
The Digital Paths Supervised Variane(DPSV) Denoising FilterSupplementary Text (Suppl. Data 1) for�Automated Traing of Filaments in 3D Eletron TomographyReonstrutions using Sulptor and Situs� byMirabela Rusu, Zbigniew Starosolski, Manuel Wahle,Alexander Rigort, and Willy WriggersWe desribe the Digital Paths Supervised Variane (DPSV) denoising �lter as analternative to the simple Gaussian-weighted averaging used the main text. Free opensoure implementations of DPSV are available in our Sulptor and Situs pakagesat http://sulptor.biomahina.org and http://situs.biomahina.org. DPSVuses loal variane information to ontrol noise in 3D ryo-ET reonstrutions in aloally adaptive manner. The method was reently proposed for olor image proess-ing (Szzepanski et al., 2004; Smolka, 2008; Szzepanski, 2008), and was adapted forryo-ET as follows.The DPSV �lter proeeds in three steps. The �rst step is the generation of digitalpaths of length P inside a ubi �mask� of (odd-numbered) width M ; the seond steporresponds to a supervised lassi�ation of paths based on a disriminant analysis;and the third step is the omputation of the output intensity of the voxel as a kernel-weighted average of the seleted paths from the previous steps, where the parameter
β de�nes the size of the exponential kernel. In the Sulptor graphis program, version2.1, the �lter an be applied to a map via the menus �Volume� → �DPSV Filter�(entering M , P , β parameters in the pop-up dialog box). Situs version 2.7 o�ersa stand-alone denoising program, vol�tr, that an be run in the UNIX shell. Bothimplementations of DPSV have been parallelized for multi-ore (shared memory)arhitetures using OPENMP (http://openmp.org).The algorithm for a hypothetial 2D ase with M = 5, P = 2 (pixel units)is presented in Supplementary Figure 1. S.F. 1A shows how the set of self-avoidingpaths in the mask are omputed one, after input of the map and the parameters. Themask (and the pre-omputed set of paths) are then �moved� aross the 3D map duringan exhaustive translational san. The mask size M and path length P are parametersthat de�ne the path folding pattern and loal reah of the �lter. In this work, weused M = 2P + 1, whih favors straight paths for the detetion of linear featuressuh as �laments. S.F. 1B shows paths in a simpli�ed 2D 4-neighborhood model.1
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Supplementary Figure 1: (A) Shemati overview of the DPSV denoising proess. (B) Illustrationof a 2D digital self-avoiding walk through one of four nearest neighbors (3 paths of length P = 2are shown).In our ase of 3D volume data, we inluded diagonal onnetions (26-neighborhoodmodel).We applied a disriminant analysis (supervised lassi�ation) to distinguish be-tween paths a�eted by noise (whih are disarded) and those that ideally inludethe true signal (Smolka, 2008). For the disriminant analysis, a �onnetion ost�
Λ is omputed for all paths. The individual onnetion ost desribes the absolutedi�erene of normalized intensities between a enter voxel pi in the mask and a linkedvoxel pi+1,l,k (S.F. 1B), divided by their Eulidean distane. The onnetion ost ofa path Λ is then de�ned as the maximum ost among voxels linked by one path.Our observation shows that digital paths with high onnetion ost are usuallypaths that inlude noise or ross the edge of the struture. We applied Fisher's dis-riminant analysis (FDA) to separate the set of paths into two lasses (Smolka, 2008).The lass with higher onnetion ost was then exluded from further onsideration.This way, the algorithm should ideally preserve only the information that belongs torelatively smooth intensity landsapes and suppress areas a�eted by noise.The output intensity of the entral pixel of the mask was �nally alulated as aost-weighted mean of the neighboring intensities (termed �Similarity Funtion� inS.F. 1A). We use an exponential weight for the ost-based averaging, K(β, Λ) = e−βΛ.2



The parameter β de�nes the �sharpening� of the map, with higher β indiating moresharpening (but due to the ost-weighting it is not a linear relation). Empirial testssuggest useful values (that maximize SNR) in the range of 0.01-0.0001. Althoughthe averaging is performed only over immediately neighboring voxels, the informationfrom more distant voxels is onsidered indiretly by means of the ost funtion Λ.
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(E)(E) (F)(F)(D)(D)Supplementary Figure 2: Comparison of Gaussian-weighted averaging and DPSV �ltration.Shown are iso-surfaes of a 3D ryo-ET reonstrution of unstained HIV-1 virion (EMDB entry1155, Briggs et al. 2007). (A) Original raw data (ropped; density range: 0-189; iso level: 139.08).(B) Gaussian-weighted average (sigma-1D: 1 voxel; iso level: 134.70) applied to (A). (C) DPSV�lter (M = 5, P = 2, β=0.001; iso level: 136.00) applied to (A). (D) Cross-setion of (A). (E)Cross-setion of (B). (F) Cross-setion of (C). The DPSV �lter uses 26-neighborhood model. Themoleular graphis were generated with Sulptor (Birmanns et al., 2011).S.F. 2 ompares the results of Gaussian-weighted averaging and DPSV �ltrationof an HIV-1 virion map. The HIV-1 map is a frequently used test system for de-noising (van der Heide et al., 2007; Fernandez, 2009; Wei and Yin, 2010); therefore,our results an be ompared to those in the literature. The �ltered ross-setions(S.F. 2E,F) learly show the onial ore of the virion, inluding a region of highdensity within the ore (near the broad end), likely representing the ribonuleopro-3



tein omplex of the viral genome with the nuleoapsid domain (Briggs et al., 2007).Both �lters (S.F. 2E,F) have similar e�ets on the original raw data and there islittle di�erene disernible in the maps by eye, demonstrating that the DPSV �lter(M = 5, P = 2, β=0.001) is well mathed to the Gaussian averaging (sigma-1D: 1voxel; sigma-1D is the standard deviation of the Gaussian funtion in 1D, not the3D standard deviation, √3 sigma-1D; the Gaussian was trunated at 3 sigma-1D).We used these mathed �lter parameters for the validation dataset of the main text.
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Supplementary Figure 3: Di�erene of Gaussian-weighted averaging and DPSV �ltration: TheDPSV-�ltered setion of the HIV-1 virion shown in S.F. 2F was subtrated from the Gaussianaveraged setion shown in S.F. 2E. The Figure was generated with MATLAB 7.9.0 (The MathWorksIn.).S.F. 3 shows the di�erene of Gaussian-weighted averaging and DPSV �ltration inmore detail. The maximum disrepany is only 2.1% of the maximum density (189)of the original map in S.F. 2D due to the similarity of the denoising shown above. The4



disrepany map is dominated by �enter-surround� patterns that indiate di�erentpoint spread properties of the �lters. Owing to the relatively bigger point spreadof the Gaussian, high-density features in the original map (white in S.F. 2D) yieldnegative (red) enters and positive (blue) surround in the disrepany map. Likewise,low-density features (dark in S.F. 2D) yield positive enters and negative surround. Inother words, DPSV preserves more details than the Gaussian at omparable denoisinglevel.ReferenesBirmanns, S., Rusu, M., Wriggers, W., 2011. Using Sulptor and Situs for simulta-neous assembly of atomi omponents into low-resolution shapes. J. Strut. Biol.173, 428�435.Briggs, J. A., Grünewald, K., Glass, B., Förster, F., Kräusslih, H. G., Fuller, S. D.,2007. The mehanism of HIV-1 ore assembly: insights from three-dimensionalreonstrutions of authenti virions. Struture 14, 15�20.Fernandez, J., 2009. TOMOBFLOW: feature-preserving noise �ltering for eletrontomography. BMC Bioinformatis 10, 178.Smolka, B., 2008. Peer group �lter for impulsive noise removal in olor images. IEEETrans. Med. Imaging 27, 699�707.Szzepanski, M., 2008. Fast digital approah spatio-temporal �lter. Zeszyty NaukowePolitehiki Slaskiej, seria Automatyka 150, 207�222.Szzepanski, M., Smolka, B., Plataniotis, K., Venetsanopoulos, A., 2004. On thedistane funtion approah to olor image enhanement. Disrete Applied Mathe-matis 139, 283�305.van der Heide, P., Xu, X. P., Marsh, B. J., Hanein, D., Volkmann, N., 2007. E�-ient automati noise redution of eletron tomographi reonstrutions based oniterative median �ltering. J. Strut. Biol. 158, 196�204.Wei, D. Y., Yin, C. C., 2010. An optimized loally adaptive non-loal means denoising�lter for ryo-eletron mirosopy data. J. Strut. Biol. 172, 211�218.
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