
Supplementary Material

Here, we shall present the results on the consistency and normal limiting distributions of the
maximum likelihood estimators of the main parameters of the Y-linked BBP with preference,
when the entire family tree up to some generation is observed. First, we shall derive these
estimators.

Theorem 1 The maximum likelihood estimators of α, pR, and pr based on the sample (ZN ,FMN )
are, respectively,

α̂ =
∑N−1

n=0 Fn+1∑N−1
n=0 (Fn+1 + MRn+1 + Mrn+1)

,

p̂R
k =

∑N−1
n=0 ZRn(k)∑N−1

n=0 ZRn

, k ∈ SR, and p̂r
l =

∑N−1
n=0 Zrn(l)∑N−1

n=0 Zrn

, l ∈ Sr.

Proof. It is immediate to verify from Equation (5) in the paper, that the expression for the
complete log-likelihood function based on such sample is

l(pR, pr, α|ZN ,FMN ) = C∗ +
N−1∑
n=0

(Fn+1 log α + (MRn+1 + Mrn+1) log(1− α))

+
N−1∑
n=0

( ∑

k∈SR

ZRn(k) log pR
k +

∑

l∈Sr

Zrn(l) log pr
l

)
,

with C∗ some constant.
Given the structure of that function, to maximize this expression subject to the constraints

0 ≤ α ≤ 1,
∑

k∈SR pR
k = 1 and

∑
l∈Sr pr

l = 1, with pR
k , pr

l ≥ 0, k ∈ SR and l ∈ Sr, it is
enough to maximize each corresponding addend. Using the non-negativity of the Kullback-
Leibler divergence, it is straightforward to verify that the log-likelihood is maximized by the
choice of α̂, p̂R

k , and p̂r
l , and therefore they are the MLEs for α, pR, and pr.

Corollary 1 The maximum likelihood estimators of mR and mr based on the sample (ZN ,FMN )
are, respectively,

m̂R =
∑N

n=1(FRn + MRn)∑N−1
n=0 ZRn

and m̂r =
∑N

n=1(Frn + Mrn)∑N−1
n=0 Zrn

.

In the following results some asymptotic properties of the estimators α̂, p̂R
k with k ∈ SR,

p̂r
l with l ∈ Sr, m̂R, and m̂r are studied. First, we shall deal with the results about their

consistency, establishing previously some properties we shall need in the development of those
results.

P1. lim infn→∞
ZRn+1
ZRn

> 1 a.s. on A∞,∞ ∪A∞,0

P2. lim infn→∞
Zrn+1
Zrn

> 1 a.s. on A∞,∞ ∪A0,∞

P3. limn→∞
FRn+1
ZRn

= αmR and limn→∞
MRn+1

ZRn
= (1− α)mR a.s. on A∞,∞ ∪A∞,0

P4. limn→∞
Frn+1
Zrn

= αmr and limn→∞
Mrn+1

Zrn
= (1− α)mr a.s. on A∞,∞ ∪A0,∞
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where A∞,0 = {ZRn → ∞, Zrn → 0}, A0,∞ = {ZRn → 0, Zrn → ∞} and A∞,∞ = {ZRn →
∞, Zrn →∞}.
Intuitively, A∞,0 (resp. A0,∞) means the fixation of the R allele (resp. r allele) and A∞,∞ the
survival or coexistence of both genotypes. Moreover, notice that A∞,0 ∪A∞,∞ = {ZRn →∞},
which corresponds to the survival of the R allele independently of the behaviour of the r allele,
and that A0,∞ ∪A∞,∞ = {Zrn →∞} with analogous meaning.

Remark 1 Sufficient conditions for the sets A∞,0, A0,∞, and A∞,∞ to have positive probability
are given in González et al. (2006) and González et al. (2008), and conditions which guarantee
P1-P2 have been studied in González et al. (2008). Notice that, from P1-P2 and using the
conditioned Borel-Cantelli lemma, one can obtain P3-P4.

Theorem 2 The maximum likelihood estimators of pR, pr, and α based on (ZN ,FMN ) verify:

i) If P1 holds, then for each k ∈ SR, p̂R
k is strongly consistent for pR

k on A∞,∞ ∪A∞,0.

ii) If P2 holds, then for each l ∈ Sr, p̂r
l is strongly consistent for pr

l on A∞,∞ ∪A0,∞.

iii) If P3 and P4 hold and limn→∞ ZRn

Zrn
exists a.s. on A∞,∞ (it could be ∞), then α̂ is

strongly consistent for α on A∞,0 ∪A0,∞ ∪A∞,∞.

Proof. We start by proving i). The proof of ii) is analogous using the property P2. Firstly, we
define the filtration Fn = σ(ZR0, Zr0, Fk,MRk,Mrk, k = 1, 2, ..., n), n ≥ 1. Let ε > 0, k ∈ SR

and define An = {|ZRn(k)−pR
k ZRn| ≥ εZRn}, n ≥ 0. Taking into account that the conditional

distribution of (ZRn(k), k ∈ SR) given ZRn is a multinomial distribution with size ZRn and
probability pR, then E[ZRn(k)|ZRn] = ZRnpR

k a.s. and V ar[ZRn(k)|ZRn] = ZRnpR
k (1 − pR

k )
a.s. Applying Chebyshev’s inequality, from P1 one obtains

∞∑
n=1

P (An|Fn) ≤
∞∑

n=1

V ar[ZRn(k)|ZRn]
ε2ZR2

n

=
pR

k (1− pR
k )

ε2

∞∑
n=1

1
ZRn

< ∞

a.s. on {ZRn →∞}.
Then, using the conditioned Borel-Cantelli lemma,

{ZRn →∞} ⊆
{ ∞∑

n=1

P (An|Fn) < ∞
}

= lim inf
n→∞

Ac
n a.s.

So, taking into account that An is equal to {|ZRn(k)ZR−1
n − pR

k | ≥ ε} on {ZRn →∞}, one
has that limn→∞ ZRn(k)ZR−1

n = pR
k a.s. on {ZRn →∞}. The proof is completed by applying

the Toeplitz lemma.
To finish, we prove iii). This will be done by proving that

lim
n→∞

Fn+1

Fn+1 + MRn+1 + Mrn+1
= α a.s. (1)

on each of the sets A∞,0, A0,∞, and A∞,∞. Again, the Toeplitz lemma is used to conclude the
proof.

We shall prove (1) on A∞,0. The proof on A0,∞ is analagous. Taking into account P3, and
from one generation onwards (which depends on the realization of the process), the offspring
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given by r couples is null on A∞,0. Then, recalling that Fn = FRn + Frn, for n = 1, 2, . . .,

lim
n→∞

Fn+1

Fn+1 + MRn+1 + Mrn+1
= lim

n→∞

FRn+1
ZRn

FRn+1
ZRn

+ MRn+1
ZRn

=
αmR

αmR + (1− α)mR

= α a.s. on A∞,0.

To prove the result on A∞,∞, the relation between ZRn and Zrn must be taken into account
because, a.s. on A∞,∞,

lim
n→∞

Fn+1

Fn+1 + MRn+1 + Mrn+1
= lim

n→∞

FRn+1
ZRn

ZRn

Zrn
+ Frn+1

Zrn

FRn+1
ZRn

ZRn

Zrn
+ Frn+1

Zrn
+ MRn+1

ZRn

ZRn

Zrn
+ Mrn+1

Zrn

. (2)

Then, as by hypothesis there exists limn→∞ ZRnZr−1
n a.s. on A∞,∞ (it could be ∞), one

has:

a) If limn→∞ ZRnZr−1
n = 0 a.s. on A∞,∞, i.e., if {Zrn}n≥0 has a faster growth than

{ZRn}n≥0, taking into account P3 and P4, the right-hand side of (2) is a.s. on A∞,∞
equal to

αmr

αmr + (1− α)mr
= α.

b) If limn→∞ ZrnZR−1
n = 0 a.s. on A∞,∞, i.e., if {ZRn}n≥0 has a faster growth than

{Zrn}n≥0, from P3 and P4 one obtains an analogous result to a).

c) If limn→∞ ZRnZr−1
n = X a.s. on A∞,∞ with X a random variable, 0 < X < ∞, i.e., if

both have a similar growth, from P3 and P4, the right hand of (2) is a.s. on A∞,∞ equal
to

αmRX + αmr

αmRX + αmr + (1− α)mRX + (1− α)mr
=

α(mRX + mr)
mRX + mr

= α.

Corollary 2 The maximum likelihood estimators of mR and mr based on (ZN ,FMN ) verify:

i) If P3 holds, then m̂R is strongly consistent for mR on A∞,∞ ∪A∞,0.

ii) If P4 holds, then m̂r is strongly consistent for mr on A∞,∞ ∪A0,∞.

Finally, we shall obtain some results on the asymptotic distribution of the derived maximum
likelihood estimators. Previously, we shall need to assume some working hypotheses in order to
develop these results.

H1. P (A∞,0) > 0, and there exist ρR > 1 and a random variable WR such that {ρ−n
R ZRn}n≥0

converges to WR a.s. on A∞,0 and A∞,0 ⊆ {0 < WR < ∞} a.s.

H2. P (A∞,∞) > 0, and there exist ρ∗R > 1 and a random variable W ∗
R such that {ρ∗R−nZRn}n≥0

converges to W ∗
R a.s. on A∞,∞ and A∞,∞ ⊆ {0 < W ∗

R < ∞} a.s.

Remark 2 Conditions which guarantee H1 and H2 have been studied in González et al. (2008).

We shall denote PB(·) = P (·|B) for any set B, and write [x] to indicate the greatest integer
number less than or equal to x.

The maximum likelihood estimator of pR based on (ZN ,FMN ) verifies the following asymp-
totic properties.
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Theorem 3 If P ′ is an absolutely continuous probability with respect to PD (P ′ ¿ PD) then,
for any x ∈ R, the maximum likelihood estimator of pR

k , with k ∈ SR, verifies that

lim
N→∞

P ′


(pR

k (1− pR
k ))−1/2

(
N∑

n=1

ZRn−1

)1/2

(p̂R
k − pR

k ) ≤ x


 = φ(x),

with φ(x) being the standard normal distribution function, and where

i) if H1 holds, D = A∞,0;

ii) if H2 holds D = A∞,∞.

Proof. Defining TR01 = FR01 + MR01, the following equality is verified in distribution

p̂R
k =

∑N
n=1 ZRn−1(k)∑N

n=1 ZRn−1

=d
∑∑N

n=1 ZRn−1
i=1 I{TR0i=k}∑N

n=1 ZRn−1

,

(recall that IA is the indicator function of a set A). From this, one has, for all x ∈ R, that

P ′


(pR

k (1− pR
k ))−1/2

(
N∑

n=1

ZRn−1

)1/2

(p̂R
k − pR

k ) ≤ x




= P ′


(pR

k (1− pR
k ))−1/2

(
N∑

n=1

ZRn−1

)−1/2 ∑N
n=1 ZRn−1∑

i=1

(I{TR0i=k} − pR
k ) ≤ x


 .

First we shall deal with the proof of the result in the case i). Taking into account that H1
holds and Cesaro’s lemma, one has that, as N →∞,

(ρR)−N
N∑

n=1

ZRn−1 → (ρR − 1)−1WR a.s. on A∞,0.

Thus to conclude it is sufficient to apply Theorem I in Dion (1974), with

aN = ρN
R , νN =

N∑
n=1

ZRn−1, Θ = (ρR − 1)−1WR

and, for 0 ≤ t ≤ 1,

YN (t, ω) =

(
pR

k (1− pR
k )

N∑
n=1

ZRn−1(ω)

)−1/2 [
∑N

n=1 ZRn−1(ω)t]∑

i=1

(I{TR0i=k}(ω)− pR
k ).

The proof in case ii) is analogous.

Corollary 3 If H1 and H2 hold, then, for any x ∈ R, the maximum likelihood estimator of
pR

k , with k ∈ SR, verifies that

lim
N→∞

P{ZRn→∞}


(pR

k (1− pR
k ))−1/2

(
N∑

n=1

ZRn−1

)1/2

(p̂R
k − pR

k ) ≤ x


 = φ(x),

with φ(x) being the standard normal distribution function.
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Remark 3 By Lemma 2.3 in Guttorp (1991), the probability P{ZRn→∞} in Corollary 3 can be
replaced by P{ZRN−1>0}. Hence, taking into account i) in Proposition 2 and applying the Slutsky
theorem, one obtains that if ZRN−1 > 0 then the (1 − γ)-level asymptotic confidence interval
for pR

k is

p̂R
k ± zγ

√√√√p̂R
k (1− p̂R

k )

(
N∑

n=1

ZRn−1

)−1

,

where zγ satisfies φ(zγ) = 1− γ/2 with γ ∈ (0, 1), and φ(x) is the standard normal distribution
function.

Remark 4 Analogous asymptotic distribution results to those related to p̂R
k , with k ∈ SR, can

be obtained for p̂r
l , with l ∈ Sr, using similar working hypotheses to H1 and H2. Moreover, the

asymptotic normality of the (suitably normalized) estimators m̂R and m̂r can be established by
following a similar reasoning to that given in González et al. (2007). Also, asymptotic normality
can be derived for α̂.

Supplementary Figures

Here, we shall present the figures corresponding to the simulated example given in Section 4.
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Figure 1: Evolution of α̂EM (left), m̂EM
R (centre), and m̂EM

r (right) over the course of the
generations, together with the true value of each parameter (dashed line).

References

Dion, J. P. (1974). Estimation of the mean and the initial probabilities of a branching process.
J. Appl. Probab. 11, 687–694.
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Figure 2: Bootstrap approximation to the sampling distribution of α̂EM (left), m̂EM
R (centre),

and m̂EM
r (right), at generation 20, together with the true value of each parameter (dashed line)

and kernel density estimates (solid line).
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Figure 3: Histogram of the estimated predictive distribution of F21 (left), MR21 (centre), and
Mr21 (right), when fm20 is observed.
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