Supporting Information

Riedl et al. 10.1073/pnas.1203179109

SI Materials and Methods

Subjects. Details on the subjects, namely their ages, sex, and rearing histories are provided (Table S7). The numbers of groups tested based on kinship with the victim and dominance to the thief are shown in Table S8. Table S9 provides details on the 60 test groups.

Test groups. Sixty test groups were created based on dominance relationships between actor and thief and kinship relationships between actor and victim.

SI Results and Discussion

Following are details on the generalized linear mixed model (GLMM) results that were presented in the article (Tables S1–S5).

Whole Sample: Simplifying the Model. For the whole sample of 60 test groups, there was an initial full model consisting of four types of variables. The response variable; three random effects factors: actor, thief, and victim; test variables that defined the experimental design: condition, dominance, and kinship; and control variables: actor's age, sex, rearing history (nursery vs. mother-reared), session order, and trial order per session.

Full model: response \sim condition + dominance + kinship + age + sex + rearing + session order + trial order within session + actor + thief + victim.

The coefficients were estimated by using maximum likelihood, and we used a binominal error structure and logit link function. A likelihood ratio test (using the ANOVA function in R) was used to measure the change of the fit between the full model and a reduced model (not comprising the factor of interest). A significant finding indicated that the factor in question contributed to the variance of the response variable "collapsing the trapdoor."

To guard against false-positives (1), we tested whether the whole set of test variables defining the experimental design significantly explained variance in the response variable by testing the full model against the null model (which did not comprise any of the test factors but included the control predictors). This comparison revealed significance ($\chi^2_7 = 26.927$, P < 0.001), which supports the interpretation that the tested factors influenced the response of the actors.

We investigated the potential interaction effects of condition, dominance, and kinship using only the third-party (3P) unfair and 3P theft conditions because these were the only conditions in which both thieves and victims were present. We analyzed the interactions by including them in the original full model. Neither the interactions between condition*dominance nor dominance*kinship were significant (Table S2). Note that the interaction term condition*kinship could not be computed because of low response rates in some conditions in interaction with kinship. A comparison between the full model and the null model showed a trend: $\chi^2_5 = 10.139$, P = 0.07139.

Instead of using dominance and kinship (and their interaction) as predictor variables, we also tested the effect of these variables by using the single predictor variable "test group," which consisted of the four categories shown in Table S8 combined into a single factor. A comparison between the full model and the null model (only consisting of control variables) revealed significance: $\chi^2_8 = 26.452$, P = 0.00087. The factor group category did not significantly explain variance on the response variable ($\chi^2_3 = 6.4155$, P = 0.093).

Analysis of Test Conditions. From Table S1, it can be seen that only the random-effects factor "actor," the control factor "session order," and the experimental test variables "condition" and "dominance" contribute to the variance of the response variable "collapsing the trapdoor." The single effects on the response of each significant control and experimental test factor in the final model are shown in Table S3. Because the test factor "condition" was significant ($\chi^2_5 = 19.508$, P = 0.002), post hoc pairwise comparisons between different conditions were performed. We ran the final model twice to use both the second- and the thirdparty theft condition (2P theft, 3P theft) as reference conditions to show differences between the theft conditions and every other condition.

Final model: response \sim condition + dominance + session order + actor

Dominant Actors. Both, the experimental test variable "condition" and the control variable "session order" were significant predictors (condition: $\chi^2_5 = 17.252$, P = 0.004; session order: $\chi^2_1 = 7.8767$, P = 0.005). All pairwise comparisons between conditions are displayed in Table S4. We ran the final model twice to use both the second- and the third-party theft condition (2P theft, 3P theft) as reference conditions to display differences between the theft conditions and every other condition.

Model: response \sim condition + dominance + session order + actor

Subordinate Actors. Both the experimental test variable "condition" and the control variable "session order" were significant predictors (condition: $\chi^2_5 = 16.223$, P = 0.006; session order: $\chi^2_1 = 3.9659$, P = 0.046). All pairwise comparisons between conditions are displayed in Table S5. We ran the final model twice to use both, the second- and the third-party theft condition (2P theft, 3P theft) as reference conditions to display differences between the theft conditions and every other condition.

Model: response \sim condition + dominance + session order + actor

Nonparametric Analyses. Because mixed models are still under development and their estimates a matter of debate (2), we also analyzed the data with Friedman's and Wilcoxon's exact-signed rank tests. All analyses are two-tailed. The results of these analyses support those presented in the article.

Responses of subjects in all groups did not differ across conditions (Friedman's χ^{2}_{5} test = 9.700, P = 0.084). Given that there was a trend, we did pairwise comparisons between the conditions. There was no difference between 2P theft and 2P loss [Wilcoxon T⁺ test = 23.00, n = 13 (five ties), P = 0.570], 2P theft and 3P theft [Wilcoxon T⁺ test = 41.5, n = 13 (two ties), P = 0.473], 3P theft and 3P loss [Wilcoxon T⁺ test = 10.00, n =13 (six ties), P = 0.563], and 3P theft and 3P no victim [Wilcoxon T⁺ test = 1.00, n = 13 (eight ties), P = 0.125]. There was a trend between 3P theft and 3P unfair [Wilcoxon T⁺ test = 2.00, n = 13(six ties), P = 0.063], but there was no a priori reason to expect this difference which might arise because of multiple comparisons.

Responses of dominant subjects differed across conditions (Friedman's χ_5^2 test = 13.059, P = 0.017). Importantly, there was a strong trend for dominants to collapse the platform more often in 2P theft than 2P loss [Wilcoxon T⁺ test = 15.00, n = 12 (seven ties), P = 0.062], consistent with previous findings (3). There was a weak tendency for dominants to collapse the trapdoor more often in 2P theft than 3P theft [Wilcoxon T⁺ test = 30.00, n = 12 (four ties), P = 0.102]. In contrast, dominant individuals did not engage in third-party punishment by collapsing the plat-

form more often in response to 3P theft [3P theft vs. 3P loss: Wilcoxon T⁺ test = 6.00, n = 12 (seven ties), P = 0.813; 3P theft vs. 3P unfair: Wilcoxon T⁺ test = 3.50, n = 12 (six ties), P =0.188; 3P theft vs. 3P no victim: Wilcoxon T⁺ test = 3.00, n =12 (seven ties), P = 0.313]. As with the GLMM data, nonparametric tests also showed that subordinates did not collapse the platform in response to the different conditions [Friedman's χ^2_5 test = 7.090, P = 0.217; 2P theft vs. 2P loss: Wilcoxon T⁺ test = 3.50, n = 11 (six ties), P = 0.375; 2P theft vs. 3P theft: Wilcoxon T⁺ test = 4.00, n = 11 (seven ties), P = 1.000; 3P theft vs. 3P unfair: Wilcoxon T⁺ test = 0, n = 11 (10 ties), P = 1.000; 3P theft vs. 3P loss: Wilcoxon T⁺ test = 2.00, n = 11 (nine ties), P = 1.000; 3P theft vs. 3P no victim: Wilcoxon T^+ test = 1.00, n = 11 (eight ties), P = 0.500].

Individual Differences. Because a few individuals are theoretically able to maintain cooperation in a group by punishing non-cooperators (4), we examined the response rates of each individual. However, because all subjects participated in four groups of differing composition, it was not practical to analyze the data statistically. Table S6 presents the data for each binary response (collapse or not collapse) for each individual and condition. There does not appear to be any individually consistent pattern of punishing third-party theft.

- Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models: Overestimated effect sizes and the winner's curse. *Behav Ecol Sociobiol* 65: 47–55.
- Bolker BM, et al. (2009) Generalized linear mixed models: A practical guide for ecology and evolution. *Trends Ecol Evol* 24:127–135.

- Jensen K, Call J, Tomasello M (2007) Chimpanzees are vengeful but not spiteful. Proc Natl Acad Sci USA 104:13046–13050.
- O'Gorman R, Henrich J, Van Vugt M (2009) Constraining free riding in public goods games: Designated solitary punishers can sustain human cooperation. *Proc Biol Sci* 276: 323–329.

	Likelihood ratio tests				
Factors included in the full model	χ²	df	P value		
Random effects factors					
Actor	12.584	1	0.0003*		
Thief	0	1	1.0000		
Victim	0.2747	1	0.6002		
Control factors					
Session order effect	11.549	1	0.0007*		
Trial order per session	0.3254	1	0.5684		
Actor's age	2.7012	1	0.1003		
Actor's sex	0.1619	1	0.6874		
Actor's rearing history	1.4087	1	0.2353		
Test factors					
Condition	19.508	5	0.0015*		
Dominance of actor to thief	8.6729	1	0.0032*		
Kinship of actor to victim	0.1476	1	0.7008		

Table S1.	Results	of	the	likelihood	ratio	tests	of	full	model	vs.
reduced m	odel con	npa	riso	ns						

The sample comprises all actors (n = 13) and all test groups (n = 60). The full model was always compared with the reduced model not including the factor of interest. The table shows the χ^2 , df, and P values of model comparison for each factor.

*Indicates a significant effect.

Table	S2.	Results	of	the	likelihood	ratio	tests	of	model	
comparisons of the sample of all actors $(n = 13)$ and all test										
groups ($n = 60$) in the 3P theft and 3P unfair condition										

	Likelihood ratio tests				
Factors included in the full model	χ²	df	P value		
Random effects factors					
Actor	6.3079	1	0.0120		
Thief	0	1	1.0000		
Victim	0	1	1.0000		
Control factors					
Session order effect	5.7068	1	0.0169*		
Trial order per session	0.1261	1	0.7225		
Actor's age	2.3232	1	0.1275		
Actor's sex	0.3401	1	0.5598		
Actor's rearing history	1.0868	1	0.2972		
Test factors					
Condition	4.9506	2	0.08414′		
Dominance of actor to thief	4.7679	3	0.1896		
Kinship of actor to victim	2.4791	2	0.2895		
Interaction of condition and dominance	0.1667	1	0.6831		
Interaction of dominance and kinship	1.3138	1	0.2517		

The full model was always compared with the reduced model not including the factor of interest. The table shows the χ^2 , *df*, and *P* values of model comparison for each factor.

*Indicates a significant effect.

Factor	Estimate	SE	Ζ	Ρ
Dominance	0.6406	0.2221	2.884	0.0039*
Session order	-0.5875	0.1805	-3.254	0.0011*
Condition				
2P theft as reference				
2P theft – 2P loss	-0.5277	0.4989	-1.058	0.2902
2P theft – 3P theft	-0.7766	0.5174	-1.501	0.1334
2P theft – 3P loss	-0.5222	0.4976	-1.049	0.2939
2P theft – 3P unfair	-2.1749	0.6613	-3.289	0.0010*
2P theft – 3P no-victim	-1.9415	0.6232	-3.116	0.0018*
3P theft as reference				
3P theft – 2P loss	0.2489	0.5313	0.468	0.6395
3P theft – 2P theft	0.7766	0.5174	1.501	0.1334
3P theft – 3P loss	0.2544	0.5300	0.480	0.6312
3P theft – 3P unfair	-1.3983	0.6813	-2.052	0.0401*
3P theft – 3P no-victim	-1.1649	0.6440	-1.809	0.0705

Table S3. Results of the final GLMM for all actors (13 actors, 60 groups)

The estimates display the regression weight of the factor on the response variable; SE is the SE of the estimate; the Z and P values are also given. The 2P theft and 3P theft were the reference conditions. *Indicates a significant effect.

PNAS PNAS

Factor	Estimate	SE	Ζ	Р
Session order	-0.6530	0.2459	-2.655	0.0079*
Condition				
2P theft as reference				
2P theft – 2P loss	-1.6707	0.6699	-2.494	0.0126*
2P theft – 3P theft	-1.2475	0.6252	-1.995	0.0460*
2P theft – 3P loss	-1.7349	0.6748	-2.571	0.0101*
2P theft – 3P unfair	-2.8373	0.8855	-3.204	0.0013*
2P theft – 3P no-victim	-2.0360	0.7163	-2.842	0.0045*
3P theft as reference				
3P theft – 2P loss	-0.4232	0.7024	-0.602	0.5468
3P theft – 2P theft	1.2475	0.6252	1.995	0.0460*
3P theft – 3P loss	-0.4874	0.7038	-0.692	0.4886
3P theft – 3P unfair	-1.5899	0.9063	-1.754	0.0793
3P theft – 3P no-victim	-0.7886	0.7423	-1.062	0.2881

Table S4. Results of the GLMM for dominant actors (n = 12, groups = 30)

The estimates display the regression weight of the factor on the response variable; SE is the SE of the estimate; the Z and P values are also given. The 2P theft and 3P theft were the reference conditions.

*Indicates a significant effect.

Table S5. Results of the GLMM for subordinate actors (n = 12, groups = 30)

Factor	Estimate	SE	Ζ	Р
Session order	-0.5989	0.3143	-1.905	0.0567
Condition				
2P theft – 2P loss	1.3948	0.8674	1.608	0.1078
2P theft – 3P theft	0.1775	0.9192	0.193	0.8468
2P theft – 3P loss	1.4752	0.8668	1.702	0.0887
2P theft – 3P unfair	-0.8714	1.0367	-0.841	0.4006
2P theft – 3P no-victim	-1.7458	1.2813	-1.363	0.1730
3P theft – 2P loss	1.2172	0.8785	1.386	0.1658
3P theft – 2P theft	-0.1775	0.9192	-0.193	0.8468
3P theft – 3P loss	1.2977	0.8775	1.479	0.1392
3P theft – 3P unfair	-1.0489	1.0489	-1.000	0.3173
3P theft – 3P no-victim	-1.9234	1.2918	-1.489	0.1365

The estimates display the regression weight of the factor on the response variable; SE is the SE of the estimate; the Z and P values are also given. The 2P theft and 3P theft were the reference conditions. *Indicates a significant effect.

PNAS PNAS

Table S6. Raw response data for each actor according to their rank relative to the thief

		2P theft		2P loss		3P theft		3P loss		3P unfair		3P no-victim	
Actor No. of gro	No. of groups	Dom	Sub	Dom	Sub	Dom	Sub	Dom	Sub	Dom	Sub	Dom	Sub
Corry	5	0/1	0/4	0/1	0/4	0/1	0/4	0/1	0/4	0/1	0/4	0/1	0/4
Dorien	5	1/2	0/3	0/2	0/3	0/2	0/2*	0/2	0/3	0/2	0/3	0/2	0/3
Fraukje	4	1/3	0/1	1/3	0/1	2/3	0/1	1/3	0/1	0/3	0/1	1/3	0/1
Frodo	4	0/4	_	0/4	_	1/4	_	1/4	_	0/4	_	0/4	_
Lome	5	1/1	2/4	1/1	3/4	1/1	0/4	1/1	4/4	0/1	0/4	0/1	1/4
Natascha	5	2/3	0/1*	0/3	0/2	0/3	0/2	0/3	0/2	0/3	0/2	0/3	0/2
Patrick	5	2/3	0/2	2/3	1/2	2/3	1/2	0/3	1/2	1/3	1/2	1/3	0/2
Pia	5	0/1	0/4	0/1	0/4	0/1	0/3*	0/1	0/4	0/1	0/4	0/1	0/4
Riet	5	2/2*	0/2	0/3	0/2	0/3	0/2	1/3	0/2	1/3	0/2	1/3	0/2
Robert	4	0/4	_	0/4	_	1/4	_	0/4	_	0/4	_	1/4	_
Sandra	5	2/3	1/2	0/3	0/2	0/3	0/2	1/3	0/2	0/3	0/2	0/3	0/2
Tai	4	—	1/4	_	2/4	_	3/3*	_	3/4	_	1/4	_	0/4
Ulla	4	2/2	0/2	1/2	2/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2

The number of groups the actor was tested in is also shown. The number before the slash is the number of trials in which the actor collapsed the trapdoor, and the number after the slash is the total number of trials for each condition. Dom, dominant; Sub, subordinate. *Indicates that there was one trial in which there was no theft (i.e., the individual in the thief's position did not pull food away from the actor); these cases were not included in the analysis, therefore the number of trials do not add up to the full complement. Dashes (—) indicate no data, namely that due to rank position, the subject was either never in the subordinate role (Frodo and Robert) or in the dominant role (Tai).

Name	Sex	Age (y)	Rearing history
Corry	Female	31	Nursery
Dorien	Female	28	Nursery
Fraukje	Female	32	Nursery
Frodo	Male	14	Mother
Lome	Male	7	Mother
Natascha	Female	28	Nursery
Patrick	Male	11	Mother
Pia	Female	9	Mother
Riet	Female	30	Nursery
Robert	Male	32	Nursery
Sandra	Female	15	Mother
Tai	Female	6	Mother
Ulla	Female	31	Nursery

Table S7. Sex, age, and rearing histories of the chimpanzees tested

Table S8. Number of groups tested

Dominance/kinship	Dominant	Subordinate
Kin	15	15
Nonkin	15	15

These groups are based on the actor's kinship with the victim and dominance to the thief.

PNAS PNAS

Table S9. Details of the 60 test groups

PNAS PNAS

			Actor's dominance relationship	Actor's kin relationship	
Actor	Thief	Victim	with the thief	to the victim	Test group
Corry	Frodo	Patrick	Subordinate	Mother	Subordinate/kin
Corry	Riet	Patrick	Subordinate	Mother	Subordinate/kin
Corry	Riet	Illa	Subordinate	None	Subordinate/nonkin
Corry	Sandra	Lome	Dominant	Mother	Dominant/kin
Corry	Robert	Lome	Subordinate	Mother	Subordinate/kin
Dorien	Robert	Ulla	Subordinate	None	Subordinate/nonkin
Dorien	Lome	Corry	Dominant	None	Dominant/nonkin
Dorien	Riet	Robert	Subordinate	None	Subordinate/nonkin
Dorien	Fraukie	Patrick	Dominant	None	Dominant/nonkin
Dorien	Frodo	Corry	Subordinate	None	Subordinate/nonkin
Fraukie	Lome	Erodo	Dominant	None	Dominant/nonkin
Fraukie	Tai	Pia	Dominant	Mother	Dominant/kin
Fraukie	Sandra	Pia	Dominant	Mother	Dominant/kin
Fraukie	Frodo	Pia	Subordinate	Mother	Subordinate/kin
Frodo	Patrick	Natascha	Dominant	Infant	Dominant/kin
Frodo	IIIIa	Patrick	Dominant	None	Dominant/nonkin
Frodo	Corry	Dorien	Dominant	None	Dominant/nonkin
Frodo	Pia	Riet	Dominant	None	Dominant/nonkin
Lome	Dorien	Corry	Subordinate	Infant	Subordinate/kin
Lome	Eraukio	Robert	Subordinate	None	Subordinate/kin
Lomo	Тай	Pia	Dominant	None	Dominant/nonkin
Lome		Patrick	Subordinate	Full-sibling	Subordinate/kin
Lomo	Dila	Natascha	Subordinate	Nono	Subordinate/kin
Natascha	Faultio	Frodo	Dominant	Note	Dominant/kin
Natascha	Bio	Dorion	Dominant	None	Dominant/nonkin
Natascha	Piot	Erodo	Subordinato	Note	Subordinato/kin
Natascha	Robert	Corny	Subordinate	None	Subordinate/kin
Natascha	Tai	Erodo	Dominant	Note	Dominant/kin
Datrick	Idi Fraukio	Frouo	Dominant	Full sibling	Dominant/kin
Patrick	Flaukje	Corry	Dominant	Full-sibiling	Dominant/kin
Patrick	Sanura	Lomo	Subordinato	Full sibling	Dominant/Kin Subordinato/kin
Patrick	Frodo	Corry	Subordinate	Full-sibiling	Subordinate/kin
Patrick	Tai	Lomo	Dominant	Full sibling	Dominant/kin
Patrick	I di Natacha	Lome	Subordinato	Full-sibiling	Subordinato/nonkin
Pia	Pohort	Eraukio	Subordinate	Infant	Subordinate/honkin
Pia	Patrick	Frankje	Subordinate	Infant	Subordinate/kin
Pia	Corry	Lomo	Subordinate	None	Subordinate/kin
Pia	Таі	Eraukio	Dominant	Infant	Dominant/kin
Piot		Тайкје	Dominant	Mothor	Dominant/kin
Riet	Ulla	i di Sandra	Dominant	Mother	Dominant/kin
Riet	Loine	Dorion	Subordinato	None	Subordinato/nonkin
Riet	Detrick	Donen	Subordinate	None	Subordinate/nonkin
Riot	Dorion	Sandra	Dominant	Mother	Dominant/kin
Robert	Dorion	Tai	Dominant	None	Dominant/nonkin
Robert	Sandra		Dominant	None	Dominant/nonkin
Robert	Corry	Sandra	Dominant	None	Dominant/nonkin
Robert	Patrick	Piot	Dominant	None	Dominant/nonkin
Sandra	Tai	Robert	Dominant	None	Dominant/nonkin
Sandra	Natacha	Loma	Subordinato	None	Subordinato/nonkin
Sandra	Lomo	Piot	Dominant	Infant	Dominant/kin
Sandra	Dia	Tai	Dominant	Full sibling	Dominant/kin
Sandra	Fia	Tai	Subordinato	Full-sibling	Subordinato/kin
	Pio	lan	Subordinate	Full-sibiling	Subordinate/kin
	Fid	Dint	Subordinate	Infant	Subordinate/honkin
Tai	Lomo	Candra	Subordinate	Infant	Subordinate/kin
idi Tai	Lome	Sanura Biot	Subordinate	Intent	Subordinate/Kin
i ai	Natascha	Klet	Subordinate	Intant	Suborginate/kin
	Pia Franki	Dorien	Dominant	None	
Ulla	Frodo	inatascha	Subordinate	None	Supordinate/nonkin
Ulla	Kiet	Lome	Subordinate	None	Supordinate/nonkin
Ulla	lai	Fraukje	Dominant	None	Dominant/nonkin

Actors, thieves (when present), and victims (when present) constitute the groups. The dominance relationships between actor and thief, as well as kinship between actor and victim are shown. These combinations resulted in four test groups (dominant/kin, subordinate/kin, dominant/nonkin, and subordinate/ nonkin). Because of possible agonistic interactions, the two adult males, Frodo and Robert, could not be tested together.