

**Supplemental Figure S1.** *Fusarium* disease score ratings system. Following *F. oxysporum* infection, plants were given a disease score rating ranging from 0 to 5. (0) No symptoms, (1) minimal symptoms, 1 leaf chlorotic, (2) >1 leaf chlorotic, minimal necrosis, (3) >50% chlorosis and necrosis, (4) extensive necrosis, stunting, (5) dead.



**Supplemental Figure S2. Analysis of** *Ibd20* **T-DNA mutants.** (A) *LBD20* expression was examined in shoot and root tissue of wild-type (WT) and *Ibd20* plants. Both *Ibd20* alleles had either non-detectable or trace levels of *LBD20*. (B) *Thi2.1* expression was examined in WT and *Ibd20* shoot tissue 6 h post mock or MeJA treatment. Gene expression levels are relative to the internal control  $\beta$ -actin genes. The average of three biological replicates consisting of pools of thirty to forty plants is shown with SE. Asterisks indicate values that are significantly different (\*\**P*<0.01, \**P*<0.05 Student's *t*-test) from WT in the same tissue or treatment.



Supplemental Figure S3. *PDF1.2* and *PR4* expression in wild-type versus *Ibd20* plants following MeJA treatment. Expression of the JA-defense marker genes *PDF1.2* and *PR4* was examined in wild-type (WT) and *Ibd20* (A) root or (B) shoot tissue 6 h post mock or MeJA treatment. Gene expression levels are relative to the internal control  $\beta$ -actin genes. The average of three biological replicates consisting of pools of thirty to forty plants is shown with SE. Asterisks indicate values that are significantly different (\**P*<0.05 Student's *t*-test) from WT. Similar results were obtained in independent experiments.



Supplemental Figure S4. LBD20 is a repressor of a subset of JA-regulated defense genes following *Fusarium* infection. Expression of JA-response genes was examined in wild-type (WT) and *lbd20* (A) root or (B) shoot 48 h post mock or *F. oxysporum* (Fo) inoculation. Gene expression levels are relative to the internal control  $\beta$ -actin genes. The average of three biological replicates consisting of pools of thirty to forty plants is shown with SE. *PDF1.2* and *PR4* were induced similarly in both WT and *lbd20* shoots (data not shown).





WΤ

LBD20-OX



LBD20-OX-1LBD20-OX-2LBD20-OX-3LBD20-OX-4WT backgroundIbd20 background

**Supplemental Figure S5. Plants over-expressing** *LBD20* **have altered leaf morphology and fertility.** (A) Range in severity of phenotypes in T1 plants over-expressing *LBD20* under a dual 35S promoter (*LBD20-OX*) compared to wild-type (WT). 26% of T1 plants died due to deformed growth, and 22% produced little or no seed. (B) Leaf morphology of *LBD20-OX* plants in a wild-type (WT) or *Ibd20* background carrying a single copy insertion of the 35S::*LBD20* transgene and used for gene expression and *Fusarium* infection experiments.

| Gene        | Locus     | Forward primer sequence 5'-3' | Reverse primer sequence 5'-3' |
|-------------|-----------|-------------------------------|-------------------------------|
|             | (AGI)     |                               |                               |
| ACT-8       | At1g49240 |                               | GAGGATAGCATGTGGAACTGAGAA      |
| (reference) |           |                               |                               |
| ACT-2       | At3g18780 |                               | GATGGCATGGAGGAAGAGAGAAAC      |
| (reference) |           |                               |                               |
| ACT-7       | At5g09810 |                               | GAGGAAGAGCATTCCCCTCGTA        |
| (reference) |           |                               |                               |
| ACT-        |           | AGTGGTCGTACAACCGGTATTGT       |                               |
| universal   |           |                               |                               |
| (reference) |           |                               |                               |
| LBD20       | At3g03760 | GGCTCAAGCTAGGCTCTCTG          | ATTGCACCACCGATAACTCC          |
|             |           |                               |                               |
| PDF 1.2     | At5g44420 | TTTGCTGCTTTCGACGCAC           | CGCAAACCCCTGACCATG            |
|             |           |                               |                               |
| Thi2.1      | At1g72260 | CTCAGCTGATGCTACCAATGAGC       | GCTCCATTCACAATTTCACTTGC       |
|             |           |                               |                               |
| VSP2        | At5g24770 | CCTA AAGA ACG AC AC CG TCA    | TCGGTCTTCTCTGTTCCGTA          |
|             |           |                               |                               |
| PR4         | At3g04720 | TGCTACATCCAAATCCAAGCCT        | CGGCAAGTGTTTAAGGGTGAAG        |
|             |           |                               |                               |
| MYC2        | At1g32640 | TCATACGACGGTTGCCAGAA          | AGCAACGTTTACAAGCTTTGATTG      |
|             |           |                               |                               |

## Supplemental Table S1. RT-Q-PCR primers used in gene expression analyses.