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SUMMARY

Small RNA-mediated gene regulation during devel-
opment causes long-lasting changes in cellular phe-
notypes. To determine whether small RNAs of the
adult brain can regulate memory storage, a process
that requires stable and long-lasting changes in the
functional state of neurons, we generated small
RNA libraries from theAplysiaCNS. In these libraries,
we discovered an unexpectedly abundant expres-
sion of a 28 nucleotide sized class of piRNAs in brain,
which had been thought to be germline specific.
These piRNAs have unique biogenesis patterns,
predominant nuclear localization, and robust sensi-
tivity to serotonin, a modulatory transmitter that is
important for memory. We find that the Piwi/piRNA
complex facilitates serotonin-dependent methyla-
tion of a conserved CpG island in the promoter of
CREB2, the major inhibitory constraint of memory
in Aplysia, leading to enhanced long-term synaptic
facilitation. These findings provide a small RNA-
mediated gene regulatory mechanism for establish-
ing stable long-term changes in neurons for the
persistence of memory.

INTRODUCTION

The lifetime of many humanmemories runs on the order of years,

whereas the RNA or protein molecules that may subserve these

memory traces are thought to turn over on the order of days

(Price et al., 2010). Several hypotheses have been proposed to

explain how memories can remain stable in the face of constant

molecular turnover. (1) Prion-like proteins at synapses can adopt

active, stable, and self-perpetuating conformations that pre-

clude turnover of the protein (Si et al., 2003, 2010; Bailey et al.,
2004). (2) Autoregulatory and positive feedback loops within

protein networks can allow persistent enzymatic activity of

proteins or newly synthesized protein to take the place of exist-

ing protein machinery without loss in state and function (Lisman,

1985; Hayer and Bhalla, 2005; Song et al., 2007; Serrano et al.,

2008). (3) And perhaps most tantalizing is the possibility that

epigenetic mechanisms such as DNA methylation can alter

gene expression and thus the intrinsic properties of neurons

in a long-term fashion, perhaps on the order of years (Crick,

1984; Davis and Squire, 1984; Weaver et al., 2004; Miller et al.,

2010; Feng et al., 2010).

Small regulatory noncoding RNAs can cause long-lasting

changes in cellular phenotypes during development, through

their involvement both in autoregulatory feedback loops (Hobert,

2008; Rybak et al., 2008; Krol et al., 2010a) and in the tran-

scriptional and epigenetic regulation of gene expression (Wasse-

negger, 2005; Saito and Siomi, 2010). To better understand the

regulatory roles of miRNAs during long-term memory, we previ-

ously generated amiRNA library from theAplysia central nervous

system and demonstrated the role of a brain-specific miRNA,

aca-miR-124, in constraining long-term synaptic facilitation

through repression of the transcriptional activator CREB1 (Raja-

sethupathy et al., 2009). In the process of mining and character-

izing miRNAs from Aplysia CNS, we made the unexpected

discovery of neuronally expressed piRNAs (Piwi-interacting

RNAs).

piRNAs are a class of Piwi-associated, 26–32 nucleotide (nt)

small noncoding RNAs (Aravin et al., 2006; Girard et al., 2006;

Grivna et al., 2006; Watanabe et al., 2006) that, unlike other small

RNAs, are generated from long genomic clusters (Betel et al.,

2007) and are thought to have germline-restricted expression.

The function of Piwi/piRNA RNP complexes is not fully under-

stood as of yet, but some studies point to a possible role in the

epigenetic regulation of transposable elements in the germline

through de novoDNAmethylation (Aravin et al., 2007; Brennecke

et al., 2008; Kuramochi-Miyagawa et al., 2008). Specifically,

mice lacking one or more of their Piwi homologs were shown
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Figure 1. Identification of piRNAs in Aplysia Neurons

(A) A size histogram of cloned small RNAs from AplysiaCNS revealed two populations, and further characterization confirmed the new class of sequences (shown

in black) to be piRNAs.

(B) A continuous genomic region in Aplysia encoding a piRNA cluster. A representative 600 bp region within the full 21 kilobase cluster is shown here. The clone

frequency of each piRNA is proportional to the height of its nucleotide bases. The clones mapping to the peak piRNA are shown in the inset, and U(T) bias start

sites are indicated in red.

(C) The top 100 piRNAs are plotted on the x axis in decreasing order of abundance, and their enrichment in CNS is shown as a positive deflection along the y axis.
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to have substantial demethylation and derepression of transpos-

able elements targeted by germline piRNAs.

In a recent study, Lee et al. (2011) reported the identification

of piRNAs in mouse neurons. However, comparison of the re-

ported sequences with existing gene annotation suggests that

they may instead be fragments of snoRNAs and other abundant

RNAs. RNA impurities present in Piwi immunoprecipitates and

their subsequent misclassification as piRNAs (Girard et al.,

2006) may have contributed to the confusion. Here, we provide

a library of bona fide neuronally expressed piRNAs that have

been validated in multiple ways: (1) repeated deep sequencing

of brain tissue with verification of discovered piRNAs by north-

erns, (2) confirmation of known properties of piRNAs such as

30 end modification and stable association with a neuronally

expressed Piwi protein, and (3) extensive bioinformatic analysis

to show their distinct patterns of clustering within the genome.

We find that Aplysia piRNAs are broadly expressed outside of

the ovotestes and are amply present in neurons. These piRNAs

are abundant, have unique biogenesis patterns, associate with

a neuronal Piwi protein, and are distinctly regulated by neuromo-

dulators that are important for learning and memory. By analogy

to their role in germline, we find that the Piwi/piRNA complex in

neurons can methylate target genes, but in this case, the piRNA

we studied targets a critical plasticity-related gene and tran-

scriptional repressor of memory, CREB2 (Bartsch et al., 1995),

and methylates its promoter by first accessing its nascent

transcript. The DNA methylation of CREB2 by the Piwi/piRNA

complex provides a mechanism by which transient external

stimuli can cause long-lasting changes in the gene expression

of neurons involved in long-term memory storage.

RESULTS

Identification of Neuronal piRNAs in Aplysia that Stably
Associate with Piwi in Nuclear Compartments
Our previous generation of a small RNA library from Aplysia CNS

resulted in the majority of sequence reads being mapped as

miRNAs, with a minority of reads (�20%) that mapped to the

Aplysia genome but could not be annotated (Figure 1A). Further

examination of these nonannotated small RNA sequences re-

vealed the unexpected presence in brain of another distinct

class of small RNAs characterized by a predominant length of

28 nt and a strong preference for a 50 U (at least 60% of cloned

sequence reads for a given piRNA have uridine as the first nucle-

otide) (Figures 1A and 1B). When these sequences weremapped

to the unassembled genome trace files followed by the assembly

of larger contigs comprising these regions, we identified clusters

containing additional sequences with the same features, re-

vealing a pattern that is characteristic of mammalian piRNAs

(see Experimental Procedures for further annotation details).
(D) Two abundant piRNAs are probed for presence in brain (cns), ovotestes (ot), h

synthetic piRNAs loaded on the far left of the blots at a concentration of 50, 10, a

with aca-miR-124 and tRNA to control for specificity of signal and equal loading

(E) Total RNA extracted from Aplysia CNS, either periodate treated with beta elim

piR-1 is insensitive to the treatment and is therefore modified at its 30 end. miR-22

unmodified at its 30 end.
See also Tables S1, S2, and S3.
To more comprehensively survey piRNA expression in the

Aplysia CNS, as well as other tissues, both in the juvenile animal

as well as in the adult, we generated anew ten different small

RNA cDNA libraries using barcoded adapters and subjected

the libraries to deep sequencing using the Illumina platform. Of

the sequences that were annotated, the piRNA content per

library averaged 15%, compared with the miRNA content, which

averaged 60% (Tables S1 and S2 available online). We identified

372 distinct piRNA clusters (Scaffold coordinates provided in

Table S2), of which a region of one representative cluster is

shown (Figure 1B). Aplysia piRNAs exhibit unusual biogenesis

patterns in that, within a cluster of piRNA reads, one or a few indi-

vidual piRNAs were cloned hundreds of times more frequently

than surrounding piRNAs in the same cluster (Figure 1B). This

piRNA biogenesis pattern leads to an accumulation of specific

piRNAs similar in read frequencies to miRNAs (Table S3).

Because piRNAs are preferentially expressed in germline cells

in both vertebrates and invertebrates, we anticipated gonad-

specific expression in Aplysia. Although we find the overall

piRNA content (and piRNA-to-miRNA ratio) to be highest in the

ovotestes (Table S1), there are several abundant piRNAs that

are selectively enriched in the CNS (Figure 1C). To confirm the

sequencing data, abundant piRNAs originating from two distinct

clusters were analyzed by quantitative northern blots and

detected in brain, aswell as in ovotestes and heart, but to a lesser

extent in other organs such as muscle or hepatopancreas (Fig-

ure 1D). Because piRNAs in other species are known to be

20-O methylated at their 30 ends, we asked whether neuronal

piRNAs in Aplysia were also 20-O methylated at their 30 ends.
We subjected total RNA from Aplysia CNS to periodate treat-

ment and beta elimination, followed by northern blot for a piRNA

(piR-1) and a miRNA (miR-22). Whereas the miRNA, which was

expected to be unmodified at its 30 end, was sensitive to the

treatment and showed an �2 nt shift (the expected change in

mobility upon treatment and elimination of the last nucleotide

with a remaining 30 phosphate), the piRNA did not shift (Fig-

ure 2E), suggestive of 20-O methylation previously documented

for piRNAs in other species (Kirino and Mourelatos, 2007).

Consistent with piRNA expression in the CNS, we were also

able to clone the full-length cDNA for the 964 aa Piwi protein

from the CNS. The sequences of these clones are homologous

to vertebrate Piwi proteins and have conserved PAZ and Piwi

domains. The Aplysia Piwi protein is much more closely related

to Piwi proteins by homology than to Argonaute proteins of other

species and, within the Piwi family, more closely related to verte-

brate than invertebrate Piwi members (Figure 2A), as is often the

case with Aplysia proteins. We generated a polyclonal antibody

for the Aplysia Piwi protein that detects the induced recombinant

protein, as well as the protein in Aplysia neural extracts, as

a single band (Figure 2B). To determine whether that the Piwi
eart (h), muscle (m), and pancreas (p) by quantitative northern blot. Detection of

nd 3 fmol serve as positive controls and allow quantitation. Blots are reprobed

of samples.

ination (+) or untreated (�), was probed on northern blot for piR-1 and miR-22.

is sensitive to the treatment (red arrow), shows an �2 nt shift, and is therefore

Cell 149, 693–707, April 27, 2012 ª2012 Elsevier Inc. 695



Figure 2. Neuronal piRNAs Stably Associate with a Neuronal Piwi Protein in Nuclear Compartments

(A) The full-length 964 kDaAplysiaPiwi protein cloned fromAplysiaCNSwith conserved PAZ and PIWI domains andwhose transcript is well expressed in both the

ovotestes and CNS. In a homology tree, Aplysia Piwi clusters more closely with the Piwi genes of human (hsa), mouse (mmu), zebrafish (dre), fruitfully (dme), and

worm (cel) than with the Argonaute genes of those species.

(B) A polyclonal antibody generated against the C-terminal end of the Aplysia Piwi protein recognizes induced recombinant Piwi protein at 130 kDa.
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protein stably interacts with piRNAs, we immunoprecipitated (IP)

Piwi from neural extracts (Figure 2C) and extracted the RNAs

from the Piwi complex. When blots of the RNAs from the Piwi

IP and Argonaute (Ago) IP were probed for a piRNA (aca-piR-1)

and miRNA (aca-miR-22), the piRNA was detected only in Piwi

IP, whereas the miRNA was detected only in Ago IP (Figure 2D).

We further find that RNA from neural extracts after Piwi knock-

down with 20-O-methyl antisense oligoribonucleotides (Piwi

knockdown confirmed in Figure 4A) are depleted in piRNAs

when compared to control extracts, with no detectable change

in the levels of other noncoding RNAs, such as miRNAs or

tRNA (Figure 2E). These experiments demonstrate that there

are indeed two distinct classes of small RNAs in Aplysia CNS,

miRNAs, and piRNAs, each of which associates with its respec-

tive Ago and Piwi protein.

To better understand the subcellular localization of Piwi and

piRNAs in Aplysia neurons, we first separated neural protein

and RNA extracts into nuclear and cytoplasmic fractions and

probed for the Piwi protein on western blots and piRNAs on

northern blots. Effective fractionation was confirmed by the

presence of GAPDH only in cytoplasmic compartments and

histone H3 in nuclear compartments. We detected the Piwi

protein primarily in the nuclear compartment (Figure 2G). Con-

sistent with this finding, overexpression of GFP-tagged Piwi in

Aplysia sensory neurons shows a predominant nuclear localiza-

tion of the Piwi protein (Figure 2F). A northern blot comparing

small RNA content in the nuclear and cytoplasmic fractions

with total unfractioned RNA also revealed that the piRNAs

were primarily nuclear, whereas themiRNAs were primarily cyto-

plasmic (Figure 2H). Taken together, both Piwi and piRNAs in

Aplysia neurons have predominant nuclear localization, suggest-

ing a nuclear function for the Piwi/piRNA complex.

Piwi/piRNA Complexes Enhance Memory-Related
Synaptic Plasticity by Regulating the Transcriptional
Repressor CREB2
To determine whether piRNAs have a regulatory role in memory-

related synaptic plasticity, we screened some of the abundant

neuronal piRNAs for changes in expression levels upon expo-

sure to serotonin (5HT), a neuromodulator that is important for

learning and memory. A subset of the selected piRNAs was

significantly upregulated (Figure 3A). aca-piR-4 and aca-piR-15

are examples of piRNAs that were robustly induced by 5HT.

The former was transiently induced, whereas the latter had a

more delayed but enduring activation. The increase in piRNA ex-

pression in response to 5HT was particularly interesting in com-

parison with the activity of several Aplysia miRNAs, which by
(C) The antibody also recognizes Piwi protein from Aplysia neural extracts and is

(D) RNA from Piwi IP and Ago IP were northern blotted and probed for a piRNA (ac

whereas the miRNA is only detected in the Argonaute IP.

(E) The Piwi knockdown samples had a specific depletion in piRNAs (aca-piR

knockdown of Piwi specifically prevents maturation of piRNAs. Changes in piR

trials ± SD.

(F) Overexpression of Aplysia Piwi protein with GFP tagged at the C terminus rev

(G) Nuclear (NUC)/cytoplasmic (CYT) fractionation of neuronal proteins followe

detected only in the cytoplasmic fraction, and histone H3 is detected only in the

(H) Nuclear (N)/cytoplasmic (C) fractionation of total (T) RNA followed by norther

miRNA.
contrast, were rapidly downregulated in neurons in response

to neuromodulators and to neuronal activity (Rajasethupathy

et al., 2009). These observations suggest that the two classes

of small RNAs in the Aplysia CNS could exercise coordinated

bidirectional activity of their targets during memory-related

synaptic plasticity.

To better understand the functional relevance of these 5HT-

induced piRNAs, we explored their role in memory-related

synaptic plasticity in cultured neurons in response to 5HT. The

cocultures used in these experiments consisted of two sensory

neurons that each synapse on a single target motor neuron. We

first depleted Piwi (and consequently its associated piRNA pop-

ulation) from sensory neurons that form synapses with motor

neurons in culture and assayed for changes in the strength of

the sensory-motor synapse. We injected an antisense 20-O-

methyl oligoribonucleotide to Piwi in one sensory neuron of the

coculture, and the other sensory neuron was left unmodified as

an internal control. In each case, electrical activity was recorded

in the motor neuron after exposure to 5HT to determine the

change in baseline synaptic transmission and in memory-related

long-term facilitation (LTF) at these synapses. We found that

knockdown of Piwi significantly impaired LTF as measured at

24 and 48 hr after exposure to five pulses of 5HT (n = 34), when

compared with uninjected controls in the same coculture (n =

37; F(3,95) = 13.63; p < 0.001 repeated measures ANOVA; p <

0.02 and p < 0.04 at 24 and 48 hr, respectively, Newman-Keuls

post hoc test; Figure 3C). The observed differences between

the two groups were not due to differences in the basal strength

of the synaptic connections. We confirmed the efficacy of Piwi

knockdown by western blotting, as the antibody was not able

to detect Piwi by immunostain (Figure 4A), andwe also confirmed

that the Piwi knockdown specifically prevented the accumulation

ofmature piRNAs (Figure 2E). Control experimentswith the injec-

tion of scrambled antisense 20-O-methyl oligoribonucleotides did

not show changes in LTF (n = 23, scrambled AS versus n = 9, 53

5-HT; p > 0.6 at both 24 and 48 hr, Newman-Keuls post hoc test;

Figure 3D). We next determined whether overexpression of Piwi

had the opposite effect. Overexpression of Piwi-GFP (n = 22)

caused a significant enhancement of 5HT-dependent long-

term synaptic facilitation with respect to untreated controls

(n = 40) as measured at 24 and 48 hr (F(2,78) = 44.04; p < 0.001

repeated measures ANOVA; p < 0.001 Newman-Keuls post

hoc test at both 24 and 48 hr; Figure 3E). Taken together, we

conclude that 5HT induces the activity of Piwi-associated

piRNAs, which in turn act to enhance LTF.

To identify genes through which Piwi might act to enhance

5HT-dependent long-term facilitation, we screened many
able to specifically IP the protein as a single band at 130 kDa.

a-piR-1) and a miRNA (aca-miR-22). The piRNA is only detected in the Piwi IP,

-1 and aca-piR-2) but no change in miRNA or tRNA levels, confirming that

NA levels are quantified and are presented as a mean of three independent

eals a nuclear localization of Piwi in sensory neurons.

d by western blot revealed a nuclear localization for Piwi protein. GAPDH is

nuclear fraction, confirming effective fractionation.

n blot revealed a nuclear enrichment of piRNA and cytoplasmic enrichment of
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Figure 3. Piwi/piRNAs Enhance Serotonin-Dependent Memory-Related Synaptic Plasticity

(A and B)AplysiaCNSwere treated either with vehicle (�) or with 53 5HT, and RNAwas extracted 1 hr and 4 hr later and northern blotted. tRNA bands are shown

to control for equal loading of samples. Changes in piRNA levels are quantified in (B) and are presented as a mean of four independent trials ± SD.

(C–E) Graphs reporting the percentage change in the excitatory postsynaptic potential (EPSP) amplitude measured at 24 hr and 48 hr after 53 5HT application

with respect to pretreatment values in the different experimental groups. In each coculture, one of the two sensory neurons was injected with 5 M Piwi antisense

(C), scrambled negative control (D), or Piwi-GFP (E), whereas the other sensory neuron was left untreated as a control. Changes in EPSP levels are quantified in

and presented as a mean of 37 (C), 23 (D), and 22 (E) independent trials ± SD. The observed differences between treatment groups are not due to differences in

basal synaptic strength.
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plasticity-related genes for changes in expression levels after

knockdown of Piwi. Desheathed pleural ganglia were incubated

in antisense 20-O-methyl oligoribonucleotides conjugated with

penetratin to inhibit Piwi (confirmed by western blot; Figure 4A),

and total protein was extracted and western blots prepared and

probed with specific antibodies. We found that inhibition of Piwi

led to a reproducible 2-fold upregulation of the transcriptional re-

pressor and major inhibitory constraint on LTF, CREB2, when

compared to neurons treated with scrambled control 20O-methyl

oligoribonucleotides. This effect was specific to CREB2, as Piwi

inhibition had no effect on several other plasticity-related genes

such as C/EBP and CPEB (Figure 4A). The observed increase in

CREB2 protein levels was supported by an even greater increase

in CREB2 mRNA levels (Figure 4B).

In earlier studies, it was observed that knockdown of CREB2 in

sensory neurons could prime the sensory-motor synapse such

that a weak stimulus (one pulse instead of five pulses of 5HT)

was sufficient to cause LTF that lasts days (Bartsch et al.,

1995). We therefore asked whether overexpression of Piwi,

through its repression of CREB2, could prime neurons in a similar

way. Indeed, we found that cells overexpressing Piwi (n = 15)

gave rise to LTF when exposed to just a single pulse of 5HT,

whereas control cells (n = 25) required five pulses of 5HT to elicit

LTF that could last days (F(4,100) = 5.05; p < 0.001 repeated

measures ANOVA; p < 0.001 Newman-Keuls post hoc test at

24 and 48 hr; Figure 4C). The facilitation produced by one pulse

of 5HT was robust, as it was observed in 13 out of 15 Piwi-

overexpressing cells. Moreover, the facilitation seen at 24 hr

with one pulse was comparable in magnitude to that seen at

24 hr in control cells treated with five pulses of 5HT. In earlier

studies (Bartsch et al., 1995), though knockdown of CREB2

allowed for priming by 1 pulse of 5HT, there was no enhance-

ment of LTF seen from five pulses of 5HT. Our observation,

therefore, that Piwi-overexpressing cells enhance LTF from five

pulses of 5HT (Figure 3E), suggests that Piwi likely has other

targets in addition to CREB2. In summary, the sensitivity of

Piwi-overexpressing cells to one pulse of 5HT suggests that it

primes neuronal activity through regulation of CREB2, whereas

the enhancement of LTF caused by five pulses in Piwi- overex-

pressing cells suggests that Piwi likely regulates other genes

as well, in addition to CREB2.

CREB2 Is Methylated at Its Promoter in Response
to 5HT-Induced Synaptic Plasticity
To gain insight into the mechanism of CREB2 regulation by Piwi,

we asked whether 5HT acts on CREB2 at the level of transcrip-

tion, as suggested by the nuclear localization of Piwi and its

effect on both CREB2 protein and RNA levels. Earlier studies

followed CREB2 expression levels up to 3–4 hr after exposure

to 5HT, and in this time frame, no change in CREB2 protein or

RNA was noted (Bartsch et al., 1995). We therefore monitored

the levels of CREB2 for days after the initial exposure to 5HT

and noticed that CREB2 protein levels begin to drop at 12 hr

and continue to remain low for up to 48 hr without returning to

the initial baseline level of expression (Figure 4D). This long-

lasting drop in CREB2 levels is consistent with and may be

responsible for the observation that 5HT induces long-lasting

elevation in the transcriptional activator CREB1 (Liu et al.,
2008). At the protein level, the reduction in CREB2 levels was

modest, but the effect was more pronounced at the mRNA level

(Figure 4E). The long-lasting effect on both the CREB2 protein

and RNA levels suggests that a stable 5HT-dependent repres-

sive state is established. Because Piwi and piRNAs have known

roles in epigenetic regulation in the germline through DNA meth-

ylation, we asked whether CREB2 also is being regulated by Piwi

through methylation at its promoter.

The Aplysia DNA methyltransferase (DNMT) is well expressed

in neurons (Moroz et al., 2006), and its enzymatically active

domain is highly conserved among the vertebrate homologs of

DNMTs. We therefore inhibited ApDNMT enzymatic activity

chronically in neurons with the DNMT inhibitor RG108 and

observed a strong increase in CREB2 levels. To determine

whether DNMT activity on CREB2 was dependent on 5HT, we

applied RG108 to neurons in the presence of 5HT and found

that, 12 hr later, the 5HT-dependent long-lasting downregulation

of CREB2 was abolished (Figure 4F). These effects of RG108

appear to be specific to CREB2, as there was no significant

upregulation of CREB1 levels. In fact, a modest downregulation

was apparent. To determine whether the effects of DNMT in-

hibition on CREB2 levels were functionally important during

memory-related plasticity, we again performed electrophysio-

logical experiments on sensory-motor cocultures in the absence

and presence of RG108. Remarkably, bath application of the

inhibitor RG108 (n = 38) almost fully abolished 5HT-dependent

long-term facilitation with respect to controls (n = 37), as

measured at both 24 and 48 hr (F(3,100) = 12.86; p < 0.001

repeated measures ANOVA; p < 0.03 and p < 0.02 at 24 and

48 hr, respectively, Newman-Keuls post hoc test; Figure 4G).

The effect of RG108 was entirely dependent on 5HT, as the

application of RG108 alone in the absence of 5HT had no effect

on the baseline activity of the cells (Figure 4G).

To determine whether DNMT acted indirectly on CREB2 or

whether it directly methylated the promoter of CREB2, we exam-

ined its promoter region for possible CpG islands. We found two

predicted CpG islands, one that is proximal to the translational

start site (�200 bp upstream of the first ATG) and that encom-

passes a CRE-binding element and TATA-binding site and the

other that is distal (�700bp upstreamof the first ATG) (Figure 5A).

We also noticed that the promoter of ATF4, the human homolog

of CREB2, contains a conserved CpG island (http://genome.

ucsc.edu). To test whether either of the predicted CpG islands

was functional, we extracted genomic DNA and treated it with

bisulfite. This procedure allows recognition of methylated bases

in DNA (Callinan and Feinberg, 2006) because bisulfite converts

all genomic cytosine residues to uridine excepting the methyl-

ated cytosines, which are inert to bisulfite treatment. By scoring

the C-to-T conversion rates of the CpG sites in genomic DNA

after bisulfite treatment, one can determine the fraction of DNA

at every CpG site that exists in the methylated versus unmethy-

lated state. We first asked whether methylation-specific primers

(MSP; designed to detect only themethylated copies of genomic

CREB2) have a differential ability to amplify genomic DNA

from cells that either have or have not been treated with 5HT.

We found that exposure to 5HT dramatically increases the

methylated fraction of the proximal CpG island, but not the

distal CpG island (Figure 5A). We next designed both USPs
Cell 149, 693–707, April 27, 2012 ª2012 Elsevier Inc. 699
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(unmethylated-specific primers, designed to detect only the un-

methylated copies of genomic DNA) and MSPs for the promoter

regions of CREB2 and CREB1 to compare the fractional repre-

sentation of the methylated and unmethylated states of the

CpG islands at baseline and after exposure to 5HT. We found

that, in the basal state, the CREB2 promoter exists in both meth-

ylated and unmethylated forms, but 12 hr after exposure to 5HT,

the promoter is almost entirely in the methylated form, and in the

presence of DNMT inhibitors, the promoter is almost entirely in

the unmethylated form (Figure 5B). This pattern of methylation

of the CREB2 promoter is in direct contrast to the CREB1

promoter, which exists almost entirely in the unmethylated

form at baseline, remains unmethylated after exposure to 5HT,

and again remains unmethylated in the presence of DNMT inhib-

itors (Figure 5B).

To more quantitatively measure the methylated and unmethy-

lated fraction of the CREB2 promoter, we designed primers that

lie outside of the proximal CpG island and amplified the region

in between by pyrosequencing to score the C-to-T conversions

at every CpG site. Because the C-to-T conversion rate at each

site reflects the unmethylated fraction, to display percent methyl-

ation, we plot 1 – (C to T conversion rate) at each CpG site. We

found that, at baseline, almost every CpG site in the CREB2

promoter exists in�50%methylated form,which is strikingpartic-

ularly when compared with the promoters of CREB1 and PKA-R,

whichdisplay little to nomethylation (Figures 5C, 5D, and5E). This

finding suggests that the CREB2 promoter is dynamically regu-

lated by methylation and that its methylation state at baseline

may reflect experience. After exposure to 5HT, every CpG site

within the CpG island of CREB2 has increased methylation, with

those at the beginning and end of the CpG island showing the

most significant increase (Figure 5C). Extraction and bisulfite

treatment of genomic DNA after exposure to DNMT inhibitors

prevents, as expected, the 5HT-induced increase in methylation

and dropsmethylation levels to belowbaseline (Figure 5C). Taken

together, these data reveal that 5HT causes direct methylation of

the proximal CpG islands in the CREB2 promoter and that this

methylation leads to a long-term downregulation of CREB2 RNA

and protein levels, which may be responsible for the resulting

persistence of memory-related synaptic plasticity.
Figure 4. Piwi Transcriptionally Regulates CREB2 in a Serotonin- and

(A) Knockdown of Piwi causes a robust upregulation of CREB2, which is specific

(B) Real-time PCR experiments show that knockdown of Piwi produces a signific

quantified as a mean of four independent trials ± SD).

(C) Electrophysiology experiment reporting percentage change in EPSP amplitude

for neurons overexpressing Piwi-GFP, as compared to control cells. The effects o

due to changes in the baseline strength of Piwi-GFP versus control synapses.

(D) Aplysia sensory neurons were either treated with vehicle or 5HT, and protein w

and KHC levels were monitored. Blots were reprobed for tubulin to control for eq

time course is shown quantified in the next panel as a mean of three independen

(E) Real-time PCR experiments showing that CREB2 RNA levels have a long-lastin

early induction of C/EBPmRNA (a known immediate early gene) from the same pre

a mean of six independent trials ± SD.

(F) Three independent experiments each of neurons treated with vehicle, 5HT, or

where the proteins were extracted 12 hr later and western blotted. CREB2 is dow

opposite is observed for CREB1. The results are quantified as a mean of three in

(G) Electrophysiology experiment reporting percentage change in EPSP amplitude

for neurons treated with RG108, as compared to control population. The change

was confirmed to not be toxic to the cells, as application of the inhibitor alone in
Piwi/piRNA Complexes Control the Methylation State
of the CREB2 Promoter
Given that Piwi is regulating CREB2 at the transcriptional level

(Figures 4A and 4B), we asked whether Piwi was required for

the observed serotonin-dependent methylation of CREB2 in

neurons. We inhibited Piwi in sensory neurons and extracted

the genomic DNA after exposure to 5HT. Following bisulfite

treatment, we scored the percent methylation by pyrosequenc-

ing and found that inhibition of Piwi completely abolished the

serotonin-dependent increase in methylation at the promoter

(Figure 6A). The reversal in methylation patterns wasmost signif-

icant at the beginning and ends of the CpG island, consistent

with the observation that the same sequence areas were most

sensitive to serotonin (Figure 6A). To determine which piRNA

mediates this effect, we searched the CREB2 locus for potential

piRNA-bindings sites and identified four well-expressed candi-

date piRNAs that had good complimentary to the promoter, 50

UTR, and initial coding segment of theCREB2mRNA (Figure 6B).

Through a series of knockdown experiments using 20-O-methyl

oligoribonucleotides specific to each of the four piRNAs, we

observed that one piRNA, aca-piR-F, had the strongest effect

on CREB2 expression. Knockdown of aca-piR-F, but not aca-

piR-A, C, or D, increased the baseline levels of CREB2 both at

theprotein andRNA level, demonstrating that aca-piR-F is a tran-

scriptional regulator of CREB2 (Figure 6C). The effects of piR-F

are specific because use of 4 nt mismatch oligos antisense to

piR-F had no effect on CREB2 levels (Figure 6C). If aca-piR-F

were indeed mediating the observed 5HT-dependent methyla-

tion effects of CREB2, then aca-piR-F should be regulated by

5HT on a similar time course. We followed aca-piR-F levels

with exposure to 5HT as a function of time and noticed a slightly

delayed but more enduring upregulation of aca-piR-F that

peaked at 3–4 hr before dropping back to baseline at 12 hr (Fig-

ure 6D). This time course is consistent with the observed drop in

CREB2 RNA levels, which begin at 6 hr after exposure to 5HT.

Because the putative binding site for aca-piR-F lies near the

translational start site of CREB2, we propose a model in which

the Piwi/piRNA complex, through aca-piR-F, binds the nascent

CREB2 transcript, thereby bringing it within close proximity

for regulation of the CREB2 promoter during 5HT-dependent
DNMT-Dependent Manner

, as there is no significant change in expression levels of C/EBP or CPEB.

ant increase in CREB2 RNA levels when normalized to GAPDH levels (effects

measured at 24 hr and 48 hr after 13 5HT with respect to pretreatment values

bserved were quantified as a mean of 15 independent trials ± SD and were not

as subsequently extracted at 1.5, 4, 12, 24, and 48 hr after 5HT. CREB2, CPEB,

ual loading of samples. This exact time course was run only once, but a similar

t trials ± SD.

g and more robust downregulation after exposure to 5HT. The 5HT-dependent

paration is shown as a positive control. The change in RNA levels are shown as

5HT in the presence of a DNA methyltransferase inhibitor (RG108) are shown

nregulated by 5HT, and this effect is reversed in the presence of RG108. The

dependent trials ± SD.

measured at 24 hr and 48 hr after 53 5HT with respect to pretreatment values

in EPSP was quantified as a mean of 38 independent trials ± SD. The inhibitor

the absence of 5HT had no effect on the baseline strength of the synapses.
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Figure 5. Serotonin Induces Methylation at the CREB2 Promoter

(A) The genomic locus for Aplysia CREB2 is shown, and areas in green are predicted CpG islands. Methylation-specific primers (MSP) designed to detect

methylation at the distal CpG island show no change in methylation patterns within 12 hr after exposure to 5HT. MSPs designed for the proximal CpG island

detect higher levels of methylation in 5HT-treated samples (+) compared with controls (�).

(B) Using MSPs and USPs (unmethylation-specific primers), we detected the ratio of the methylated to the unmethylated form of the CREB2 promoter under

baseline conditions and compared with 5HT and RG108 treated samples. CREB2 promoter shifts entirely to the methylated form with exposure to 5HT and back

to the unmethylated form with DNMT inhibitor RG108. CREB1 always exists in the unmethylated form.

(C–E) Real-time pyrosequencing of the CREB2 promoter region shows a significant baseline level of methylation (gray) at individual CpG sites that is

robustly upregulated with exposure to 5HT (maroon), and this effect is abolished in the presence of the DNMT inhibitor RG108 (orange). Effects were

quantified as the mean of four independent trials, and SDs were calculated but so low that they are not shown on the graphs for clarity of the figure. These

effects are specific to CREB2, as neither CREB1 (D) nor PKA-R (E) promoters show significant baseline methylation or any serotonin-dependent changes in

methylation status.
long-term memory (Figure 6E). The observed stable silencing of

CREB2 by the Piwi/piRNA complex (Figure 6), when placed in the

context of Figures 4A and 4B in which transient knockdown of

Piwi reverses CREB2 silencing, is suggestive of active demethy-

lation at the CREB2 promoter. Though this is consistent with

a wider literature that demonstrates active and ongoing deme-

thylation of promoters in adult neurons, we in this study have

not explicitly demonstrated active demethylation of the CREB2

promoter. Transcriptional control of gene expression through

complementary base-pairing of a small RNA with a nascent

mRNA transcript has been previously discovered, first in the
702 Cell 149, 693–707, April 27, 2012 ª2012 Elsevier Inc.
exciting work from S. pombe and more recently from a study

in C. elegans (Verdel et al., 2004; Guang et al., 2010).

DISCUSSION

The discovery that piRNAs exist outside the germline in several

major organs of Aplysia, but significantly in the nervous system,

suggests much broader roles for piRNAs than have been previ-

ously appreciated. In addition to their presence and in certain

cases enrichment in neurons, Aplysia piRNAs are unique from

those previously described in that they derive from hot spots in



the genome where they are abundantly expressed, and notably,

several piRNAs are regulated by neuromodulators that are

important for learning-related synaptic plasticity, suggesting

functions in memory storage.

An understanding of the role of piRNAs in the epigenetic regu-

lation of long-term memory is significant for several reasons.

First, the role of epigenetic modifications in differentiated cells,

especially in adult neurons, has been controversial. It is

commonly thought that changes in gene expression during

development are permanent but that they are not permanent in

adult neurons, where the plastic nature of synaptic connections

by definition requires bidirection and reversible changes in gene

expression. In recent years, the identification of DNA demethy-

lase activity in adult neurons (Barreto et al., 2007; Rai et al.,

2008;Ma et al., 2009) brought forth the possibility that epigenetic

changes in the adult brain may not necessarily be permanent but

may simply be more long-lasting and more permanent than the

other knownmodifications so far described. Subsequent studies

have identified individual gene loci that are methylated in

response to neurotransmitter activity, though the time course

of onset and persistence of methylation are unclear and require

further study. Our study provides a piRNA-mediated mechanism

for epigenetic regulation in neurons and, further, explores the

electrophysiological properties of DNA methyltransferase and

of Piwi in synaptic plasticity.

The finding that the Piwi/piRNA complex regulates the CREB2

promoter by DNA methylation in an activity-dependent manner

provides an attractive explanation for how neurons translate

transient stimuli into stable internal representations and is

consistent with several earlier studies that show a role for epige-

netic regulation in memory (Guan et al., 2002; Miller et al., 2010;

Feng et al., 2010). Our data on the variability in baseline CREB2

methylation levels suggest further that each neuron may have

a different basal level of CREB2 expression, which reflects its

experience and immediate history. This would be consistent

with earlier observations showing that variations in baseline

levels of CREB1 across populations of neurons in the amygdala

determine the sequence in which these neurons are recruited for

memory and for recall (Han et al., 2007). Because CREB2 is

antagonistic to CREB1, long-lasting changes in CREB2 levels

could set up this CREB1 distribution in neuronal cells, based

on experience, which in turn could dictate which neurons are

already holding a memory trace and which neurons are readily

drawn into new memory traces (Han et al., 2007; Won and Silva,

2008).

The discussion above, however, does not address the ques-

tion of how Piwi-mediated transcriptional and therefore cell-

wide changes in neuronal excitability (intrinsic plasticity) effec-

tively mediate synapse-specific events (synaptic plasticity)? As

studies previously have emphasized, it is likely that both forms

of plasticity coexist such that one can fine-tune the other, but it

is also possible that, in certain contexts, the two exist entirely

independently. Though synaptic plasticity affords orders of

magnitude more computational power and is therefore ideal for

storage of explicit memories requiring attention to detail, intrinsic

plasticity, such as those driven by piRNA-mediated epigenetics,

has the advantage of priming memories and allowing for robust

generalized learning, wherein the same association rules are
applicable to experiential learning in various contexts. Because

human life is characterized by a great deal of habit formation

and repetition-based associative learning, the use of intrinsic

plasticity alone in some parts of the human brain may turn out

to be an efficient method for this type of memory storage.

Future work on the role of small RNAs in learning and memory

should provide further insight into the varying roles of miRNAs

versus piRNAs. Though notable exceptions exist (Wayman

et al., 2008; Fiore et al., 2009), we and others have previously

found a rapid turnover of several neuronal miRNAs in response

to neuromodulators and neuronal activity (Rajasethupathy

et al., 2009; Krol et al., 2010b), which contrasts to the slow but

more enduring upregulation of the few neuronal piRNAs

observed in this study. In addition, whereas aca-miR-124 (Raja-

sethupathy et al., 2009) and another brain-specific miRNA

(F. Fiumara, P.R., T.T., and E.R.K., unpublished data) constrain

serotonin-dependent long-term facilitation, Piwi-dependent

piR-F enhances it. We currently have very few cases from which

to draw generalizable conclusions, but future large-scale studies

of small RNA function in neurons may highlight the possible exis-

tence of two distinct classes of small RNAs that are bidirection-

ally regulated by neuromodulators and that act on a functionally

segregated population of targets to effect either facilitation or

constraint onmemory-related synaptic plasticity. Further studies

would also benefit from genome-wide analysis of piRNA/Piwi-

occupied promoter regions during serotonin-mediated synaptic

plasticity to obtain a more complete picture of the epigenetic

landscape during memory. One attractive possibility is that

piRNAs are directed only toward inhibitors of plasticity and

that, with each repeated training trial (either behavioral training

or pulses of serotonin), the promoters of more inhibitory genes

are silenced such that, eventually, the cell is maximally primed

and excitable, allowing for the strongest associative memories.

Finally, future experiments with chromatin IP of RNA polymerase

and/or of Piwi at the CREB2 locus would greatly increase our

understanding of the mechanisms governing Piwi-dependent

methylation. It would substantiate the idea that Piwi is recruited

to CREB2 in an activity-dependent manner and, further, that

methylation of the promoter is directly responsible for the

observed reduction in transcription of the gene. It is also possible

that other small RNAs play a role in epigenetic regulation

during plasticity. Irrespective of their biogenesis properties,

small RNAs confer versatile sequence specificity to mechanisms

of gene regulation, and therefore, any small RNA that evolves

functionality for its guide protein to recruit methylation elements

to the target promoter could prove equally effective. It is

possible, therefore, that one of the many rapidly multiplying

classes of nuclear small RNAs takes over the same task in other

species.

In summary, we find that Piwi/piRNAs control the activity-

dependent epigenetic regulation of the transcription factor

CREB2, which may prove to be an important and general mech-

anism of small RNA-mediated long-lasting regulation of gene

expression in neurons that contributes to long-term memory

storage. This initial study compels the further exploration of

a genome-wide approach toward understanding the extent of

small RNA-mediated epigenetic regulation in neurons during

learning and memory.
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EXPERIMENTAL PROCEDURES

Small RNA Cloning, Sequencing, and Annotation

Tissue preparation and RNA isolation were as described in Rajasethupathy

et al. (2009). Starting amount of total RNA was 5 mg per library. Small RNA

cloning was performed as described in Hafner et al. (2008), with the exception

of using barcoded libraries and the Illumina platform for sequencing. A total

of about 15,000 reads was obtained for each solexa library. miRNAs were

annotated as described in Rajasethupathy et al., 2009. piRNA candidates

were chosen based on their length (between 26 and 33 nt), a 50 terminal U,

and their property of clustering together in a genomic contig (genomic contigs

that contained at least 10,000 total piRNA reads, with at least a 60% U start

bias, and no more than 1,000 bp interval between individual piRNAs were

defined as piRNA clusters); 372 such piRNA clusters were generated. All small

RNA sequences were mapped to these clusters, and any clone that mapped

perfectly or within onemismatch to a piRNA cluster was annotated as a piRNA.

Pharmacological Treatment, Northern and Western Blot, and

Quantitative PCR Analysis

Inhibition of Aplysia DNA methyltransferase (DNMT) was performed by incu-

bating ganglia or cultured cells in RG108 (Sigma) at a final concentration of

200 mM. Inhibition of Piwi and piRNAs was carried out using penetratin-

conjugated 20-O-methyl antisense oligoribonucleotides as described in

Rajasethupathy et al. (2009). 150 ml of 200 nM penetratin-conjugated oligonu-

cleotides was applied to desheathed pleural ganglia in Eppendorf tubes for a

minimumof 8hr (for piRNAknockdown) andaminimumof 1day (forPiwi knock-

down) beforewashout, afterwhichRNAorproteinwas harvested.Northernblot

(Landgraf et al., 2007), western blot, and quantitative PCR (Rajasethupathy

et al., 2009) were performed as previously described. Probe sequences and

antibody information are provided in the Supplemental Information.

Periodate Treatment and Beta Elimination

Total RNA from each AplysiaCNS was extracted, ethanol precipitated, and re-

dissolved in 13.5 ml of H20. 4 ml of borate buffer 1 (25 ml 0.8 M boric acid +

8.75ml 0.2M sodiumborate in 100ml H2O [pH 8.6]) and 2.5 ml of 0.2M sodium-

periodate were added to the RNA solution and incubated in the dark at 24�C
for 10 min. 5 ml of 50% (v/v) glycerol was added to quench the reaction, and

the resulting solution was concentrated in a speedvac to 5 ml. 50 ml of borate

buffer 2 (6.25 ml 0.8 M boric acid + 16.875 ml 0.2 M sodiumborate in 400 ml

H2O [pH 9.5] with NaOH) was added and incubated for 90 min at 45�C. RNA
was then precipitated in three volumes of ethanol, washed once in 70%

ethanol, and run on a 20% acrylamide gel along with untreated total RNA

from Aplysia CNS, as well as with synthetic piRNA that was either 20-O-methyl

modified at its 30 end or unmodified, and each was treated or untreated as

positive and negative controls, loaded at 30 fmol each with carrier tRNA. Blots

were probed for piR-1 and miR-22.

Nuclear/Cytoplasmic Fractionation

Aplysia CNS and heart tissue were subject to nuclear and cytoplasmic extrac-

tion using the Pierce NE-PER (Thermo Scientific 78833) kit. All procedures
Figure 6. Piwi/piRNA Complexes Control the Methylation State of the

A. Real-time pyrosequencing of the CREB2 promoter region shows increased me

in the presence of a Piwi inhibitor (blue). The results were quantified as a mean of

not shown on the graphs for clarity of the figure.

(B) A diagram of the CREB2 genomic locus. The CpG islands are marked in green

present within the green bar, indicating the proximal promoter, between the CRE a

being generated upstream and downstream of the CREB2 locus. piRNAs abunda

from this locus are shown.

(C) Inhibition of aca-piR-F caused a significant upregulation of CREB2 protein and

aca-piR-A, -C, or -D or those treated with 4 nt mismatch (F 4nt-mismatch) oligon

three independent trails ± SD.

(D) The time course of aca-piR-F after the initial exposure to 5HT (time 0 hr). The

(E) Because of a putatitive binding site for piR-F at the translation start site of CRE

may bind the CREB2 nascent transcript and may recruit methylation factors (suc
were performed as described in the instructionmanual, though we quadrupled

all starting volumes so that we may split the extraction in half twice to end up

with the following four samples for any given tissue: (1) total RNA, (2) fractioned

RNA, (3) total protein, and (4) fractioned protein). For step 6, we redissolved the

nuclear pellet in a final volume that would match the cytoplasmic extract,

rather than the amount stated in the manual, to allow comparison across frac-

tions and with the total input. The effectiveness of fractionation was confirmed

by western blotting the protein fractions and probing for nuclear (histone H3)

and cytoplasmic (GAPDH) specific markers. This kit was already optimized

for extraction of Aplysia CNS and heart tissue but requires further optimization

of reagent volumes and incubation times to successfully separate muscle or

ovotestes fractions.

DNA Methylation Assays

DNA purification (DNA mini kit; QIAGEN) was performed on Aplysia sensory

neuron clusters. Purified DNA was then processed for bisulfite modification

(Epitect Bisulfite Kit; QIAGEN). Quantitative PCR was used to determine the

DNA methylation status of the CREB2 and CREB1 genes. Methylation-

specific PCR primers were designed using the Methprimer software (available

at http://www.urogene.org/methprimer/). For quantitative methylation anal-

ysis through real-time PCR and pyrosequencing of the CREB2, CREB1, and

PKA-R promoters, we used the Sequenom massArray facility at Cornell

(http://vivo.cornell.edu/display/SequenomMassARRAY), and all primers

were designed using the epidesigner software (available at http://www.

epidesigner.com/). All primer sequences are provided in the Supplemental

Information.

Cell Culture, Injections, Treatments, and Electrophysiology

Cocultures of synaptically paired sensory and motor neurons were prepared

as previously reported (Montarolo et al., 1986). For intracellular injections,

either a Piwi antisense oligoribonucleotide (5 uM) was used for knockdown

of Piwi or a Piwi-GFP expression vector (1 mg/ul) was used for overexpression

of Piwi. To generate the pNEX-apPiwi-eGFP, the apPiwi ORF was PCR ampli-

fied from cDNA and subcloned into a pNEX3-eGFP vector (Kaang, 1996) modi-

fied by the insertion of a Gateway Destination cassette (Invitrogen) within the

polylinker (pNEX3-eGFP-DEST vector).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures

and three tables and can be found with this article online at doi:10.1016/

j.cell.2012.02.057.
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bel, J., Bicker, S., Fehling, H.J., Schübeler, D., et al. (2010b). Characterizing

light-regulated retinal microRNAs reveals rapid turnover as a common prop-

erty of neuronal microRNAs. Cell 141, 618–631.

Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A.,

Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T.W., et al. (2008).

DNA methylation of retrotransposon genes is regulated by Piwi family

members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917.

Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer,

S., Rice, A., Kamphorst, A.O., Landthaler, M., et al. (2007). A mammalian mi-

croRNA expression atlas based on small RNA library sequencing. Cell 129,

1401–1414.

Lee, E.J., Banerjee, S., Zhou, H., Jammalamadaka, A., Arcila, M., Manjunath,

B.S., and Kosik, K.S. (2011). Identification of piRNAs in the central nervous

system. RNA 17, 1090–1099.

Lisman, J.E. (1985). A mechanism for memory storage insensitive to molecular

turnover: a bistable autophosphorylating kinase. Proc. Natl. Acad. Sci. USA

82, 3055–3057.

Liu, R.Y., Fioravante, D., Shah, S., and Byrne, J.H. (2008). cAMP response

element-binding protein 1 feedback loop is necessary for consolidation of

long-term synaptic facilitation in Aplysia. J. Neurosci. 28, 1970–1976.

Ma, D.K., Jang, M.H., Guo, J.U., Kitabatake, Y., Chang, M.L., Pow-Anpongkul,

N., Flavell, R.A., Lu, B., Ming, G.L., and Song, H. (2009). Neuronal activity-

induced Gadd45b promotes epigenetic DNA demethylation and adult neuro-

genesis. Science 323, 1074–1077.

Miller, C.A., Gavin, C.F.,White, J.A., Parrish, R.R., Honasoge, A., Yancey, C.R.,

Rivera, I.M., Rubio, M.D., Rumbaugh, G., and Sweatt, J.D. (2010). Cortical

DNA methylation maintains remote memory. Nat. Neurosci. 13, 664–666.

Montarolo, P.G., Goelet, P., Castellucci, V.F., Morgan, J., Kandel, E.R., and

Schacher, S. (1986). A critical period for macromolecular synthesis in long-

term heterosynaptic facilitation in Aplysia. Science 234, 1249–1254.

Moroz, L.L., Edwards, J.R., Puthanveettil, S.V., Kohn, A.B., Ha, T., Heyland, A.,

Knudsen, B., Sahni, A., Yu, F., Liu, L., et al. (2006). Neuronal transcriptome of

Aplysia: neuronal compartments and circuitry. Cell 127, 1453–1467.

Price, J.C., Guan, S., Burlingame, A., Prusiner, S.B., and Ghaemmaghami, S.

(2010). Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad.

Sci. USA 107, 14508–14513.

Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., Jones, D.A., and Cairns, B.R.

(2008). DNA demethylation in zebrafish involves the coupling of a deaminase,

a glycosylase, and gadd45. Cell 135, 1201–1212.

Rajasethupathy, P., Fiumara, F., Sheridan, R., Betel, D., Puthanveettil, S.V.,

Russo, J.J., Sander, C., Tuschl, T., and Kandel, E. (2009). Characterization

of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic

plasticity through CREB. Neuron 63, 803–817.

Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E.E., Nitsch, R., andWulc-

zyn, F.G. (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7

maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993.

Saito, K., and Siomi, M.C. (2010). Small RNA-mediated quiescence of trans-

posable elements in animals. Dev. Cell 19, 687–697.

Serrano, P., Friedman, E.L., Kenney, J., Taubenfeld, S.M., Zimmerman, J.M.,

Hanna, J., Alberini, C., Kelley, A.E., Maren, S., Rudy, J.W., et al. (2008).

PKMzeta maintains spatial, instrumental, and classically conditioned long-

term memories. PLoS Biol. 6, 2698–2706.

Si, K., Lindquist, S., and Kandel, E.R. (2003). A neuronal isoform of the aplysia

CPEB has prion-like properties. Cell 115, 879–891.



Si, K., Choi, Y.B., White-Grindley, E., Majumdar, A., and Kandel, E.R. (2010).

AplysiaCPEB can form prion-like multimers in sensory neurons that contribute

to long-term facilitation. Cell 140, 421–435.

Song, H., Smolen, P., Av-Ron, E., Baxter, D.A., and Byrne, J.H. (2007).

Dynamics of a minimal model of interlocked positive and negative feedback

loops of transcriptional regulation by cAMP-response element binding

proteins. Biophys. J. 92, 3407–3424.

Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I., andMoazed,

D. (2004). RNAi-mediated targeting of heterochromatin by the RITS complex.

Science 303, 672–676.

Wassenegger, M. (2005). The role of the RNAi machinery in heterochromatin

formation. Cell 122, 13–16.

Watanabe, T., Takeda, A., Tsukiyama, T., Mise, K., Okuno, T., Sasaki, H., Min-

ami, N., and Imai, H. (2006). Identification and characterization of two novel
classes of small RNAs in the mouse germline: retrotransposon-derived

siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–

1743.

Wayman, G.A., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H.Y.,

Marks, D., Obrietan, K., Soderling, T.R., Goodman, R.H., and Impey, S.

(2008). An activity-regulated microRNA controls dendritic plasticity by down-

regulating p250GAP. Proc. Natl. Acad. Sci. USA 105, 9093–9098.

Weaver, I.C., Cervoni, N., Champagne, F.A., D’Alessio, A.C., Sharma, S.,

Seckl, J.R., Dymov, S., Szyf, M., and Meaney, M.J. (2004). Epigenetic

programming by maternal behavior. Nat. Neurosci. 7, 847–854.

Won, J., and Silva, A.J. (2008). Molecular and cellular mechanisms of memory

allocation in neuronetworks. Neurobiol. Learn. Mem. 89, 285–292.
Cell 149, 693–707, April 27, 2012 ª2012 Elsevier Inc. 707



Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Sequences Used in This Study
Antisense Sequence Used for Piwi Knockdown

Piwi-AS, GGUCGGGUUGAUCACCACAACUAG.

Antisense Sequences Used for piRNA Knockdowns

piR-A, ACAACATTATTCATCAGGACCTTTGACA; piR-C, CCTGAGCCCACAGAGCACCCACACTGAC; piR-D, TCACAGGTCCTGA

GTCTAGCGATGGAGGA; piR-F, ACCGTAGAGACACTGGAGGCGGAATGGGA.

Probe Sequences Used for Northerns

piR-1, AAGCAGAACTTCTCGAGGACCGGATGGA; piR-2, GGCTAGTCCTTGTTGCCCCAATTGCCA; piR-3, CCCATCGTAGATTATG

AAGTGCTTACTA; piR-4, GCGAACGTACAAAACATCAGACTCACCA; piR-11, CCACCGTTCGGGCATCGTACTTGGTA; piR-15, TTA

CAGCCGGCTCTGGTACATAGACCA; piR-F, ACCGTAGAGACACTGGAGGCGGAATGGGA; miR-22, ACAGCCCTTCATTTGGCA

GCTC; tRNA, 50-TGGAGGGGACACCTGGGTTCGA-30.
Quantitative Real-Time PCR Primer Sequences

PIWI, GACGATCGCTACTCGGCG; CACCGGAGCTTCCACACAG; CREB2, GCCAGAACATGTCATCATGG; CCTCCCCCTTCTT

CTTCATC; CREB1, TCTCGGAAACGGGAATTACG; TTCCCTGGCTGCCTCTCTATT; C/EBP, GCCCCCTACTCCACAAAGTCT;

CTGGCCCTCTTATCCACGTACT; GAPDH, GCCTACACCGAGGACGATGT; GGCGGTGTCTCCCTTAAAGTC.

Methylation-Specific PCR Primers
Detection of Unmethylated CREB2

(USP) GTTTTAAATATTTTTGTGTGAATTTATTGAA; ATCAAAACACAATAAAATCAAACACTAATC.

Detection of Methylated CREB2

(MSP) TATTTTCGTGTGAATTTATCGAAAAT; CCGTCCAATAAAAAAACGAAATAACCGT.

Detection of Unmethylated CREB1

(USP) GGTATTAAGGTTTGAAAAGTTTTGTG; CTCAATTAACCTCATAACAATCAAT.

Detection of Methylated CREB

(MSP) GGTATTAAGGTTTGAAAAGTTTTGC; CAATTAACGTCCTAACGATCGAT.

Sequenom Primers
CREB2

aggaagagagAGGTGGTTTATTATTTTTTATGTTTG; cagtaatacgactcactatagggagaaggctCTCCAAAAATCCAACTCCATC.

CREB1

aggaagagagTTGTATATTTTGGATTTATGATAAGTTG; cagtaatacgactcactatagggagaaggctCAAATAACCAAACCATAACTTTAACC.

PKA-R

aggaagagagAAAGTTTTGTTTTTTTGATTGGTTT; cagtaatacgactcactatagggagaaggctACTATTTCACAAATAATTTCTACTCACA.

Antibody Information
The following commercial antibodies were used: CREB1 (New England Biolabs) 1:1000, C/EBP (Cell Signaling, Inc.) 1:3000, Tubulin

(Sigma-Aldrich) 1:10000, Ago (Abcam, Inc) 1:3000, Piwi (Abcam, Inc.) 1:3000. CREB2, KHC, and CPEB were polyclonal antibodies

previously raised in the laboratory. Aplysia polyclonal Piwi antibodies were raised for the current project against the following two

peptides: NQADWSREATRNELIC and CQAPFRKELVNEKIET. Following incubation with primary antibodies, a 1:10000 dilution of

either anti-rabbit or anti-mouse antiserum was used to detect protein bands by chemiluminescence (Amersham Biosciences).
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