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S1. The EBCM approach

Table S1: Definitions

Variable/Parameter Definition

β Infection rate or infection probability.

γ Recovery rate.

tr Recovery time.

T Transmissibility.

θt Probability that a neighbor of a root node has not transmitted yet

the disease to the root node at time t.

ΦS(t) Probability that a neighbor of a root node is susceptible at time t.

ΦI(t) Probability that an infected neighbor of a root node has not trans-

mitted the disease to the root node at time t.

ΦR(t) Probability that a neighbor is recovered at time t without having

transmitted the disease to the root node.

In the EBCM approach, θt is the probability that a root node has not being infected by

a neighbor at time t. This is possible if the neighbor is susceptible, recovered, or infected

but has not transmitted the disease yet to the root, which happens with probabilities

ΦS(t), ΦR(t) and ΦI(t), respectively. Then, θt = ΦS(t) + ΦI(t) + ΦR(t). The probability

that a root node of connectivity k is susceptible is θk and the fraction of susceptible

nodes is S(t) =
∑

k
P (k)θk

t
= G0(θt). On the other hand, a neighbor is susceptible with
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probability ΦS(t) = G1(θt). Then in the SIR model with infection and recovery rates [1, 2],

the probabilities ΦI(t), ΦS(t) and θt evolve as,

θ̇ = −βΦI , (S1)

Φ̇S = −βG
′

1(θ)ΦI , (S2)

Φ̇I = −βΦI + βG
′

1(θ)ΦI − γΦI , (S3)

where β and γ are the infection and recovered rates. Eq. (S1) represents the decrease of

θ when an infected neighbor transmits the disease. The Eq. (S2) represents the decrease

of ΦS when a susceptible neighbor is infected, which is proportional to G
′

1(θ), i.e., the

mean connectivity of the susceptible first neighbors or the excess degree of the susceptible

individuals, because when a susceptible individual is infected, all its links except the one

used to infected it, can transmit the disease. This term contributes to an increase of ΦI in

Eq. (S3). In Eq. (S3) on the r.h.s, the first term represents the decrease of ΦI when the

links transmit the disease, the second term corresponds to the term of Eq. (S2) mentioned

above and the third term represents the decrease of ΦI due to the recovery of infected

individuals.

To obtain the evolution of I(t), we use the fact that,

İ + Ṡ + Ṙ = 0. (S4)

As Ṙ = γ I and Ṡ = d (G0(θ)) /dt = G
′

0(θ)θ̇ = −βΦIG
′

0(θ), the evolution of the fraction

of infected individuals is given by

İ = βG
′

0(θ)ΦI − γI, (S5)

where the first term represents the decrease of S which is proportional to β, the mean

connectivity of susceptible individuals G
′

0(θ) and the probability that an outgoing edge

from a root is connected with an infected node that has not transmitted the disease to

the root at time t. The second term corresponds to the recovery of infected individuals

at a rate γ.

We reformulate the EBCM approach process with discrete time steps, for a fixed
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recovery time tr. It is straightforward that Eq. (S1-S5) can be written as,

∆θt = −βΦI(t), (S6)

∆ΦS(t) = G1(θt+1)−G1(θt), (S7)

∆ΦI(t) = −βΦI(t)−∆ΦS(t) + (1− T )∆ΦS(t− tr), (S8)

where 1 − T = (1 − β)tr denotes the probability that an infected individual has not

transmitted the disease to a susceptible individual during tr time units since he was

infected. Finally the evolution of the fraction of infected individuals is given by

∆I(t) = −∆S(t) + ∆S(t− tr), (S9)

where −∆S(t) = − (G0(θt+1)−G0(θt)) represents the fraction of new infected individuals

and the second term represents the recovery of infected individuals that have been infected

tr time units ago.

For the simulations we infect only one individual in the giant component of the network

and at each time step all the infected individuals infect their susceptible network with

probability β and recover at a fixed time tr since they were infected. We select only the

runs in which the size of the epidemic has reached a macroscopic fraction of individuals in

the steady state [3, 4, 5] because the deterministic equations are only valid for epidemics

above the critical threshold Tc. We performed all the simulations using synchronized or

simultaneous updates at each time step.

In Fig. S1, we plot the time evolution of the fraction of infected nodes I(t) for ER

and SF networks obtaining by the EBCM approach Eqs. (S6-S9) and the simulation. For

the simulations we shifted t = 0 to the instant when the disease has reached 1% of the

individuals. We choose this reference time, as the time when the disease has reached a

size enough to growth deterministically. This choice compensates the time dispersion of

each trial around the theoretical solution due to stochastic effects at the early stages of

the process when the number of infected nodes is small [2] (see the insets of Fig. S1). As

shown in Figs. S1A-B, each trial simulation has the same shape as the theoretical solution

which shows that the EBCM approach and the simulations are in excellent agreement.
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Figure S1: I(t) for epidemics with tr = 20 and β = 0.04 (T = 0.55) on networks with

mean connectivity 4.07 in the giant component, for a ER network with 〈k〉 = 4 (A) and

a SF with λ = 2.63, minimal connectivity kmin = 2 and 〈k〉 = 4.07 (B). The symbols

correspond to an average of one hundred different network realizations with N = 105

nodes and the solid black curve is the numerical solution of Eq. (S9) shifting the curves

to t = 0 when 1% of the individuals are infected. The insets show the individual 100

network realizations (solid gray lines) and the numerical solution of Eq. (S9) (solid black

line) without the temporal shift transformation.

S2. Node void percolation in the time domain

In node void percolation, as a link is traversed, void node is removed. The void nodes are

removed with probability proportional to kP (k). As the susceptible nodes can be mapped

into void node percolation, the susceptible network loses their higher degree nodes first

as in an intentional attack. As a consequence, the resulting susceptible network is more

homogeneous than the original. Thus, mean field exponents of a second order percolating

phase transition [6] are expected. In order to show the effect of the disease spreading on the

highest degree nodes, in Fig. S2 we plot for a SF network the effective degree distribution

of the susceptible nodes obtained from the simulations, in which a susceptible node has

degree k when it has k susceptible neighbors.
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Figure S2: Simulation results of the degree distribution of susceptible nodes for a SF

network with λ = 2.63, kmin = 2 and 〈k〉 = 4.07 at different times: at the beginning of

the spreading (black solid line), when the disease has reached 10% of individuals (blue

solid line), 25% of individuals (violet solid line) and 50% of individuals corresponding to

tc (red solid line). (Color online).

As shown in Fig. S2, as the disease spreads, the effective degree distribution loses the

heavy tail. As a result of this process, the susceptible clusters becomes more sparse and

at the critical time tc the topology of the susceptible clusters change drastically since the

susceptible individuals lose all the hubs and P (k) has an exponential tail. For percolation

in mean field it is known that at the criticality the finite cluster size distribution nS ∼ s−τ

with τ = 2.5 and S1 [Φs(t)] ∼ Φs(t)−Φs(tc). In Fig. S3 we plot the simulations results of

the finite size distribution of the susceptible nodes ns at t = tc.
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Figure S3: Log-log of the cluster size distribution ns of finite susceptible clusters (©)

at tc for tr = 20 and β = 0.07 (T=0.76) in a ER network with 〈k〉 = 4 for tc = 30(A)

and a SF with λ = 2.63, minimal connectivity kmin = 2 and 〈k〉 = 4.07 for tc = 11. (B).

The dashed line corresponds to a power law fitting, from where we obtain an exponent

τ ≈ 2.5. Our simulations were averaged over 10000 network realizations with N = 105.
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Figure S4: S1 as a function of Φs(t) obtained from simulations (©) and from the analytical

approach (solid line) in a ER network with 〈k〉 = 4 (A) and a SF with λ = 2.63, minimal

connectivity kmin = 2 and 〈k〉 = 4.07 (B). In the inset we plot S1 as a function of

the distance of Φs(t) to the criticality Φs(tc) = Vc, in log-log scale. The dashed line

corresponds to a power law fitting from where we obtain slope ∼ 1. Our simulations were

averaged over 1000 network realizations with N = 105.

We can see that at tc, ns(tc) behaves as a power law with exponent τ ≈ 2.5 which

corresponds to the mean field value, independently of the initial degree distribution of

the network [7]. Similarly, in Fig. S4 we plot S1(t) as a function of ΦS(t) obtained from

the simulations and the theoretical approach. We compute ΦS(t) from the simulations as

the square root of the fraction of edges connecting two susceptible nodes [8]. We can see

that S1(t) behaves as a power law with exponent one with the distance to the criticality

Φs(tc), which also corresponds to the mean field value (see Insets of Fig. S4). Since two

critical exponents are sufficient to determine the universality class, the results showed

above indicate that in a node void percolation process the susceptible network belongs

to the same universality class of mean field percolation and confirms quantitatively the

homogenization of the susceptible network during a SIR epidemic spreading.

Finally, in Fig. S5, we plot the critical time tc, computed from the simulations at

ΦS(t) = V s

c
, as a function of T for different values of tr. We can see that for the same

transmissibility T , when tr increase, the time to intervene grows since β decrease and
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thus the disease spreading is retarded. In turn, when the transmissibility T reaches

T ∗ from above, the critical time tc grows very fast. This phenomenon is analogous to

other second order phase transitions in physics like the relaxation time near the Curie

temperature, which are called “critical slowing down” [9, 10], and indicates that that

once the transmissibility increases slightly above T ∗, the time needed to destroy the giant

susceptible cluster decreases very fast.
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Figure S5: tc as a function of T for β = 0.07 and tr = 20 (©), tr = 10 (�), tr = 5

(⋄) and mean connectivity 4.07 in the giant component in a ER network with 〈k〉 = 4

(T ∗ = 0.46) (A) and in a SF with λ = 2.63, minimal connectivity kmin = 2 and 〈k〉 = 4.07

(T ∗ = 0.38)(B). The dashed line represents the value of T ∗. The critical time tc is

measured using t = 0 when 1% of individuals are infected. The dotted lines are used as

a guide to the eyes.
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