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- Supplementary Material

SUPPLEMENTARY METHODS

Source and Treatment of Annotations

We wanted to take a conservative approach when identifying
transcribed regions to avoid erroneously labeling transcribed
regions as ’novel’. Hence, we used the union of the RefSeq
(71), UCSC (72) and Ensembl (73) annotations for both
human and mouse. Our representation is such that each
isoform is represented separately in the annotation and hence,
many of the entries in our annotation will be mutually
overlapping. To improve the coverage of the less well
annotated ncRNAs, we decided to include two collections of
long ncRNAs from mouse that have previously been reported
in the literature: the macroRNAs (74) and the lincRNAs (75).

In addition to protein-coding genes and ncRNAs, we also
considered distal enhancers that had previously been defined
experimentally. For mouse neurons, we used the list from
Kim et al.(76) and for HeLa cells, we used the list from
Heintzmanet al.(77). Since the latter list contained many loci
near annotated TSSs and close to H3K4me3 peaks, we first
filtered the list to remove any peaks that were near either of
those two elements.

In the human and mouse genomes there are a few thousand
very short (<100 bp) ncRNAs (sRNA, snRNA, rRNA, tRNA,
snoRNAs) and some of them are expressed at extremely high
levels. A complete list of these was obtained from the repeat
masker (78). Many of these very short RNAs overlap much
longer annotated genes and hence they will cause a spike in
the read density profile which complicates the identification
of transcribed regions. We address this issue by assigning
reads to these regions prior to any further analyzes and then
removing the reads overlapping these regions before running
HaTriC. A summary of the statistics for this category can be
found on the third line in Tab. 1 in the main text and Tab. S8.

There are still a handful of short regions with very high read
densities not just for the RNA-Seq data, but also for all of the
ChIP-Seq data sets, including the negative control ChIP-Seq
input. Closer inspection of the DNA sequences at these loci
reveals that they are identical to mitochondrial DNA or that
they code for enzymes that are exported to the mitochondria.
We assume that these regions are experimental artifacts and
the reads are removed altogether from the analysis.

HaTriC algorithm for de novo transcript calling

We have developed an iterative algorithm that can detect
transcribed regions,i.e. regions with high RNA-seq read
densities, without relying on the annotation. For each iteration,
the algorithm first uses a multi-scale wavelet-based approach
for detecting break points; sites with sharp changes in RNA-
seq read-densities. A wavelet (79) can be thought of as a brief
oscillation, and they are frequently used in signal processing to
extract features with certain characteristics. The Haar-wavelet
corresponds to a square-wave and as such it is ideal for picking
up abrupt changes in read densities.

The break points are used to partition the genome into
segments of low or high read-densities. Empirically, we have
found that the distribution of the segment read-density is

bimodal, making it straightforward to separate the segments
into two classes, the ones with high or low read density
(Fig. S1). The segments with low read density are considered
background or noise and hence they are ignored. The
remaining high read density segments are retained, and if two
of them are directly adjacent, they are merged. Following
each iteration, the reads overlapping transcribed regionsare
removed, and in the next iteration, regions with lower density
will be deemed significant. The algorithm terminates when no
new transcribed regions are detected.

The algorithm takes as input a set of mapped RNA-Seq
reads from one strand of one chromosome. This speeds up
the computations significantly as each strand and chromosome
can be analyzed independently. Additionally, HaTriC has four
parameters that need to be specified by the user, a length scale
over which the data is coarse grained to reduce the noise
(Lbin), a minimum (Lmin) and a maximum (Lmax) length
scale for the wavelets and a false detection rate (FDR) type
cut-off for the number of breakpoints and what densities to
include (PFDR). The steps are outlined below:

1. Calculate a histogram for each bini with ci=log(1+
∑(i+1)Lbin

j=iLbin
rj), where rj is the number of reads

overlapping binj. In regions with high expression
levels, such as exons, the variability can be very high.
Empirically, we have found that the performance of
the algorithm is improved significantly if the reads are
averaged over non-overlapping bins of length2Lbin .

2. Calculate the Haar-wavelet coefficients (79),hij , for
each bini and length scalej=Lmin ...Lmax

hij=
1√
2j+1

(
k+2j−1∑

k=i

log(1+rk)−
k=i−2j∑

i−1

log(1+rk)

)

3. Next, we collect a set of break points,B, corresponding
to locations with abrupt changes of the read density. For
each scale,j, we first find all extrema ofhij (i.e. local
minima and local maxima) and starting from the largest
absolute value, thePFDR fraction of the extrema with
the highest|hij | are selected. Since the same break point
can be picked up by different length scales, a break point
will only be included if there are no other points on the
list within 2j−1 bps.

4. At this point we may opt to add additional break
points that have been obtained through other means,
such as RNAPII peaks or transcription start sites from
the annotation. We have found that the performance
of the algorithm can be significantly improved by
incorporating RNAPII ChIP-Seq data. For each RNAPII
peak we add two break points, one halfway between
the center of the peak and its 5´ edge and one
halfway between the center of the peak and its 3´
edge (as defined by the forward strand). The additional
break points are added regardless of the presence of
nearby break points. The extra information provided by
the RNAPII peaks is particularly useful in gene-rich
regions.
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5. The average log density is calculated for each region
between two adjacent break points. Empirically, we
have found that the density has a bimodal profile which
can be accurately represented by a Gaussian mixture
model (GMM) with three components. Without loss of
generality, we assign the component with the lowest
mean index 0, the one with the second lowest mean
index 1 and the one with the highest mean index 2.
An expectation-maximization (EM) algorithm (80) was
used to fit the parameters of the GMM. The probability
pi that any region belongs to componenti of the GMM
can be found as

pi=
wiφ(µi,σi)∑3

j=1wjφ(µj ,σj)
, (1)

wherewi are the weights andφ(µ,σ) is the Gaussian
probability density for a function with meanµ and
standard deviationσ. Segments that havep0<PFDR,
that is they do not belong to the first component of lowly
expressed segments, are considered transcribed regions.
Regions without any reads are excluded when fitting
the GMM and they are automatically set as being not
transcribed.

6. Segments that are adjacent are merged (including
segments identified during previous iterations) and
segments that are shorter thanLbin bps are removed.
Short segments may be created due to the addition of
break-points based on the RNAPII peaks in step 4.

7. If no new segments were found, the algorithm is
terminated. Otherwise, reads that were included in
transcribed regions are removed and the algorithm
proceeds with the next iteration from 1.

Finally, we can improve the resolution of the start and end
for each transcribed region. This is achieved by calculating the
Haar-wavelet coefficients with scale2Lbin for each basepair in
the region[s−2Lmin ,s+2Lmin ] bps, wheres is the start of the
transcribed region. For the start, we select the first location
where the coefficient is greater than a given threshold which
has been chosen in such a way to requireLmin/35 reads in
a region of length2Lbin bps. This allows us to pick the first
site where the read density increases significantly. We have
found this procedure to be more robust as the simple approach
of picking the first local maxima for the coefficients in the
window is overly sensitive to noise. For the ends of transcribed
regions, we use a similar strategy, but we instead search fora
location where the coefficient has a negative value exceeding
the threshold and the search begins from the 3´-end.

Classifying transcribed regions identified by HaTriCTo
determine if a transcribed regiontj uniquely corresponds to
an annotated gene,gi, we first find allk genes on the same
strand that overlaptj . For each pair, (tj ,gi), we calculate the
degree of overlap based on the number of reads

rij=
Ni

Nj
, i=1...k (2)

whereNi is the number of reads intj that also overlapgi and
Nj is the total number of reads intj . We also compute the
degree of overlap for the number of base pairs

bij=
Bi

Bj
, i=1...k (3)

whereBi is the number of bps covered bytj that also overlap
gi andBj is the total number of bps covered bytj .

Each transcribed region,tj , was assigned to a category as
described below.

Annotated, correct If tj only overlaps one gene (k=1) and
if the gene is only overlapped by one transcribed region
and if rij>.8 and bij>.8, then the pair (tj ,gi) is
considered uniquely matching. In many cases, however,
there will be multiple isoforms of a single gene and
there may be a set,Io, of isoforms for whichri>
.8 and bi>.8. If all of the members ofIo overlap
one another, then we assume that they correspond to
different isoforms and we considertj a unique match
to the gene with the largestrij .

If a gene is covered by more than one region, and one
of the transcribed regions satisfiesrij>.8 andbij>.8
and the others haverij<.1 andbij<.1 then thetj with
the largestrij is considered uniquely corresponding
to the gene. Similarly, iftj covers two or three non-
overlapping genes and for one of themrij>.8 and
bij>.8 while for the otherrij<.1 andbij<.1, then it
is again considered uniquely matching.

Annotated, incorrect There are two ways in whichtj may
end up in this category; if a gene has been incorrectly
split into multiple regions or iftj spans multiple non-
overlapping genes.

• If a tj covers more than one gene and it does
not fulfill the above criteria for being uniquely
matching, then it is categorized asMultiple
annotated genes.

• If a gene is covered by more than one transcribed
region and at least two of them haveri>.1
and bi>.1, then it is considered to be split into
two or more transcripts, each of the transcripts
are categorized asFragment of annotated gene.
Similarly, tj will be assigned this category in the
few cases when either of the coveragesri or bi
drops below .8 while the other one is above the
threshold.

Annotated ncRNA We use the same criteria as for
Annotated, correct when classifying transcripts
overlapping annotated non-coding RNAs. Transcribed
regions that overlap ncRNAs in an ambiguous manner
are categorized asAnnotated, incorrect (as described
above).

Unannotated, proximal Transcribed regions that start within
10 kb upstream of an annotated TSS on the anti-sense
strand.
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Unannotated, distal Transcribed regions that are found in
extragenic regions or are anti-sense (AS) with respect
to annotated genes further than 10 kb away from the
nearest annotated TSS. These regions are further broken
down into three sub-categories:

eRNAs Any tj starting within 2 kb of any of an
extragenic enhancer or on the anti-sense genic
strand within 2 kb of an intragenic enhancer is
categorized as an eRNA.

Other AS Remainingtj that overlap an annotated gene
on the anti-sense strand.

Novel Remainingtj that do not fall into any other
category.

A central part of our analyzes involves categorizing reads,
transcribed regions, RFBSs and conserved islands. In all of
these cases we want to avoid double-counting and hence each
entity (read, RFBS, etc) is assigned to only one category.

Table S1 shows the number of transcribed regions found in
each category. For Tab. 1 in the Main Text, we started from this
result, but we used the annotation to correct the miscategorized
transcripts and genes. We also used the more sensitive method
described below to find additional transcribed regions.

Characterizing the transcriptome by combining the
annotation, HaTriC and regions found near Regulatory
Factor Binding Sites (RFBSs)

To characterize the transcriptome, we assigned each read
uniquely to a transcribed region. To define the transcribed
regions in the most accurate way possible, as reported in Tab.
S7, Fig. S4 and Tab 1 in the main text, we combined the
annotation, the HaTriC transcript-caller, and a targeted search
close to enhancers and RFBSs. Below, we describe how each
category of transcribed regions was defined, as well as the
criteria for assigning reads to each category. We considered
the categories sequentially, and at each step we identified
(and removed from further analysis) all reads that overlapped
regions in the current category.

1. Protein-coding geneAnnotated protein-coding genes
were first separated into non-overlapping clusters.
From each cluster the longest region,gi, was extracted
as a representative of that cluster (this was done to
avoid double counting, and the majority of clusters
contain only one gene). If the average read density ofgi
fell below a threshold, the region was ignored and the
reads were retained and made available for inclusion in
another category.

Next, we applied HaTriC and merged the identified
regions that had been categorized as corresponding to
a part of a gene (Fragment of annotated gene) or
uniquely to a gene (Annotated, correct) with their
overlapping genes. When two regionsgi and g′i are
merged, they are removed and a new regiong̃i is
created. The new region contains the union of the reads
from gi andg′i, and it extends from the 5´-most end ofgi
andg′i to the 3´-most end ofgi andg′i. The transcribed
regionsg̃i were frequently longer than the annotation
would have predicted.

2. Annotated non-coding geneHaving removed all reads
corresponding to annotated coding genes, we carried out
the same procedure for annotated non-coding genes.

When counting the number of reads in the two
categories relating to annotated genes (as reported in
Tab. 1, but not for the transcript read density reported
in Fig. S4, S7 and Fig. 2), we also assigned all sense
reads found within 10 kb upstream or downstream of
g̃i to the (protein-coding or ncRNA) genic category. As
reported by van Bakelet al.(81), these regions often
have a read density that is above the background levels
found in more distal regions.

3. Promoter AS Next, we searched for promoter AS
transcribed regions,i.e., divergent transcribed regions
(82, 83). We started by searching all windows located
2 kb upstream of all annotated TSSs. If a window
contained more thanr0 reads, it was considered
significant. Most transcribed regions that were not
detected by HaTriC are shorter than 2 kb (see Fig.
S4), but to account for longer regions we extended the
search to the next 2 kb window upstream of the TSS
if the TSS proximal window contained more thanr0
reads. Additional windows were investigated until a
window containing fewer thanr0 reads was found.
For a set of adjacent 2 kb windows, the length of the
transcribed region is defined as the maximum distance
between all pairs of reads found in these windows.
We refer to the procedure where subsequent 2 kb
windows are scanned as awindow-based search. The
threshold was set tor0=9 reads in a 2 kb window for
the mouse neurons andr0=5 reads for the HeLa cells,
corresponding to an FDR of .001. The regions detected
using the window-based search were merged with all
regions identified by the transcript caller with the label
Unannotated, proximal.

4. Novel (HaTriC-defined) transcript This category
corresponds to long unannotated transcripts and hence
we simply assign all regions categorized by HaTriC
as Unannotated, distal to this class. Since there are
occasionally low numbers of reads close to the starts
and ends of the unannotated transcribed regions (similar
to how promoter AS reads are found near annotated
TSSs), we carried out a window based search upstream
and downstream of the transcribed regions. Any reads
found from the window-based search was included in
the total read count reported in Tab. 1 in the Main Text
and Tab S1.

5. Other (HaTriC-defined) AS transcript We first applied
the window-based search to the AS strand downstream
of all RFBSs overlapping annotated genes. The regions
obtained using the window-based method are merged
with the ones found by HaTriC and categorized as
Other AS.

6. Extragenic enhancer RNA, Intragenic enhancer RNA
For extragenic enhancers, we applied the window-based
search in the downstream directions on both strands
and for intragenic enhancers, only the anti-sense
downstream window was considered. The regions
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obtained using the window-based method are merged
with all eRNA regions identified by HaTriC.

7. Associated with other H3K4me3 peaksSince the
H3K4me3 mark is strongly associated with active
promoters, we wanted to make sure that we did not
miss any significant transcription initiated from these
loci. For all extragenic RFBSs that were within 2 kb of
a H3K4me3 peak, we used the window-based method
on both strands to extract a set of transcribed regions.

8. Other RFBSs-associated RNAFor the remaining
extragenic RFBSs that did not have a H3K4me3 peak
nearby, we again used the window-based method on
both strands to extract a set of transcribed regions.

9. Insulator-associated RNAFinally, for HeLa cells where
we also have access to CTCF data, we applied the
window-based method on both strands at CTCF peaks.

Characterizing the remaining readsHaving removed all reads
that were associated with any of the nine categories above,
we calculated the number of reads in non-overlapping 2 kb
bins covering the remainder of the genome. We fitted the
distribution across the 2 kb bins to either a Poisson or a
negative binomial distribution and as shown in Fig. S2, the
latter provides a good fit for both mouse neurons and HeLa
cells.

Identifying and classifying RFBSs

As part of our goal of understanding the relationship between
transcription, binding and sequence conservation, we needed
to categorize the regulatory factor binding sites (RFBSs).
For mouse neurons, we used the same list of peaks as in
our previous work where a description of the peak calling
algorithm can be found (76). For the HeLa cells, we obtained
the peaks by downloading .narrowPeak-files for DNaseI,
H3K4me3 and the TFs listed in Tab. S2 from the ENCODE
website1. Peaks for different regulatory factors were identified
independently but when creating the final list of RFBSs
for a particular cell-type, overlapping peaks were merged to
avoid double-counting. Each peak from either collection was
assigned to a category according to the scheme outlined below,
and the results are reported in Tab. S3. We start with the full
set of peaks, and once a peak has been assigned to a category,
it cannot be assigned to any further categories.

1. If the peak was within 1 kb of an annotated TSS, it
is considered“Promoter of annotated protein-coding
gene”or “Promoter of annotated ncRNA”for annotated
coding genes and ncRNAs, respectively.

2. If the peak was within 1 kb of an enhancer
it is classified as either“Intragenic enhancer” or
“Extragenic enhancer”.

3. If the peak was within 1 kb of the start of aNovel
transcribed region it is assigned to the“Promoter of
novel ncRNA”category.

1http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

4. If the peak overlaps an annotated protein-coding gene
but is further than 1 kb from the start, it is assigned to
the “Overlaps exon of annotated protein-coding gene”
or “Overlaps intron of annotated protein-coding gene”
depending on its overlap with exons. Similarly, peaks
overlapping annotated ncRNAs are considered either
“Overlaps exon of annotated ncRNAor “Overlaps
intron of annotated ncRNA”.

5. If the peak does not fit into any of the previous
categories it is classified as”Unannotated extragenic”.

Identifying and classifying conservation islands

The third part of our analysis concerns the highly conserved
elements of the genome. Since our resolution for identifying
both transcribed regions and RFBSs is limited, it is not
meaningful consider conservation at the level of individual
bases. Instead, we take a coarse-graining approach to identify
regions that are highly conserved, starting from the PhastCons
scores (as compared to 30 other vertebrates) (84). For both
human and mouse, the global distribution of PhastCons
scores is bimodal with few bases showing intermediate levels
of conservation. To obtain a more coarse-grained binary
representation, we processed the PhastCons scores as follows:

1. First, the PhastCons scores are coarse-grained by
calculating the average for non-overlapping 10 bp bins
across the genome.

2. Any bin with an average conservation greater than .9 is
considered highly conserved. Highly conserved bins are
labeled conserved islands.

3. To avoid fragmenting the genome too finely, bins that
are within 100 bp are merged into conservation islands.
This reduces the total number of islands by∼50%,
but the number of genomic bases covered increase by
∼20%.

Estimating the number of transcripts per cell

Following Mortazavi et al (85), we estimated the number
of transcripts based on the read density and length for each
transcribed regioni. The normalized read density (reads per
kilobase per million, RPKM) is defined as

ri=
109ci
NL

, (4)

whereri is RPKM, ci is the number of reads that were found
in the region,N is the total number of reads in the experiment
andL is the total genome length. To calculate the number of
transcripts that are present from a given region, we note that
the probability of obtainingci out ofN reads for a region of
lengthli, assuming that the reads are uniformly distributed to
the mappable regions of the genome is equal to the proportion
of the total length of the genome multiplied by the number of
transcripts
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P (ci|N)=
xili
L

, (5)

wherexi is the copy-number for the transcript andli is the
length of the transcript. Assuming a uniform distribution of
reads across transcripts, the fraction of reads should equal
ci/N . Combining with Eq. (5) and solving forxi, we obtain

xi=
ciL

Nli
. (6)

The scale ofxi here is arbitrary and the relative amounts are
reported in Tab. 1 in the main text. To fix the scale, we need
to find the total number of transcripts in the cell. To obtain the
numbers used in Fig. S4, we assumed that there are 240,000
polyadenylated mRNAs in the cell (86).

Estimating overlap of novel ncRNAs and RFBSs with
conserved islands

Our goal was to estimate how much of the extragenic
conservation could be explained by exons of unannotated
ncRNAs. Calculating the number of conserved bases under
unannotated exons is complicated by the fact that HaTriC does
not provide us with the intron-exon structure of transcribed
regions. We assumed that the novel transcribed regions are
spliced (75), and thus it is unlikely that all of the conserved
islands within an unannotated transcribed region are located
at exons.

We took a statistical approach to estimate the number of
conserved islands explained by exons of novel transcribed
regions. We assume that the novel ncRNAs have the same
conservation characteristics as the long ncRNAs (longer than 1
kb) found in the annotation. From the annotation, we estimate
the average number of exons per transcribed kb,e, the average
number of conserved islands per exon,c, and the average
number of conserved islands per promoter,p, defined as the
1 kb region upstream of the TSS (Tab. S7). Given a novel
ncRNA of lengthli kb, the expected number of conserved
islands covered isp+ecli. From Tab. S7, we find that the
number of conserved islands/kb of novel ncRNAs is 0.43 and
0.51 for Hs and Mm, respectively.

As a the worst case scenario, we consider all conserved
islands that overlap with the annotated ncRNAs longer than
1 kb. The number of conserved islands is proportional to
the length of the ncRNA and the slope is∼0.7 conserved
islands/kb for both Hs and Mm.

In contrast, estimating the overlap of RFBSs and conserved
islands is straightforward. Since a typical RFBS and a typical
conserved island are of comparable size, we label any RFBS
overlapping a conserved island as highly conserved.

Identifying MARs and estimating overlap with conserved
islands

Identifying MARs genome-wide using computational
approaches is challenging and the predictive power of all
methods available to date remains poor as reported in a
comparative study by Evanset al (87). To detect MARs,

we implemented the so-called H-rule, which designates any
stretch of 20 or more bases with only A, C or T as a MAR.
We used the H-rule to identify MARs in both the mouse
and human genomes. Figure S10 shows the overlap between
MARs and conserved islands for different stringencies
and it is clear that no more than 4% of the unannotated
conserved islands can be explained by MARs. To determine
the significance of the overlap, we carried out a permutation
study whereby all the MARs were distributed randomly
throughout the genome. As shown in Fig. S10, this reveals
that the enrichment is between 30% and 50% greater than
expected by chance.

Estimating the overlap of RFBSs from multiple cell types

For the DHSs, H3K4me3 and CTCF peaks, we downloaded
data for 11 cell lines, Hepg2, GM12878, Jurkat, K562, Mcf7,
Nb4V2, Nhek, Panc1, Saec, SkmcV2, and Sknshra, from
ENCODE (88), and we categorized the RFBSs as described
in Section . To assess the number of new RFBSs that are
discovered when a new cell-type is investigated, we first
selected one cell-type at random. Next, additional cell types
were selected at random and the number of new RFBSs
detected at each iteration was computed. As this procedure
depends on the order in which the cell types are selected, the
procedure was repeated 1,000 times and the average number
of discovered elements is reported in Fig. 3 in the Main text.

P-value for the overlap between conservation islands and
RFBSs

We used a hypergeometric test to assess the significance
of the overlap between conserved islands and RFBSs. We
assumed that there wereL/100 loci in the genome that
can overlap a RFBSs and/or a conserved island, whereL
is the total number of bps in the genome. Given the total
number of conserved islands and RFBSs, it is possible to
calculate the probability of observing a given overlap under
the assumption that both conserved islands and RFBSs are
randomly distributed throughout the genome. The number
of RFBSs found at conserved islands is much higher than
one would expect based on a hypergeometric distribution.
For example, in a 3 Gb genome with 1 million conserved
islands and 40,000 RFBSs one would only expect 1,300 of
the RFBSs to be conserved whereas we observe that 4,000
of the extragenic HeLa ucRFBSs are conserved (Tab. S2a).
In this case, a hypergeometric test with an overlap of 4,000
betweem subsets of sizes 40,000 and 1,000,000 out of a total
of 30,000,000 elements yields a highly significant p-value that
is smaller than10−16. Similar calculations for the estimated
number of ncRNA exons and promoters suggests a highly
significant p-value (<10−16).
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Table S1. Categorization of transcribed regions detected using HaTriC for mouse neurons and HeLa cells.The table shows the number of HaTriC-defined
transcribed regions that correspond to coding and non-coding genes as well as to unannotated regions. For protein-coding genes, it is indicated whether the
transcribed regions span multiple genes or correspond to an incomplete fragment (portion) of a gene. Here the fraction of reads is calculated with respect to the
number of reads left after having removed the ones found at highly expressed short ncRNAs, (S) is sense and (AS) is anti-sense.

Mouse neurons
Category # regions Fraction of Fraction Fraction

transcripts of reads of genome
Matching a single protein-coding gene (S) 7492 0.612 0.544 0.094
Matching multiple annotated genes (S) 374 0.031 0.009 0.003
Matching portion of annotated gene (S) 2213 0.181 0.363 0.073
Matching a single annotated non-coding gene (S) 240 0.020 0.001 0.001
Starting within 10 kb of an annotated TSS (S or AS) 1508 0.123 0.002 0.004
Starting within annotated coding or non-coding gene (AS) 104 0.008 0.000 0.000
Starting within 2kb of an enhancer 52 0.004 0.000 0.000
Novel (HaTriC-defined) ncRNA 255 0.021 0.001 0.001

HeLa
Category # regions Fraction of Fraction Fraction

transcripts of reads of genome
Matching a single protein-coding gene (S) 5987 0.692 0.587 0.060
Matching multiple annotated genes (S) 377 0.044 0.006 0.001
Matching portion of annotated gene (S) 1464 0.169 0.304 0.035
Matching a single annotated non-coding gene (S) 62 0.007 0.002 0.000
Starting within 10 kb of an annotated TSS (S or AS) 628 0.073 0.004 0.001
Starting within annotated coding or non-coding gene (AS) 26 0.003 0.000 0.000
Starting within 2kb of an enhancer 1 0.000 0.000 0.000
Novel (HaTriC-defined) ncRNA 103 0.012 0.002 0.000
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Table S2. Categorization of DNaseI hypersensitive sites (DHSs) in HeLa cells and overlap between RFBSs and DNaseI hypersensitive sites.(a) Each DHS
was assigned to one of the non-overlapping categories represented at each row (Methods). The two columns show the total number of DHSs in each category,
including the fraction of the DHSs that overlap a conserved island. (b) Around 90% regulatory factor binding sites overlap with DHSs. The only significant
exception is the insulator binding protein CTCF that appears to bind in many locations that are not DHSs.

a
Annotation/HaTric-based category HeLa

Peaks Conserved
Promoter of annotated protein-coding gene 29001 0.19
Promoter of annotated ncRNA 3030 0.16
Promoter of novel (HaTriC-defined) ncRNA 286 0.07
Extragenic enhancer 17607 0.16
Intragenic enhancer 12767 0.17
Overlaps exon of annotated protein-coding gene1577 0.44
Overlaps exon of annotated ncRNA 213 0.14
Overlaps intron of annotated protein-coding gene23983 0.12
Overlaps intron of annotated ncRNA 2510 0.11
Overlaps MAR 1445 0.15
Unannotated extragenic 32413 0.10

b
Factor HeLa Binding sites Overlap of factor with HeLa DHSs
Ap2alpha 13701 0.873
Ap2gamma 18244 0.828
Cfos 20701 0.938
Cmyc 19039 0.946
Max 24789 0.921
E2f4 3455 0.930
E2f6 5766 0.881
Ctcf 44809 0.565
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Table S3. Categorization of (a) RFBSs, (b) CTCF peaks and (c) H3K4me3 peaks in mouse neurons and HeLa cells.See Section and caption for Tab. S2a
for description of categories. The HeLa RFBSs include AP2α, AP2γ, MAX, cFOS, cMYC, E2F4, and E2F6 and the mouse RFBSs include CBP, CREB, NPAS4
and SRF.

a
Annotation/HaTric-based category Mouse neurons HeLa

Peaks Conserved Peaks Conserved
Promoter of annotated protein-coding gene 15944 0.25 12025 0.24
Promoter of annotated ncRNA 2833 0.27 1134 0.17
Promoter of novel (HaTriC-defined) ncRNA 223 0.31 87 0.05
Extragenic enhancer 6960 0.35 7443 0.15
Intragenic enhancer 7758 0.34 5498 0.15
Overlaps exon of annotated protein-coding gene1298 0.41 545 0.41
Overlaps exon of annotated ncRNA 252 0.27 63 0.11
Overlaps intron of annotated protein-coding gene14848 0.23 7035 0.09
Overlaps intron of annotated ncRNA 1496 0.29 747 0.09
Overlaps MAR 1218 0.31 268 0.12
Unannotated extragenic 19398 0.23 9740 0.08

b
Annotation/HaTric-based category HeLa

Peaks Conserved
Promoter of annotated protein-coding gene 8137 0.19
Promoter of annotated ncRNA 953 0.14
Promoter of novel (HaTriC-defined) ncRNA 56 0.02
Extragenic enhancer 1771 0.14
Intragenic enhancer 1257 0.13
Overlaps exon of annotated protein-coding gene1365 0.48
Overlaps exon of annotated ncRNA 112 0.16
Overlaps intron of annotated protein-coding gene11958 0.10
Overlaps intron of annotated ncRNA 1223 0.11
Overlaps MAR 649 0.14
Unannotated extragenic 15131 0.11

c
Annotation/HaTric-based category Mouse neurons HeLa

Peaks Conserved Peaks Conserved
Promoter of annotated protein-coding gene 11213 0.18 32974 0.16
Promoter of annotated ncRNA 1016 0.21 2825 0.12
Promoter of novel (HaTriC-defined) ncRNA 104 0.23 290 0.04
Extragenic enhancer 147 0.33 0 NaN
Intragenic enhancer 192 0.34 0 NaN
Overlaps exon of annotated protein-coding gene 232 0.39 488 0.53
Overlaps exon of annotated ncRNA 63 0.11 47 0.13
Overlaps intron of annotated protein-coding gene1379 0.14 3948 0.08
Overlaps intron of annotated ncRNA 195 0.16 314 0.08
Overlaps MAR 69 0.14 192 0.07
Unannotated extragenic 1436 0.15 4827 0.07
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Table S4. Categorization of conserved islands based on (a) mouse neurons and (b) HeLa cells.The first column shows the number of islands in each category,
and the second shows the fraction of the genome covered by those islands.

a
Category #Conserved islands Percentage of genome
Promoter of annotated protein-coding gene 113645 0.54
Promoter of annotated non-coding gene 42796 0.32
Exon of annotated protein-coding gene 190296 1.02
Exon of annoated ncRNA 12153 0.06
Enhancer (Kim et al., 2010) 7051 0.05
Other (unannotated) RFBS 14450 0.10
MARs 44910 0.06
Intronic conserved island 297578 1.14
Extragenic conserved island 383289 1.87
Total 1106168 5.17

b
Category #Conserved islands Percentage of genome
Promoter of annotated protein-coding gene 143422 0.63
Promoter of annotated non-coding gene 20915 0.09
Exon of annotated protein-coding gene 179032 0.82
Exon of annoated ncRNA 8074 0.03
Enhancer (Heintzmann et al., 2009) 7481 0.04
Insulator (defined by presence of CTCF) 9621 0.02
Other (unannotated) RFBS 9324 0.04
MARs 49547 0.05
Intronic conserved island 318337 1.03
Extragenic conserved island 400340 1.45
Total 1136472 4.22

Table S5. Read counts and the number of novel transcripts detected using total RNA RNA-Seq data from human tissues.To detect novel ncRNAs, we
applied HaTriC to RNA-Seq data from ten different human tissues. The RNA-Seq was performed as described in (76). We obtained the RNA from the Ambion
FirstChoice Human total RNA Survey Panel. For the Survey panel, since we lacked H3K4me3 occupancy for these tissues, we used RefSeq, UCSC, and Ensembl
gene annotations in lieu of H3K4me3 for HaTriC optimization. We used the data from chr 21 with the data from the brain sample toestablish the a parameter set
that was used for all other samples.

Tissue #Reads (M) #novel ncRNAs
Brain 12.17 110
Heart 11.82 111
Kidney 17.72 135
Liver 16.09 81
Lung 11.78 85
Ovary 6.92 159
Placenta 10.04 245
Spleen 27.64 91
Testis 15.43 211
Thymus 16.91 75



“cis˙main” — 2012/5/2 — 9:04 — page 10 — #23

10 Nucleic Acids Research, 0000, Vol. 00, No. 00

Table S6. Data sets used.A summary of the different data sets used in this study and wherethey were obtained.

Data set Type Origin
Mouse total RNA RNA-Seq Kimet al (76)
Mouse polyA+ RNA RNA-Seq Kimet al (76)
HeLa total RNA RNA-Seq This study
Total RNA from 10 tissues RNA-Seq This study
Mouse RFBSs ChIP-Seq Kimet al (76)
Mouse histone modifications ChIP-Seq Kimet al (76)
DNaseI hypersensitive regionsChIP-Seq ENCODE (88)
Human histone modifications ChIP-Seq ENCODE (88)
Human RFBSs ChIP-Seq ENCODE (88)
Mouse enhancers list Kim et al (76)
HeLa enhancers list Heintzmanet al (77)

Table S7. Conservation properties of ncRNAs.Empirically, it was found that the number of exons per kb has a fat-tailed distribution. To reduce the impact of
outliers, the table reports the geometric mean rather than thearithmetic mean for the number of exons/kb. The last three linescorrespond to the statistics from a
collection of lincRNAs (89) which only contains data for human.

Mm Hs
Exons/kb, coding .73 1.05
Conserved islands/exon, coding 1.53 1.41
Conserved islands/promoter, coding 1.30 1.04
Exons/kb, ncRNA .62 .59
Conserved islands/exon, ncRNA .82 .73
Conserved islands/promoter, ncRNA 1.07 1.08
Exons/kb, lincRNA N/A .34
Conserved islands/exon, lincRNA N/A .41
Conserved islands/promoter, lincRNAN/A .41

Table S8. Comprehensive accounting of RNA-Seq reads by genomic locus for HeLa cells.See Tab. 1 in main text for legend. Transcribed loci were required
to have 5 RNA-Seq reads and a read density of at least 1 per kb.

Percentage of Percentage of
Transcript category RNA-Seq reads #Loci genome
Protein-coding gene 59.591 7423 9.77
Annotated non-coding gene 1.614 629 0.32
snRNAs, tRNAs, scRNAs, srpRNAs, rRNAs 37.649 3058 0.01
Promoter AS transcript 0.469 1783 0.26
Other (HaTric-defined) AS transcript 0.115 189 0.08
Novel (HaTric-defined) transcript 0.117 91 0.03
Extragenic enhancer RNA 0.161 306 0.03
Intragenic enhancer RNA 0.018 65 0.01
Other RFBSs-associated RNA 0.040 182 0.01
Insulators associated RNA 0.031 368 0.02
Associated with other H3K4me3 peaks 0.021 289 0.01
Total 99.8253 14383 10.5507
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Figure S1. Distribution of average RNA-Seq read densities in candidate transcribed regions defined in the first iteration of HaTriC. In the first iteration
of HaTriC, read densities across candidate transcribed regions from mouse chromosome 19 show a bimodal distribution: HaTriC calls the candidate regions in the
high density mode (right) as transcribed. Note that the high-density mode is larger for two reasons. First, regions with zero reads are not shown, since the scale on
thex-axis is logarithmic. Second, the lengths of the regions vary, with candidate regions in the low-density mode (left) typically being much longer than those in
the high-density mode. In later iterations of HaTriC, the distribution shifts and becomes uni-modal (not shown), promptingthe algorithm to terminate as no new
transcribed regions are detected.
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Figure S2. Distribution of the reads that were not accountedfor by HaTriC, the annotation, enhancers or RFBSs.(A) Mouse neurons. (B) HeLa cells. The
.2% of RNA-Seq reads that remained after constructing Tab. 1 in the main text (or Tab. S8 for HeLa) were placed into non-overlapping 2 kb bins. We then fitted
the data to Poisson and negative binomial distributions and it is clear that the latter provides a better fit. Moreover, thevast majority of the bins with higher than
expected read counts have neighboring bins that are empty (not shown), arguing against them being part of longer lowly expressed transcripts.
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Figure S3. Cumulative distribution of the length of conserved islands found in mouse (a) and human (b).The total number of conserved islands can be
found in Tab. S4.
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Figure S4. Estimated transcript copy number per cell and lengths of transcribed regions.Box-plot showing the distribution of the estimated copy number
per cell for (A) mouse neurons and (B) HeLa cells. The number of transcripts for each category are log-normally distributed with a median close to or below one
for most regions. The transcribed regions and categories arethe same as in Tab. 1. The red line shows the median and the box spans the 25th to 75th percentiles
of the data, with the whiskers covering 99.3% of the data and the ’+’ representing outliers. The total number of loci in eachcategory can be found in Tab. 1 and
S8, and it is clear that most non mRNA transcripts are present atlevels of fewer than one transcript per cell. Box-plot showing the distribution of the lengths of
transcribed regions for (C) mouse neurons and (D) HeLa cells. The lengths for each category are log-normally distributed. The transcribed regions and categories
are the same as in Tab. 1.
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Figure S5. Profiles at conserved islands(A) H3K4me1 (B) CBP. These plots are similar to those in Fig. 2 in the main text and they show the density of H3K4me1
and CBP in the vicinity of conserved islands.
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Figure S6. TF binding sites from different cell types are likely to overlap. (A) cFOS (B) MAX. The y-axis shows the fold-enrichment of the number of
binding sites found in two or more cell types compared to what one would expect if the choice of binding sites in different cell-types was independent. The
binding probability for each cell type was estimated as the total number of binding sites divided by the total number of DHSs.
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Figure S7. Properties of transcribed conserved islands in HeLa cells.This figure is similar to Fig.2 in the main text except that the H3K4Me3 profile and the
polyadenylation ratio are missing. Thresholds for defining expressed loci were 5 RNA-Seq reads and a read density of at least 1 per kb.
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Figure S8. Few additional transcripts are discovered as a result of deeper sequencingWe randomly down-sampled the RNA-Seq reads to between 10% and
90% of the original number (140 million for mouse neurons and 50 million for HeLa) and re-ran HaTriC using the same parameters as for the full set of reads for
mouse neurons (left) and HeLa (right). The y-axis shows the number of novel ncRNAs that were discovered for each sub-sample fraction. Each sub-sample was
repeated ten times and the results shown are the averages. Forboth human and mouse the slopes are relatively flat near the current sequencing depth, suggesting
that the number of additional novel ncRNAs that will be found from additional sequencing is relatively low.

Figure S9. Ratio of spliced and unspliced ESTs.The plot shows the ratio between spliced and unspliced ESTs (the blue and the red bars in Fig. 2B in the main
text). Only the mRNA category is significantly above 1. The error bars represent a 95% confidence interval and they were calculated using the binomial ratio test
(90). In some cases the error bars are very large since we are taking the ratio between relatively small values.



“cis˙main” — 2012/5/2 — 9:04 — page 19 — #32

Nucleic Acids Research, 0000, Vol. 00, No. 0019

Figure S10. Fraction of conserved islands overlapping MARs.We used the H-rule (87) to identify MARs in the mouse and human genomes. The fraction of
conserved islands that are explained by MARs depends on how large fraction of the conserved island that we require to overlap with the MAR and we present
the result for three different stringencies (x-axis). The bars labeled data represent the overlap between conserved islands and MARs as observed in the mouse and
human genomes. The bars labeled random are shuffle controls where the total number and the length of the MARs was the same as in the data, but their locations
were randomized.
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