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APPENDIX

A. DISTRIBUTION OF THE TEST STATISTIC UNDER A LOCAL ALTERNATIVE

In this section, we derive the distribution of Q̂A under the local alternative H1n : β0 = n−1/2b0 with
the true parameter value for α being α0 and θ being θH1n = (αT

0 , n
−1/2bT

0)T. Recall that
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[
S̄u(θ)pu×1
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]
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G1(θTWi)
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}
Wi

Let θH0 = (αT
0 ,0

T
p×1)

T and consider the parameter space for θ as ΩH1n = {(αT, n−1/2bT)T, ‖α −
α0‖+ ‖b‖ 6 C} for some constant C. Let Ĉww(θ) be the empirical version of

Cww =
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obtained by replacing expectations by averages over the data. For the initial estimator, we consider
β̂ = β̂RQL(λ̂), where θ̂RQL(λ) = {α̂RQL(λ)T, β̂RQL(λ)T}T is the solution to S̄(θ) − λ(0T,βT)T = 0

and the tuning parameter λ̂ satisfies λ̂→ λ0 > 0 as n→∞.
We first derive asymptotic properties of θ̂RQL(λ̂). By a uniform law of large numbers (Pol-

lard, 1990), S̄(θ) − λ̂(0T,βT)T → S(θ) = E{S̄(θ)} and Ĉww(θ) = ∂S̄(θ)/∂θT → Cww(θ) =

∂E{S̄(θ)}/∂θT, uniformly in θ ∈ ΩH1n in probability, as n → ∞. Thus under H1n, for any

∗† To whom correspondence should be addressed.

c© The Author 2009. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org.



ii T. CAI, X. LIN AND R. J. CARROLL

Cn = Op(n
−1/2), supθ∗:‖θ∗−θH1n

‖6Cn

∥∥∥Ĉww(θ∗)− Cww

∥∥∥ →p 0 as n → ∞. The uniform conver-

gence implies that under H1n, θ̂RQL(λ̂)−θH1n → and α̃QL−α0 → 0 in probability, as n→∞. For
the asymptotic distribution of θ̂RQL(λ̂), by a Taylor series expansion,

n1/2{θ̂RQL(λ̂)− θH1n} =

{
Ĉww(θ̂†) +

(
0pu×pu 0pu×p

0p×pu λ̂Ip×p

)}−1
n1/2

{
S̄(θH1n)− λ̂(0T,βT

0 )T
}
,

for some θ̂† such that ‖θ̂† − θH1n‖ 6 ‖θ̂RQL(λ̂) − θH1n‖. It then follows from the consistency of
θ̂RQL(λ̂) and the uniform consistency of Ĉww(θ) that

n1/2{θ̂RQL(λ̂)− θH1n}= {C(λ0)
ww }−1n1/2S̄(θH1n) + op(1), where C(λ0)

ww =
(
Cuu Cuv

Cvu Cvv + λ0Ip×p

)
.

Thus letting B(λ0)
v = [−{Cv|u + λ0Ip×p}−1CvuC−1uu , {Cv|u + λ0Ip×p}−1], we have n1/2β̂RQL(λ̂) =

b0 + B(λ0)
v n1/2S̄(θH1n) + op(1). Similarly,

n1/2(α̃QL −α0) = C−1uun1/2S̄u(θH0) + op(1) = C−1uu
{
n1/2S̄u(θH1n) + Cuvb0

}
+ op(1). (A.1)

Next, for the distribution of S̃v, by a Taylor series expansion and (A.1),

S̃v = n1/2S̄v{(α̃T
QL,0

T
p×1)

T} = n1/2S̄v(θH1n)− n1/2[Cvu,Cvv]

(
α̃−α0

−n−1/2b0

)
+ op(1)

= − CvuC−1uun1/2S̄x(θ0) + n1/2S̄v(θH1n) +
(
Cvv − CvuC−1uuCuv

)
b0 + op(1)

= Avn
1/2S̄(θH1n) + Cv|ub0 + op(1).

On the other hand, by the central limit theorem, n1/2S̄(θH1n)→ εw in distribution as n→∞, where
εw ∼ N(0, σ2Cww). Therefore, as n→∞,[

S̃v

n1/2β̂RQL(λ̂)

]
→

[
s0 + Avεw

b0 + B(λ0)
v εw

]
in distribution.

Furthermore, κ̂ → κ in probability as n → ∞. It follows from the continuous mapping theorem
that under H1n, Q̂A = n‖S̃v � Ẑ‖22 converges in distribution toQA(b0) = ‖(b0 + B(λ0)

v εw)� (s0 +

Avεw)� κ‖22, as claimed.
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Fig. 1. Estimated marginal log-odds ratio of the SNPs (open circles) along with their 95% confidence intervals (thick solid lines).
Show also are the SNP’s p-values if they are less than 0.05.
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Fig. 2. LD structure of the 86 SNPs of the ASAH1 gene and the 232 SNPs of the FGFR2 gene from the Hapmap.

(a) ASAH1

(b) FGFR2


