and its 3
corresponds to a square-wave and as such it is ideal fongjcki edge (as defined by the forward strand). The additional
up abrupt changes in read densities. break points are added regardless of the presence of
The break points are used to partition the genome into nearby break points. The extra information provided by
segments of low or high read-densities. Empirically, weehav the RNAPII peaks is particularly useful in gene-rich

found that the distribution of the segment read-density is regions.
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5. The average log density is calculated for each regionwhereN; is the number of reads ity that also overlap; and
between two adjacent break points. Empirically, we N; is the total number of reads it}. We also compute the
have found that the density has a bimodal profile whichdegree of overlap for the number of base pairs

can be accurately represented by a Gaussian mixture
model (GMM) with three components. Without loss of
generality, we assign the component with the lowest
mean index 0, the one with the second lowest mean
index 1 and the one with the highest mean index 2.

B.
b= i=1..k A3)

An expectation-maximization (EM) algorithm (80) was whereB; is the number of bps covered bythat also overlap
used to fit the parameters of the GMM. The probability g; and B; is the total number of bps covered by

p; that any region belongs to componémf the GMM
can be found as

e — 1¢(Mza0z) ’ 1)

> j=1wi(1g,05)

wherew; are the weights and(u,o) is the Gaussian
probability density for a function with meap and
standard deviatiomr. Segments that havey < PrpRr,
that is they do not belong to the first component of lowly
expressed segments, are considered transcribed regions.
Regions without any reads are excluded when fitting
the GMM and they are automatically set as being not
transcribed.

6. Segments that are adjacent are merged (including
segments identified during previous iterations) and
segments that are shorter thag;,, bps are removed.
Short segments may be created due to the addition of
break-points based on the RNAPII peaks in step 4.

7. If no new segments were found, the algorithm is

Each transcribed region;, was assigned to a category as
described below.

Annotated, correct If ¢; only overlaps one gené 1) and

if the gene is only overlapped by one transcribed region
and if 7;;>.8 and b;; >.8, then the pair #;,g;) is
considered uniguely matching. In many cases, however,
there will be multiple isoforms of a single gene and
there may be a sefl,, of isoforms for whichr; >

.8 and b; >.8. If all of the members ofl, overlap
one another, then we assume that they correspond to
different isoforms and we consideéy a unique match

to the gene with the largesy;.

If a gene is covered by more than one region, and one
of the transcribed regions satisfieg > .8 andb;; > .8

and the others havg; <.1 andb;; <.1 then thef; with

the largestr;; is considered uniquely corresponding
to the gene. Similarly, ift; covers two or three non-
overlapping genes and for one of theny >.8 and

b;j > .8 while for the otherr;; <.1 andb;; <.1, then it

is again considered uniquely matching.

terminated. Otherwise, reads that were included inAnnotated, incorrect There are two ways in which; may

transcribed regions are removed and the algorithm
proceeds with the next iteration from 1.

Finally, we can improve the resolution of the start and end
for each transcribed region. This is achieved by calculgtie
Haar-wavelet coefficients with scalévin for each basepair in
the region(s —2Emin s 2Lmin] hps, where is the start of the
transcribed region. For the start, we select the first logati
where the coefficient is greater than a given threshold which
has been chosen in such a way to requigg, /35 reads in
a region of length2lvin bps. This allows us to pick the first
site where the read density increases significantly. We have
found this procedure to be more robust as the simple approach
of picking the first local maxima for the coefficients in the
window is overly sensitive to noise. For the ends of tratsazti
regions, we use a similar strategy, but we instead search for
location where the coefficient has a negative value excgedin
the threshold and the search begins from the 3 -end.

end up in this category; if a gene has been incorrectly
split into multiple regions or it; spans multiple non-
overlapping genes.

e If a ¢; covers more than one gene and it does
not fulfill the above criteria for being uniquely
matching, then it is categorized adultiple
annotated genes

e If a gene is covered by more than one transcribed
region and at least two of them have>.1
and b; > .1, then it is considered to be split into
two or more transcripts, each of the transcripts
are categorized d@sragment of annotated gene
Similarly, ¢; will be assigned this category in the
few cases when either of the coveragesr b;
drops below .8 while the other one is above the
threshold.

Annotated ncRNA We use the same criteria as for

Classifying transcribed regions identified by HaTril®
determine if a transcribed regian uniquely corresponds to
an annotated geneg;, we first find allk genes on the same
strand that overlap;. For each pair,#(, g;), we calculate the
degree of overlap based on the number of reads

=tk @)

Annotated, correct when classifying transcripts
overlapping annotated non-coding RNAs. Transcribed
regions that overlap ncRNAs in an ambiguous manner
are categorized a&nnotated, incorrect (as described
above).

Unannotated, proximal Transcribed regions that start within

10 kb upstream of an annotated TSS on the anti-sense
strand.
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extragenic regions or are anti-sense (AS) with respect
to annotated genes further than 10 kb away from the
nearest annotated TSS. These regions are further broken
down into three sub-categories:

eRNAs Any ¢; starting within 2 kb of any of an
extragenic enhancer or on the anti-sense genic
strand within 2 kb of an intragenic enhancer is
categorized as an eRNA.

Other AS Remaining; that overlap an annotated gene
on the anti-sense strand.

Novel Remainingt; that do not fall into any other
category.

A central part of our analyzes involves categorizing reads,
transcribed regions, RFBSs and conserved islands. In all of
these cases we want to avoid double-counting and hence each

entity (read, RFBS, etc) is assigned to only one category.

Table S1 shows the number of transcribed regions found in
each category. For Tab. 1 in the Main Text, we started from thi

result, but we used the annotation to correct the miscaitasgbr

transcripts and genes. We also used the more sensitive dnetho

described below to find additional transcribed regions.

Characterizing the transcriptome by combining the
annotation, HaTriC and regions found near Regulatory
Factor Binding Sites (RFBSSs)

To characterize the transcriptome, we assigned each read
uniquely to a transcribed region. To define the transcribed
regions in the most accurate way possible, as reported in Tab
S7, Fig. S4 and Tab 1 in the main text, we combined the

annotation, the HaTriC transcript-caller, and a targetsdch

close to enhancers and RFBSs. Below, we describe how each
category of transcribed regions was defined, as well as the
criteria for assigning reads to each category. We congidere

the categories sequentially, and at each step we identified. Novel (HaTriC-defined) transcript This
(and removed from further analysis) all reads that ovegapp

regions in the current category.

1. Protein-coding geneAnnotated protein-coding genes

were first separated into non-overlapping clusters.
From each cluster the longest regign, was extracted

as a representative of that cluster (this was done to
avoid double counting, and the majority of clusters
contain only one gene). If the average read density of
fell below a threshold, the region was ignored and the
reads were retained and made available for inclusion in
another category.

Next, we applied HaTriC and merged the identified
regions that had been categorized as corresponding to
a part of a geneRragment of annotated geng or
uniquely to a gene Annotated, correct) with their
overlapping genes. When two regiops and g/ are
merged, they are removed and a new regipnis

Nucleic Acids Research, 0000, Vol. 00, No. (®

Unannotated, distal Transcribed regions that are found in 2. Annotated non-coding geneHaving removed all reads

corresponding to annotated coding genes, we carried out
the same procedure for annotated non-coding genes.

When counting the number of reads in the two
categories relating to annotated genes (as reported in
Tab. 1, but not for the transcript read density reported
in Fig. S4, S7 and Fig. 2), we also assigned all sense
reads found within 10 kb upstream or downstream of
g; to the (protein-coding or ncRNA) genic category. As
reported by van Bakett al(81), these regions often
have a read density that is above the background levels
found in more distal regions.

3. Promoter AS Next, we searched for promoter AS

transcribed regiong,e., divergent transcribed regions
(82, 83). We started by searching all windows located
2 kb upstream of all annotated TSSs. If a window
contained more than reads, it was considered
significant. Most transcribed regions that were not
detected by HaTriC are shorter than 2 kb (see Fig.
S4), but to account for longer regions we extended the
search to the next 2 kb window upstream of the TSS
if the TSS proximal window contained more thag
reads. Additional windows were investigated until a
window containing fewer thamg reads was found.
For a set of adjacent 2 kb windows, the length of the
transcribed region is defined as the maximum distance
between all pairs of reads found in these windows.
We refer to the procedure where subsequent 2 kb
windows are scanned asvandow-based searchlhe
threshold was set tey =9 reads in a 2 kb window for
the mouse neurons amg =5 reads for the HelLa cells,
corresponding to an FDR of .001. The regions detected
using the window-based search were merged with all
regions identified by the transcript caller with the label
Unannotated, proximal.

category
corresponds to long unannotated transcripts and hence
we simply assign all regions categorized by HaTriC
as Unannotated, distal to this class. Since there are
occasionally low numbers of reads close to the starts
and ends of the unannotated transcribed regions (similar
to how promoter AS reads are found near annotated
TSSs), we carried out a window based search upstream
and downstream of the transcribed regions. Any reads
found from the window-based search was included in
the total read count reported in Tab. 1 in the Main Text
and Tab S1.

5. Other (HaTriC-defined) AS transcript We first applied

the window-based search to the AS strand downstream
of all RFBSs overlapping annotated genes. The regions
obtained using the window-based method are merged
with the ones found by HaTriC and categorized as
Other AS.

created. The new region contains the union of the reads. Extragenic enhancer RNA, Intragenic enhancer RNA

from g; andg;, and it extends from the 5"-most endgef
andg] to the 3"-most end of; andg;. The transcribed
regionsg; were frequently longer than the annotation
would have predicted.

For extragenic enhancers, we applied the window-based
search in the downstream directions on both strands
and for intragenic enhancers, only the anti-sense
downstream window was considered. The regions
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obtained using the window-based method are merged 4. If the peak overlaps an annotated protein-coding gene

with all eRNA regions identified by HaTriC. but is further than 1 kb from the start, it is assigned to
. ) _ the “Overlaps exon of annotated protein-coding gene”
7. Associated with other H3K4me3 peaksSince ~  the or “Overlaps intron of annotated protein-coding gene”
H3K4me3 mark is strongly associated with active depending on its overlap with exons. Similarly, peaks
promoters, we wanted to make sure that we did not overlapping annotated ncRNAs are considered either
miss any significant transcription initiated from these “Overlaps exon of annotated ncRNAr “Overlaps
loci. For all extragenic RFBSs that were within 2 kb of intron of annotated NcRNA”

a H3K4me3 peak, we used the window-based method
on both strands to extract a set of transcribed regions. 5. If the peak does not fit into any of the previous

. . categories it is classified d&gnannotated extragenic”
8. Other RFBSs-associated RNAFor the remaining

extragenic RFBSs that did not have a H3K4me3 peak B e L
nearby, we again used the window-based method orldentlfylm‘:J and classifying conservation islands
both strands to extract a set of transcribed regions. ~ The third part of our analysis concerns the highly conserved
elements of the genome. Since our resolution for identifyin
9. Insulator-associated RNAFinally, for HeLa cells where poth transcribed regions and RFBSs is limited, it is not
we also have access to CTCF data, we applied théneaningful consider conservation at the level of individua
window-based method on both strands at CTCF peaks.bases. Instead, we take a coarse-graining approach tafydent
regions that are highly conserved, starting from the PrasC
Characterizing the remaining readdaving removed allreads  scores (as compared to 30 other vertebrates) (84). For both
that were associated with any of the nine categories abovehuman and mouse, the global distribution of PhastCons
we calculated the number of reads in non-overlapping 2 kbscores is bimodal with few bases showing intermediate $evel
bins covering the remainder of the genome. We fitted theof conservation. To obtain a more coarse-grained binary
distribution across the 2 kb bins to either a Poisson or arepresentation, we processed the PhastCons scores assfollo
negative binomial distribution and as shown in Fig. S2, the
latter provides a good fit for both mouse neurons and HeLa 1. First, the PhastCons scores are coarse-grained by
cells. calculating the average for non-overlapping 10 bp bins
across the genome.

Identifying and classifying RFBSs 2. Any bin with an average conservation greater than .9 is
As part of our goal of understanding the relationship betwee considered highly conserved. Highly conserved bins are
transcription, binding and sequence conservation, weeatkted labeled conserved islands.

to categorize the regulatory factor binding sites (RFBSSs).

For mouse neurons, we used the same list of peaks as in 3. To avoid fragmenting the genome too finely, bins that

our previous work where a description of the peak calling are within 100 bp are merged into conservation islands.
algorithm can be found (76). For the HeLa cells, we obtained This reduces the total number of islands £%0%,
the peaks by downloading .narrowPeak-files for DNasel, but the number of genomic bases covered increase by

H3K4me3 and the TFs listed in Tab. S2 from the ENCODE ~20%.

websité. Peaks for different regulatory factors were identified

independently but when creating the final list of RFBSs Estimating the number of transcripts per cell
for a particular cell-type, overlapping peaks were merged t

avoid double-counting. Each peak from either collectioswa ¢ ¢anscripts based on the read density and length for each
assigned to a category according to the scheme outline@helo .o \qcrined region. The normalized read density (reads per
and the results are reported in Tab. S3. We start with the fulk; Jhase per million, RPKM) is defined as

set of peaks, and once a peak has been assigned to a category,
it cannot be assigned to any further categories.

Following Mortazaviet al (85), we estimated the number

109@
= 4
NL’ “)

1. If the peak was within 1 kb of an annotated TSS, it T
is considered'Promoter of annotated protein-coding
gene”or “Promoter of annotated ncRNAfor annotated ~ wherer; is RPKM, ¢; is the number of reads that were found
coding genes and ncRNAs, respectively. in the region,\V is the total number of reads in the experiment
and L is the total genome length. To calculate the number of
transcripts that are present from a given region, we note tha
the probability of obtaining:; out of V reads for a region of
lengthl;, assuming that the reads are uniformly distributed to
3. If the peak was within 1 kb of the start of Novel the mappable regions of the genome is (_equal to the proportion
transcribed region it is assigned to tHeromoter of of the tptal length of the genome multiplied by the number of
novel ncRNA’category. transcripts

2. If the peak was within 1 kb of an enhancer
it is classified as eithefIntragenic enhancer” or
“Extragenic enhancer’

Ihttp://hgdownload.cse.ucsc.edu/goldenPath/hg18¢=iaG C/
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we implemented the so-called H-rule, which designates any
stretch of 20 or more bases with only A, C or T as a MAR.
We used the H-rule to identify MARs in both the mouse
and human genomes. Figure S10 shows the overlap between
MARs and conserved islands for different stringencies

Wherexi is the Copy_number for the transcript andis the and |t iS Clear that no more than 4% of the Unannotated
length of the transcript. Assuming a uniform distributioh o conserved islands can be explained by MARs. To determine
reads across transcripts, the fraction of reads shouldl equdhe significance of the overlap, we carried out a permutation

¢;/N. Combining with Eq. §) and solving forz;, we obtain ~ Study whereby all the MARs were distributed randomly
throughout the genome. As shown in Fig. S10, this reveals

‘ that the enrichment is between 30% and 50% greater than
L
=T (6) expected by chance.
(2

xil;

P(ci|N) ==+, ®)

) ) _ Estimating the overlap of RFBSs from multiple cell types
The scale of; here is arbitrary and the relative amounts are
reported in Tab. 1 in the main text. To fix the scale, we needFor the DHSs, H3K4me3 and CTCF peaks, we downloaded

to find the total number of transcripts in the cell. To obtéia t data for 11 cell lines, Hepg2, GM12878, Jurkat, K562, Mcf7,

numbers used in Fig. S4, we assumed that there are 240,00804V2, Nhek, Pancl, Saec, SkmcV2, and Sknshra, from
polyadenylated mRNAs in the cell (86). ENCODE (88), and we categorized the RFBSs as described

in Section . To assess the number of new RFBSs that are
discovered when a new cell-type is investigated, we first
selected one cell-type at random. Next, additional celesyp
were selected at random and the number of new RFBSs
Our goal was to estimate how much of the extragenicdetected at each iteration was computed. As this procedure
conservation could be explained by exons of unannotatediepends on the order in which the cell types are selected, the
ncRNAs. Calculating the number of conserved bases undeprocedure was repeated 1,000 times and the average number
unannotated exons is complicated by the fact that HaTriG doeof discovered elements is reported in Fig. 3 in the Main text.
not provide us with the intron-exon structure of transadibe

regions. We assumed that the novel transcribed regions arp.yalue for the overlap between conservation islands and
spliced (75), and thus it is unlikely that all of the consefve REBSs

islands within an unannotated transcribed region are éacat . R
at exons. We used a hypergeometric test to assess the significance

We took a statistical approach to estimate the number of! the overlap between conserved islands and RFBSs. We
conserved islands explained by exons of novel transcribe@SSumed that there werg/100 loci in the genome that
regions. We assume that the novel ncRNAs have the sam§2n overlap a RFBSs and/or a conserved island, wiiere
conservation characteristics as the long ncRNAs (longerth 1S the total number of bps in the genome. Given the fotal
kb) found in the annotation. From the annotation, we esémat N"Umber of conserved islands and RFBSs, it is possible to

the average number of exons per transcribed kihe average calculate the_ probability of observing a given overlap unde
number of conserved islands per exen,and the average the assumption that both conserved islands and RFBSs are

number of conserved islands per promojerdefined as the randomly distributed throughou_t the genome. Th_e number
1 kb region upstream of the TSS (Tab. S7). Given a novel® RFBSSs found at conserved islands is much higher than
ncRNA of lengthl; kb, the expected number of conserved ON€ would expect based on a hypgrgeom.et_rlc distribution.
islands covered i9+ecl;. From Tab. S7, we find that the FOr example, in a 3 Gb genome with 1 million conserved

number of conserved islands/kb of novel ncRNAs is 0.43 andSlands and 40,000 RFBSs one would only expect 1,300 of
0.51 for Hs and Mm, respectively. the RFBSs to be conserved whereas we observe that 4,000

As a the worst case scenario, we consider all conserve@f the extragenic HelLa ucRFBSs are conserved (Tab. S2a).

islands that overlap with the annotated ncRNAs longer tharLn this case, a hypergeometric test with an overlap of 4,000
1 kb. The number of conserved islands is proportional to etweem subsets of sizes 40,000 and 1,000,000 out of a total

the length of the ncRNA and the slope 4¢0.7 conserved ©f 30,000,000 eIe_rrfgnts yields a highly significant p-vaha t

islands/kb for both Hs and Mm. is smaller thanl0™~". Similar calculations for the estimated
In contrast, estimating the overlap of RFBSs and conservedumber of ncRNA exons and promoters suggests a highly

islands is straightforward. Since a typical RFBS and a gipic Significant p-value{10~7).

conserved island are of comparable size, we label any RFBS

overlapping a conserved island as highly conserved.

Estimating overlap of novel ncRNAs and RFBSs with
conserved islands

Identifying MARs and estimating overlap with conserved
islands

Identifying MARs genome-wide using computational
approaches is challenging and the predictive power of all
methods available to date remains poor as reported in a
comparative study by Evanet al (87). To detect MARSs,
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Table S1. Categorization of transcribed regions detectedsing HaTriC for mouse neurons and HeLa cellsThe table shows the number of HaTriC-defined
transcribed regions that correspond to coding and nomgogiénes as well as to unannotated regions. For proteimgaiines, it is indicated whether the
transcribed regions span multiple genes or correspond tocamiplete fragment (portion) of a gene. Here the fraction adises calculated with respect to the
number of reads left after having removed the ones found atyhéxtpressed short ncRNAs, (S) is sense and (AS) is antiesens

Mouse neurons

Category #regions Fraction of Fraction  Fraction
transcripts  of reads  of genome
Matching a single protein-coding gene (S) 7492 0.612 0.544 0.094
Matching multiple annotated genes (S) 374 0.031 0.009 0.003
Matching portion of annotated gene (S) 2213 0.181 0.363 0.073
Matching a single annotated non-coding gene (S) 240 0.020 0.001 0.001
Starting within 10 kb of an annotated TSS (S or AS) 1508 0.123 0.002 0.004
Starting within annotated coding or non-coding gene (AS) 104 0.008 0.000 0.000
Starting within 2kb of an enhancer 52 0.004 0.000 0.000
Novel (HaTriC-defined) ncRNA 255 0.021 0.001 0.001
Hela
Category #regions Fraction of Fraction  Fraction
transcripts ofreads of genome

Matching a single protein-coding gene (S) 5987 0.692 0.587 0.060
Matching multiple annotated genes (S) 377 0.044 0.006 0.001
Matching portion of annotated gene (S) 1464 0.169 0.304 0.035
Matching a single annotated non-coding gene (S) 62 0.007 0.002 0.000
Starting within 10 kb of an annotated TSS (S or AS) 628 0.073 0.004 0.001
Starting within annotated coding or non-coding gene (AS) 26 0.003 0.000 0.000
Starting within 2kb of an enhancer 1 0.000 0.000 0.000
Novel (HaTriC-defined) ncRNA 103 0.012 0.002 0.000
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Table S2. Categorization of DNasel hypersensitive sites H5s) in HeLa cells and overlap between RFBSs and DNasel hypersstive sites.(a) Each DHS
was assigned to one of the non-overlapping categoriessepied at each row (Methods). The two columns show the totabeuof DHSs in each category,
including the fraction of the DHSs that overlap a consenganid. p) Around 90% regulatory factor binding sites overlap with 884 The only significant
exception is the insulator binding protein CTCF that appéabind in many locations that are not DHSs.

a
Annotation/HaTric-based category Hela
Peaks Conserved
Promoter of annotated protein-coding gene 29001 0.19
Promoter of annotated ncRNA 3030 0.16
Promoter of novel (HaTriC-defined) ncRNA 286 0.07
Extragenic enhancer 17607 0.16
Intragenic enhancer 12767 0.17
Overlaps exon of annotated protein-coding genel577 0.44
Overlaps exon of annotated ncRNA 213 0.14
Overlaps intron of annotated protein-coding gen23983 0.12
Overlaps intron of annotated ncRNA 2510 0.11
Overlaps MAR 1445 0.15
Unannotated extragenic 32413 0.10
b
Factor HelLa Binding sites  Overlap of factor with HeLa DHSs
Ap2alpha 13701 0.873
Ap2gamma 18244 0.828
Cfos 20701 0.938
Cmyc 19039 0.946
Max 24789 0.921
E2f4 3455 0.930
E2f6 5766 0.881
Ctcf 44809 0.565
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Table S3. Categorization of § RFBSs, b) CTCF peaks and €) H3K4me3 peaks in mouse neurons and Hela cellSee Section and caption for Tab. S2a
for description of categories. The HeLa RFBSs include ARPRP2y, MAX, cFOS, cMYC, E2F4, and E2F6 and the mouse RFBSs include, CREB, NPAS4
and SRF.

a
Annotation/HaTric-based category Mouse neurons HelLa
Peaks Conserved Peaks Conserved
Promoter of annotated protein-coding gene 15944 0.25 12025 0.24
Promoter of annotated ncRNA 2833 0.27 1134 0.17
Promoter of novel (HaTriC-defined) ncRNA 223 0.31 87 0.05
Extragenic enhancer 6960 0.35 7443 0.15
Intragenic enhancer 7758 0.34 5498 0.15
Overlaps exon of annotated protein-coding gene1298 0.41 545 0.41
Overlaps exon of annotated ncRNA 252 0.27 63 0.11
Overlaps intron of annotated protein-coding gen&4848 0.23 7035 0.09
Overlaps intron of annotated ncRNA 1496 0.29 747 0.09
Overlaps MAR 1218 0.31 268 0.12
Unannotated extragenic 19398 0.23 9740 0.08
b
Annotation/HaTric-based category HelLa
Peaks Conserved
Promoter of annotated protein-coding gene 8137 0.19
Promoter of annotated ncRNA 953 0.14
Promoter of novel (HaTriC-defined) ncRNA 56 0.02
Extragenic enhancer 1771 0.14
Intragenic enhancer 1257 0.13
Overlaps exon of annotated protein-coding genel365 0.48
Overlaps exon of annotated ncRNA 112 0.16
Overlaps intron of annotated protein-coding gen&1958 0.10
Overlaps intron of annotated ncRNA 1223 0.11
Overlaps MAR 649 0.14
Unannotated extragenic 15131 0.11
c
Annotation/HaTric-based category Mouse neurons HelLa
Peaks Conserved Peaks Conserved
Promoter of annotated protein-coding gene 11213 0.18 32974 0.16
Promoter of annotated ncRNA 1016 0.21 2825 0.12
Promoter of novel (HaTriC-defined) ncRNA 104 0.23 290 0.04
Extragenic enhancer 147 0.33 0 NaN
Intragenic enhancer 192 0.34 0 NaN
Overlaps exon of annotated protein-coding gene 232 0.39 488 0.53
Overlaps exon of annotated ncRNA 63 0.11 47 0.13
Overlaps intron of annotated protein-coding gend.379 0.14 3948 0.08
Overlaps intron of annotated ncRNA 195 0.16 314 0.08
Overlaps MAR 69 0.14 192 0.07
Unannotated extragenic 1436 0.15 4827 0.07
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Table S4. Categorization of conserved islands based oa) (nouse neurons andlf) HeLa cells.The first column shows the number of islands in each category,
and the second shows the fraction of the genome covered by i$leads.

Category #Conserved islands  Percentage of genome
Promoter of annotated protein-coding gene 113645 0.54
Promoter of annotated non-coding gene 42796 0.32
Exon of annotated protein-coding gene 190296 1.02
Exon of annoated ncRNA 12153 0.06
Enhancer (Kim et al., 2010) 7051 0.05
Other (unannotated) RFBS 14450 0.10
MARs 44910 0.06
Intronic conserved island 297578 1.14
Extragenic conserved island 383289 1.87
Total 1106168 5.17
Category #Conserved islands Percentage of genome
Promoter of annotated protein-coding gene 143422 0.63
Promoter of annotated non-coding gene 20915 0.09
Exon of annotated protein-coding gene 179032 0.82
Exon of annoated ncRNA 8074 0.03
Enhancer (Heintzmann et al., 2009) 7481 0.04
Insulator (defined by presence of CTCF) 9621 0.02
Other (unannotated) RFBS 9324 0.04
MARs 49547 0.05
Intronic conserved island 318337 1.03
Extragenic conserved island 400340 1.45
Total 1136472 4.22

Table S5. Read counts and the number of novel transcripts detted using total RNA RNA-Seq data from human tissuesTo detect novel ncRNAs, we
applied HaTriC to RNA-Seq data from ten different human &sstThe RNA-Seq was performed as described in (76). We obitéieeRNA from the Ambion
FirstChoice Human total RNA Survey Panel. For the Survey paimee we lacked H3K4me3 occupancy for these tissues, weRistSeq, UCSC, and Ensembl
gene annotations in lieu of H3K4me3 for HaTriC optimizatiore Uéed the data from chr 21 with the data from the brain samstéblish the a parameter set
that was used for all other samples.

Tissue | #Reads (M) #novel ncRNAs
Brain 12.17 110
Heart 11.82 111
Kidney 17.72 135
Liver 16.09 81
Lung 11.78 85
Ovary 6.92 159
Placenta 10.04 245
Spleen 27.64 91
Testis 15.43 211
Thymus 16.91 75
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Table S6. Data sets usedd summary of the different data sets used in this study and wthesewere obtained.

Data set Type Origin

Mouse total RNA RNA-Seq Kimet al (76)
Mouse polyA™ RNA RNA-Seq Kimet al (76)
HelLa total RNA RNA-Seq This study
Total RNA from 10 tissues RNA-Seq This study
Mouse RFBSs ChiIP-Seq Kimet al (76)
Mouse histone modifications| ChlIP-Seq Kimet al (76)

DNasel hypersensitive regionsChlP-Seq ENCODE (88)
Human histone modifications| ChlP-Seq ENCODE (88)

Human RFBSs ChlP-Seq ENCODE (88)
Mouse enhancers list Kim et al (76)
HelLa enhancers list Heintzmaret al (77)

Table S7. Conservation properties of ncRNAsEmpirically, it was found that the number of exons per kb hag-taféed distribution. To reduce the impact of
outliers, the table reports the geometric mean rather thaaritienetic mean for the number of exons/kb. The last three ne®spond to the statistics from a
collection of lincRNAs (89) which only contains data for huma

Mm  Hs
Exons/kb, coding 73 1.05
Conserved islands/exon, coding 153 141
Conserved islands/promoter, coding 1.30 1.04
Exons/kb, ncRNA .62 .59
Conserved islands/exon, ncRNA .82 .73
Conserved islands/promoter, ncRNA 1.07 1.08
Exons/kb, lincRNA N/A .34
Conserved islands/exon, lincRNA | N/A 41
Conserved islands/promoter, lincRNAN/A .41

Table S8. Comprehensive accounting of RNA-Seq reads by gena locus for HelLa cells.See Tab. 1 in main text for legend. Transcribed loci were requi
to have 5 RNA-Seq reads and a read density of at least 1 per kb.

Percentage of Percentage of
Transcript category RNA-Seq reads #Loci genome
Protein-coding gene 59.591 7423 9.77
Annotated non-coding gene 1.614 629 0.32
SNRNAs, tRNAs, scRNAs, srpRNAs, rRNAs 37.649 3058 0.01
Promoter AS transcript 0.469 1783 0.26
Other (HaTric-defined) AS transcript 0.115 189 0.08
Novel (HaTric-defined) transcript 0.117 91 0.03
Extragenic enhancer RNA 0.161 306 0.03
Intragenic enhancer RNA 0.018 65 0.01
Other RFBSs-associated RNA 0.040 182 0.01
Insulators associated RNA 0.031 368 0.02
Associated with other H3K4me3 peaks 0.021 289 0.01
Total 99.8253 14383 10.5507
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Figure S1. Distribution of average RNA-Seq read densitiemi candidate transcribed regions defined in the first iteration of HaTriC. In the first iteration

of HaTriC, read densities across candidate transcribedmedrom mouse chromosome 19 show a bimodal distribution: Kadails the candidate regions in the
high density mode (right) as transcribed. Note that the kighsity mode is larger for two reasons. First, regions with reads are not shown, since the scale on
thez-axis is logarithmic. Second, the lengths of the regions,vaitph candidate regions in the low-density mode (left) tyiiy being much longer than those in
the high-density mode. In later iterations of HaTriC, theritisition shifts and becomes uni-modal (not shown), promptiregalgorithm to terminate as no new
transcribed regions are detected.
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Figure S2. Distribution of the reads that were not accountedor by HaTriC, the annotation, enhancers or RFBSs.(A) Mouse neuronsB) Hela cells. The
.2% of RNA-Seq reads that remained after constructing Tabtfid main text (or Tab. S8 for HeLa) were placed into non-@ygring 2 kb bins. We then fitted
the data to Poisson and negative binomial distributions isctlear that the latter provides a better fit. Moreover,viigt majority of the bins with higher than
expected read counts have neighboring bins that are emptgl{oan), arguing against them being part of longer lowlyregped transcripts.



“cis'main” — 2012/5/2 — 9:04 — page 13 — #26

Nucleic Acids Research, 0000, Vol. 00, No. OIB

0.9

0.8

0.7

0.6

CDF

0.5

0.4

0.3

0.2

L L L L
0'11 2 3 4 5

10 10 10
Iog10 length (bp)

1

0.9

0.8

0.7

0.6

CDF

0.5

0.4

0.3

0.2

0.1 " R S S S | " " PR | " R S S S | " T R S S A
10' 10° 8 10* 10°

10
Iog10 length (bp)
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found in Tab. S4.
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Figure S6. TF binding sites from different cell types are lilely to overlap. (A) cFOS B) MAX. The y-axis shows the fold-enrichment of the number of
binding sites found in two or more cell types compared to what would expect if the choice of binding sites in differentltgpes was independent. The
binding probability for each cell type was estimated as tha tuimber of binding sites divided by the total number of DHSs.
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Figure S7. Properties of transcribed conserved islands in Hea cells. This figure is similar to Fig.2 in the main text except that the MBIe€3 profile and the
polyadenylation ratio are missing. Thresholds for definixgressed loci were 5 RNA-Seq reads and a read density ofsitlezer kb.
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Figure S8. Few additional transcripts are discovered as a ®ilt of deeper sequencinyVe randomly down-sampled the RNA-Seq reads to between 10% and
90% of the original number (140 million for mouse neurons and Sbanifor HeLa) and re-ran HaTriC using the same parametersrabé full set of reads for
mouse neurons (left) and Hela (right). The y-axis shows thebar of novel ncRNAs that were discovered for each sub-samgudédn. Each sub-sample was
repeated ten times and the results shown are the averagdmtRdruman and mouse the slopes are relatively flat near thentwequencing depth, suggesting
that the number of additional novel ncRNAs that will be fourmhii additional sequencing is relatively low.

1.4

0.6 ]

#spliced ESTs/#unspliced ESTs
e

0.2r ]

0 Il Il T Il Il Il
& ° & @ o
N éz? & & Qg‘b
O < RS

<

Figure S9. Ratio of spliced and unspliced ESTShe plot shows the ratio between spliced and unspliced E8&db(ue and the red bars in Fig. 2B in the main
text). Only the mRNA category is significantly above 1. Theelars represent a 95% confidence interval and they werelatdd using the binomial ratio test
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