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SI Text
The Hydrophobic-Polar (HP) Lattice Protein Model. The sequence-
to-structure mapping used in our investigation was based on the
two-dimensional (2D) HP model of protein folding (1). The HP
model is a highly coarse-grained approach that aims to account
for hydrophobic interaction, which is a main driving force in
protein folding (2). Protein sequences in the model consist of only
two types of residues—hydrophobic (H) or polar (P)—and pro-
tein chains are configured as self-avoiding walks (SAWs) on a 2D
square lattice. The only type of favorable interactions in the mod-
el is between two sequentially nonadjacent hydrophobic residues
that are spatially nearest neighbors on the lattice. Each such
hydrophobic-hydrophobic (HH) contact is assigned an energy
εð< 0Þ. The total energy of a conformation with h HH contacts
is equal to εh (1, 3–5).

In the present context, a gene is equivalent to a model protein
sequence of H and P residues. Different SAWs (those that are
not related by rigid rotations or inversions) correspond to differ-
ent protein chain conformations. The terms “conformation” and
“structure” are used interchangeably in our discussion, whereas a
“state” refers to a set of one or more conformations. For any
given HP sequence, the density of states gðhÞ is the number of
conformations as a function of the number of HH contacts, h.
The number of conformations with the maximum number, hN, of
HH contacts achievable by a given sequence is denoted by g and is
referred to as the ground-state degeneracy of the sequence (4);
i.e., g ≡ gðhNÞ. In view of the experimental observation that many
natural globular proteins adopt an essentially unique native struc-
ture under folding conditions, we take g ¼ 1 HP sequences as
models for globular proteins (4).

As in our previous evolutionary studies (6–10), data for chain
length n ¼ 18 were analyzed in this work. The usage of short 2D
HP sequences to model the general behavioral trends of much
longer three-dimensional (3D) protein chains is justified in at
least two respects. First, because of the importance of hydropho-
bicity in protein folding, an important geometric factor in protein
energetics is the ratio between the number of surface-exposed
and buried residues. In this regard, the exterior/interior ratios
of folded 2D conformations with chain length n ∼ 16 are com-
parable to the surface/core-volume ratio of 3D globular proteins
with approximately 150 residues (5), which correspond roughly
to the chain lengths of many enzymes that have been studied
by biophysical methods. Second, the nonrandom distribution
of hydrophobic residues along natural protein sequences (11)
is well rationalized by the corresponding nonrandom distribution
in short, 2D g ¼ 1 HP sequences of length n ¼ 18 (12). Reminis-
cent of the architecture of some natural proteins, certain short
g ¼ 1 sequences in the 2D HP model are comprised of autono-
mous folding units (7, 13). Taken together, these considerations
support our working assumption that the 2DHPmodel is a useful
theoretical construct for capturing salient features of the se-
quence-to-structure mapping of real proteins (6, 7, 14), despite
the model’s insufficiency for a full account of the thermody-
namics and kinetics of cooperative protein folding (15, 16). Be-
side the 2D HP model, other lattice protein models have also
been employed to study evolution (17–20). Earlier advances in
evolutionary applications of simple lattice protein models were
reviewed in refs. 13 and 21; a detailed assessment of the merits
and limitations of HP and other lattice models in the study of
protein folding can also be found in ref. 14.

For the n ¼ 18 2D HP model used here, the mapping from all
218 ¼ 262;144 possible HP sequences onto all 5,808,335 possible

conformations, without any restrictions such as maximal com-
pactness (13), was obtained by exact (exhaustive) enumeration
(6). This mapping provides the density of states gðhÞ for each
of the sequences. Let X be the set (ensemble) of all possible pro-
tein conformations (structures) in the model. In accordance with
Boltzmann statistics, for any given gene (sequence) i with density
of states gðhÞ, the fractional population ΦðXl; iÞ of any confor-
mation Xl ∈ X is equal to

ΦðXl; iÞ ¼ e−ϵhl∕kBT∕∑
h

gðhÞe−ϵh∕kBT; [S1]

where hl is the number of hydrophobic contacts in Xl, kB is the
Boltzmann constant, T is absolute temperature, and the summa-
tion is over all possible h values in X (6). The fractional popula-
tion ΦðXl; iÞ is a measure of stability (0 < ΦðXl; iÞ < 1) and is
expected to be positively correlated with the concentration Cl
of functional protein molecules that are folded as Xl (see below).
We used −ε∕kBT ¼ 5.0 for the folding condition in our compu-
tation to ensure that an overwhelming majority of the sequences
in the neutral nets we studied have dominant ground-state (na-
tive) populations. When −ε∕kBT ¼ 5.0, the median fractional
populations of the native structures in the neutral networks A
and B in Fig. 1A of the main text are, respectively, 0.87 and 0.73.
Among the 48 g ¼ 1 sequences in network A, the minimum frac-
tional native population is 0.68. Among the 20 g ¼ 1 sequences
in neutral network B, only two sequences have their fractional
native populations fall below 0.5.

A neutral network in our model is a collection of protein se-
quences that encode for the same native structure and are inter-
connected by single-point mutations. Because genes in our model
are the protein sequences themselves and mutations are per-
formed directly on the protein sequences, all mutations in our
model are nonsynonymous. Multifunctionality is modeled by a
given set of beneficial structures X b; and the evolutionary role of
multifunctionality is assessed by considering the neutral networks
of each of the structures in X b. The present investigation focuses
on X b with two structures.

The largest neutral network in the n ¼ 18 2D HP model con-
sists of 48 g ¼ 1 sequences (nodes) encoding uniquely for the
same native structure XA (conformation drawn in blue at the top
of Fig. 1A of the main text). This network, referred to as “A” here,
was featured in several previous publications (6, 7, 9, 14). Neutral
network A is directly connected to another neutral network “B”
with native structureXB (drawn in red at the top of Fig. 1A of the
main text) and consists of 20 g ¼ 1 sequences. The direct connec-
tivity between the neutral networks means that a single mutation
can convert a g ¼ 1 sequence in network A to a g ¼ 1 sequence in
network B. In addition to the g ¼ 1 sequences, multiply-degen-
erate (g > 1) sequences with g ¼ 2, 3, 4, 5, and 6 are also included
in the network pairs in Fig. 1A as long as their ground-state
conformations contain either XA or XB, or both. There are 84
and 40 such multiply-degenerate sequences in the extended neu-
tral networks (6) for XA and XB, respectively. Among them are
seven bridge sequences that contain both XA and XB in their
native states. These bridge sequences provide equal stability to
XA and XB and belong to both extended neutral networks.

Using SX b to denote the set of all single genes belonging to
either or both of two interconnected neutral networks for X b ¼
fXA; XBg and ω to denote the total number of such genes,
DX b ≡ SX b × SX b is the set of all ω2 gene pairs ði; jÞ where i,
j ∈ SX b . Gene pairs are ordered, i.e., ði; jÞ ≠ ðj; iÞ, to reflect
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ordering of the genes along the DNA. A gene pair can arise from
a single gene by gene duplication or from an existing gene pair
by point mutation. In our model, GX b ≡ SX b ∪ DX b is the set of
all Ω ¼ ωþ ω2 genotypes relevant to X b. In total, there are ω ¼
48þ 20þ 84þ 40 − 7 ¼ 185 single genes and Ω ¼ 34;410 geno-
types in the network pair A and B in Fig. 1A of the main text. In
our evolution dynamics simulations (see below), all sequences in
the g ≤ 6 extended networks of a given network pair (e.g., A and
B) are considered to be viable (with nonzero fitness values),
whereas any mutation that takes a sequence outside the given net-
work pair and/or results in a g > 6 sequence is considered lethal
(zero fitness for the mutant).

Because both XA and XB are targets for selection in our fit-
ness function for the network pair A and B (see below), bridge
sequences in the overlapping region of the two extended neutral
networks for A and B have high fitness in our model. Other (non-
bridge) g > 1 genes have relatively low fractional populations of
one or both (beneficial) target structures, and thus low fitness.
The upper bound for the fractional population of any ground-
state conformation is 1∕g because all ground-state conformations
are equally probable in the present model. The most stable bridge
sequence βAB (most stable with respect to XA and XB) has only
XA and XB as ground-state conformations, whereas other bridge
sequences have additional nonbeneficial ground-state conforma-
tions. Under our simulation condition with −ε∕kBT ¼ 5.0, the
fractional populations of XA and XB for the most stable bridge
sequence are equal to ΦðXA; βABÞ ¼ ΦðXB; βABÞ ¼ 0.444. In
general, a higher stability for such a bridge gene (i.e., higher
Φ for the target structures) means increased fitness and thus en-
hanced relevance of the bridge gene for EAC. Under the same
−ε∕kBT ¼ 5.0 condition, the fractional populations of XA and
XB for the prototype πA of network A are ΦðXA; πAÞ ¼ 0.998
and ΦðXB; πAÞ ¼ 4.532 × 10−5, respectively. The corresponding
fractional populations for the prototype πB of network B are
ΦðXA; πBÞ ¼ 6.438 × 10−3 and ΦðXB; πBÞ ¼ 0.955. The proto-
type sequences πA and πB are shown in Fig. S1A. Additional in-
formation about the network pair A and B and other network
pairs used in the present study are provided in Table S1. A dis-
cussion of bridge (“switch”) sequences in the 2D HP model was
first given in ref. 22. Another example of a neutral network that is
connected by a bridge sequence to neutral network A can be
found in figure 16.7 of ref. 14.

The Fitness Function. The fitness function W ðClÞ of a structure Xl
in our model depends on the functional concentration Cl (also
referred to simply as “concentration” below). For a genotype con-
sisting of a single gene i, we set ClðiÞ ¼ ΦðXl; iÞ. For a genotype
comprising of a pair of genes ði; jÞ, we considered two alternate
definitions of Clði; jÞ to compare behaviors in the absence and
presence of dosage effect, and use the shorthands d ¼ 0 and
d ¼ 1 to label the two cases, respectively. The rationale and the
biological ramifications for considering these two scenarios are
outlined in the main text and will be discussed further in this
SI Text below. The d ¼ 0 case assumes that there is no change
in functional concentration immediately after gene duplication,
at which time i ¼ j and Clði; jÞ ¼ ΦðXl; iÞ ¼ ΦðXl; jÞ. When
ΦðXl; iÞ ≠ ΦðXl; jÞ because of subsequent mutations, we set
Clði; jÞ to the larger (max) of the two Φ values. For d ¼ 1, con-
centration is equal to the sum of the fractional populations of the
two genes in the same genotype, viz.,

Clði; jÞ ¼
�
max½ΦðXl; iÞ;ΦðXl; jÞ� if d ¼ 0

ΦðXl; iÞ þ ΦðXl; jÞ if d ¼ 1. [S2]

In the present formulation, the functional concentration for a
gene pair in the d ¼ 1 scenario is determined by the total Boltz-
mann population of the beneficial structure contributed by both
genes. In contrast, the functional concentration for a gene pair in

the d ¼ 0 scenario is determined only by the Boltzmann popula-
tion contributed by the gene that imparts a higher thermody-
namic stability on that structure. Therefore, in general, instead
of the d ¼ 1 functional concentration that treats all Xl popula-
tion equally, the d ¼ 0 functional concentration prescribes higher
weights to more stable populations of Xl. A situation in which a
d ¼ 0-like assignment of functional concentration may apply is
when the kinetic stability of a protein (23), i.e., the duration
the protein stays in the beneficial structure before transiently
adopting another conformation, is important for performing its
biological function. Further discussion of this rationale and its
ramifications are provided below. Our fitness function W ðClÞ
is controlled by two parameters θ and τ:

W ðClÞ ¼
�
θ½1 − ð1 −Cl∕θÞ1∕τ þ ðCl∕θÞτ�∕2 ifCl < θ
θ ifCl ≥ θ

[S3]

with θ ∈ ½0; 1� serving as an upper bound on W ðClÞ (Fig. S1B).
As discussed in the main text, θ may be viewed as the selection
pressure on Cl (cf. ref. 20) because a small θ means that a low
concentration of Xl does not sacrifice fitness. In contrast, when
θ ¼ 1,ClðiÞ has to approach the highest possible concentration of
unity to achieve maximum fitness; any decrease in stability is
detrimental. A similar fitness function based on the thermal
adaptation of adenylate kinase was derived by Peña et al. (24).
τ was not discussed in the main text. It parametrizes the deviation
from a linear relationship between fitness and concentration for
Cl ∈ ½0; θ�. Depending on τ, this relationship can be convex, lin-
ear, or concave (Fig. S1B). For example, when τ < 1, changes in
promiscuous functions at low concentrations (gray shade in
Fig. S1B) have a stronger positive impact on fitness whereas
changes in native functions at high concentrations have relatively
smaller fitness effects. In this manner, τ parameterizes the intrin-
sic relationship between beneficial function and concentration of
a protein structure in a given biological setting. Throughout the
main text, τ ¼ 1 was implied.

The total fitness of a genotype k, consisting of either one gene
(k ≡ i) or two genes (k ≡ i; j), is defined as the sum of fitness con-
tributions from each conformationXl belonging to the set of ben-
eficial structuresX b; i.e.,Wk ¼ ∑Xl∈X bW ðClÞ, whereCl ¼ ClðiÞ
for k ≡ i andCl ¼ Clði; jÞ for k ≡ ði; jÞ (Eq. S2). As stated above,
our analysis is focused on X b with two target structures
(X b ¼ fXA; XBg, for example).

For the neutral networks A and B in Fig. 1A of the main text
with 48 and 20 g ¼ 1 sequences, respectively, the total number
of SUBF pairs is 48 × 20 × 2 ¼ 1;920. There are only two se-
quences in network B with Φ < 0.5 (see above). Thus, when
θ ¼ 0.5, the fitness values among SUBFare high (average ¼ 0.99,
standard deviation ¼ 0.03). It also follows that the number of
subfunctionalized (SUBF) pairs with suboptimal fitness is
48 × 2 × 2 ¼ 192, and hence the total number of SUBF pairs
with optimal fitness used in the analysis in Fig. 3 of the main text
is 1;920–192 ¼ 1;728.

Two Fitness Parameters Determine the Degree of Functional Trade-Off
in Our Model. Both the selection pressure θ and the intrinsic re-
lationship between function and concentration parametrized by τ
in our model can impact on the functional trade-off between two
structures. Fig. S1C illustrates the general effects of τ and θ
on the degree of trade-off and the resulting evolutionary process
(neofunctionalization, NEOF or subfunctionalization, SUBF).
As a comparison with the results for τ ¼ 1, θ ¼ 0.5 or 1 presented
in the main text and Figs. S2 and S3, results for other ðτ; θÞ values
in Fig. S1C are provided in Fig. S4. Evolutionary dynamics simu-
lations confirm the general trend that NEOF follows from a
strong trade-off whereas SUBF follows from a weak trade-off
(see below).
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Evolutionary Dynamics of Genotype Populations Using a Master-Equa-
tion Treatment.The present formalism is an adaptation of the mas-
ter-equation approach in refs. 6 and 7 to incorporate effects of
gene duplication. For any genotype k in the set of all genotypes
relevant to the set of beneficial structures X b (i.e., k ∈ GX b ), let
PkðqÞ be the time-dependent probability or fractional population
normalized by the total population in GX b , where time q is the
number of generations (time steps). The populations at time step
q determine those at the next time step qþ 1. For genotypes with
a single gene, k ≡ i ∈ SX b ,

Piðqþ 1Þ ¼
�
−ðnμþ μdÞPiðqÞ þ μ∑

Ai

r¼1

PνiðrÞðqÞ

þ PiðqÞ
�
NðqÞWi

W̄ ðqÞ ; [S4]

where μ is the point mutation rate for any given position along a
gene sequence of length n; νiðrÞ, where r ¼ 1; 2;…, labels the Ai
genes adjacent to i, i.e., those that differ by one point mutation
from gene i; and μd is the gene duplication rate of converting any
genotype with a single gene into a genotype with a pair of iden-
tical genes. Network topology is defined by gene adjacencies,
which were determined by exact enumeration in our model
(13). Starting with population of i at q (last term inside the square
brackets in Eq. S4), the first term on the left accounts for popula-
tion loss caused by outgoing mutations and by conversion of the
single-gene genotype to a double-gene genotype in one time step,
whereas the second term accounts for population gain resulting
from incoming mutations during the same time step.Wi∕W̄ ðqÞ is
a reproduction factor that depends on relative fitness, where Wi
is the fitness of gene i and W̄ ðqÞ ≡ ∑Ω

k¼1 PkðqÞWk is the popula-
tion average of the fitness values of all genotypes in GX b at time
q. NðqÞ ¼ 1∕∑k∈G

X b
Pkðqþ 1Þ normalizes the total population

to unity (7) to facilitate comparison of population distributions
at different time steps. μ ¼ 10−3 and μd ¼ 10−4 were used to ob-
tain the results in Fig. 2 in the main text for sequences of length
n ¼ 18. For genotypes with two genes, k ≡ ði; jÞ ∈ DX b ,

Pijðqþ 1Þ ¼
�
−2μnPijðqÞ þ μ∑

Ai

r¼1

PνiðrÞjðqÞ þ μ∑

Aj

s¼1

PiνjðsÞðqÞ

þ μ2

∑
Ai

r¼1
∑

Aj

s¼1

PνiðrÞνjðsÞðqÞ þ δijμdPiðqÞ

þ PijðqÞ
�
NðqÞWij

W̄ ðqÞ ; [S5]

where the first term on the right accounts for population loss due
to point mutations in both genes i and j, which have a combined
sequence length 2n. The next three terms account for population
gain from point mutations of genes adjacent to i and j that reside
either in single-gene genotypes (second and third terms) or in
double-gene genotypes (fourth term). When i ¼ j, population
of ði; iÞ can also increase because of duplication of i. This gain
is accounted for by the fifth term where the Kronecker symbol
δij ¼ 1 if i ¼ j and δij ¼ 0 otherwise. Wij is the fitness of geno-
type ði; jÞ and Wij∕W̄ ðqÞ is the corresponding reproduction fac-
tor. Eqs. S4 and S5 thus describe a Markov process of population
dynamics for the evolving genotypes that is governed by fitness as
well as by network topology. Results in the main text and in
Figs. S3–S5A and S6 were obtained using the above master-equa-
tion approach, a schematic summary of the formulation is pro-
vided in Fig. S7.

NEOF and SUBF Follow from Strong and Weak Trade-Off, Respectively.
In addition to the results in the main text obtained using model
parameter sets ðτ ¼ 1; θ ¼ 0.5Þ, and ðτ ¼ 1; θ ¼ 1Þ, we have
further explored the general relationship between functional
trade-off on the one hand and NEOF versus SUBF on the other
by determining the evolutionary dynamics for the other four ðτ; θÞ
parameter sets in Fig. S1C using the master-equation approach
(Fig. S4). When the selection pressure θ is low, functional trade-
off is extremely weak. Consequently, the fitness increase asso-
ciated with bridge genes can be so strong that gene duplications
provide no further advantage, let alone NEOF or SUBF
(Fig. S4A, for τ ¼ 1, and θ ¼ 0.25). In the case of a weak trade-
off but a high selection pressure, SUBF can be an adaptive pro-
cess even with dosage effect (d ¼ 1) because promiscuous func-
tions at low concentrations are highly rewarded (Fig. S4B, for
τ ¼ 0.3 and θ ¼ 1). When the selection pressure is moderately
high and the trade-off becomes less weak, a “hybrid” between
NEOF and SUBF ensued, in that bridge pairs are populated but
bridge genes are not (Fig. S4C, for θ ¼ 0.75 and τ ¼ 1). As ex-
pected, when both the selection pressure and trade-off are strong,
the result is NEOF (Fig. S4D, for θ ¼ 1 and τ ¼ 2). This NEOF
outcome is very similar to the θ ¼ τ ¼ 1 case in the main text.

Network Layout.The network layout (“sequence space”) in Fig. 1A
of the main text was generated by the Fruchterman–Reingold
algorithm (25) to facilitate visualization of network topology.
In the present construction, an edge is assigned to connect two
nodes if and only if the sequences represented by the two nodes
differ by a single-point mutation (i.e., they are separated by Ham-
ming distance 1). The Fruchterman–Reingold algorithm was ap-
plied to keep edge lengths as similar as possible so that distances
along edges reflect roughly the Hamming distances between se-
quences. In this algorithm, the edges act like springs that can be
stretched or compressed by other nodes and edges until a certain
equilibrium state is achieved. The algorithm is nondeterministic
because initial node placements are random. As a result, final
placements of nodes can vary slightly between replicates, but the
overall layout properties will be very similar. It should be empha-
sized that the Fruchterman–Reingold technique was adopted
here solely for presentational purposes. It has no bearing on the
computational analysis of our model.

Stochastic Monte Carlo Simulations for Finite Populations. The mas-
ter-equation approach we introduced (Eqs. S4 and S5) describes
a deterministic process that allows evolution of any nonzero frac-
tional population (expressed as a real number), no matter how
small. The master-equation analysis thus serves as a model for
evolutionary change in an infinite population. To provide an
alternative approach as a control and to address effects of popu-
lation size, we also performed stochastic Monte Carlo (MC) evo-
lutionary simulations of finite, discrete populations (number of
individuals are represented by integers).

Each MC simulation in the present effort tracks the evolution
of N ¼ 1;000 individuals. To facilitate comparison, the muta-
tional parameters and other conditions for our MC simulations
were chosen to closely resemble those in our master-equation
analysis. Each MC simulation for a given network pair was initi-
alized with all individuals carrying the same single prototype gene
for the larger of the two neutral networks of the pair. Thus, for
the network pair A and B, MC simulations were started with
1,000 copies of the single πA gene. After initialization, successive
rounds of mutations and selections were applied for 5,000 gen-
erations. In each generation, single-point mutations were ran-
domly introduced at a probability of μ per residue by gener-
ating a random number u ∈ ½0; 1� for every H or P residue along
every sequence in all 1,000 individuals (which can be either sin-
gle-gene or two-gene genotypes). If u ≤ μ, an H → P or P → H
mutation was made, depending on whether the original residue
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was H or P; otherwise the residue remained unchanged. We used
μ ¼ 0.001 for our simulations. This stochastic mutation process
produced a new set of 1,000 individuals, some or all of which
could be mutated from the original sequences. Our definition
of μ is identical to that in ref. 6, and is equivalent to μm∕n, where
μm is the total mutation rate in ref. 7.*

After each round of mutations, fitness was assigned to each of
the 1,000 individuals in accordance with the fitness function de-
scribed above. Sequences with g > 6 were assigned zero fitness.
The next generation of 1,000 individuals were then selected by
stochastically picking from the 1,000 individuals generated
by the last round of mutation. In this selection process, the prob-
ability of an individual being picked was equal to its relative fit-
ness. Specifically, the selection procedure was implemented as
follows: The relative fitness of individual k in the population
with fitness Wk is Wk∕W̄ , where W̄ ¼ ∑N

k¼1 Wk∕N. Let
R0 ≡ 0 and Rk ≡ ∑k

k 0¼1
Wk 0∕NW̄ for k ¼ 1; 2;…; N; note that

RN ¼ 1 by this definition. The Rk’s are the boundaries of N dis-
crete bins in ½0; 1� with sizes equal to the Wk∕NW̄ ’s. To select an
individual, a random number u ∈ ½0; 1� was generated. Individual
k was selected if and only ifRk−1 < u ≤ Rk. This operation allows
the random number to pick an individual by falling into one of
the N bins. By repeating this operation N ¼ 1;000 times, a new
population of 1,000 individuals was selected. Because the same
individual could be picked more than once by this procedure
and some individuals might not be picked, fitter individuals would
tend to be over-represented in the next generation.

Gene duplications were admitted after 100 generations. Sub-
sequent to that time, a duplication attempt was made every 10
generations (or every 100 generations for the case of “low” du-
plication rate in Fig. S5B) by picking randomly one of the 1,000
individuals before the above-described selection procedure was
applied. If the randomly picked individual was a single-gene
genotype, it was turned into a two-gene genotype with a dupli-
cated gene. This individual then carried two identical genes
and could have altered fitness as a result. If the randomly picked
individual was already a two-gene genotype, it remained un-
changed. Irrespective of whether the duplication attempt resulted
in a newly duplicated gene, the duplication attempt was repeated
only after another 10 (or 100) generations. Because there are
1,000 individuals in the population, this stochastic procedure is
equivalent to a duplication rate μd ¼ ð1∕10Þ × ð1∕1;000Þ ¼
10−4 (or ð1∕100Þ × ð1∕1; 000Þ ¼ 10−5).

Average properties from MC simulations were obtained from
100 independent runs (trajectories) simulated under identical
conditions except different sets of random numbers were gener-
ated for the mutation, duplication, and selection steps. For each
population of 1,000 individuals at a given time in our MC simula-
tions, the frequencies of genotypes belonging to the following
categories were recorded: (i) the prototype of the initial neutral
network, (ii) other genes in the initial neutral network, (iii) single
bridge genes, (iv) bridge pairs, and (v) neo/subfunctionalized
pairs. The time-dependent average numbers of individuals in
these genotype categories in the evolving populations were then
determined by averaging over the 100MC-simulated populations.

MC simulation results on the same two fitness landscapes
considered in the main text are shown in Fig. S2A. Despite the
differences between the master-equation andMC simulation pro-
cedures, results from the two approaches are qualitatively very
similar, lending support for the robustness of our model predic-
tions. The two approaches also produced similar results when two
different duplication rates were compared (Fig. S5). In the SUBF
scenario, adaptation is quick and mostly independent of gene

duplications, whereas adaptation in the NEOF scenario is signif-
icantly impeded by a lower duplication rate.

An example MC simulation run, i.e., a single trajectory of
SUBF (at the higher duplication rate of one per 10 generations)
is provided in Fig. S2B. The genetic heterogeneity of the popula-
tion changes over time (Fig. S2B, Bottom). It rose to the first peak
before fixation of a single bridge gene at generation approxi-
mately 150 (cf. Fig. S2A, Bottom), fell sharply afterwards, and
did not rise much again until just before the fixation of the du-
plicated bridge at around generation 500. This suggests that the
population was initially spreading in different directions through
the neutral network until a more beneficial gene (the bridge gene
in this case) was reached and fixed. Gene duplication took longer
to rise to high frequency because the fitness increase associated
with duplication was not as high as that provided by fixation of the
single bridge. In this example, subfunctionalization is a gradual
process that increases genetic variation but does not lead to
further significant adaptation (see the behavior after generation
approximately 500, and especially after generation approximately
3,300 in Fig. S2B).

Generalizing to Other Target Structures and Neutral Networks. To
evaluate the generality of our conclusions, network pairs other
than the pair A and B were also used for simulations (see Figs. S3
and S6). Properties of all the networks used in the present study
are listed in Table S1. Each neutral network encodes for a differ-
ent HP protein structure. Because the density of states of a se-
quence and its reverse sequence are identical in the HP model, it
is only necessary to consider neutral networks that cannot be ob-
tained from one another by reversing all the sequences in the
network. We chose the six largest neutral networks of g ¼ 1 se-
quences in the 2D n ¼ 18 HP model accordingly. Each of these
networks was paired with a connected network sharing at least
one bridge sequence with g ¼ 2. As discussed above for network
pair A and B, each network pair consists of all g ≤ 6 sequences
that have either of the two target structures or both of the two
target structures in their ground states.

To speed up simulations, a reduced set of genes obtained by
removing all g > 1 genes that were not bridges in a given network
was also considered. We used these reduced networks to simulate
the results in Figs. S3 and S6. The removed genes were found to
play no significant role during these simulations, as is evident
from comparing the results computed for the full gene set in
Figs. 2 and 3 of the main text and the corresponding results com-
puted using the reduced gene set in Figs. S3A and S6A for the
network pair A and B. The results computed for the reduced
and full gene sets are virtually indistinguishable.

The simulation results we obtained are qualitatively very simi-
lar in all network pairs we investigated, with a few minor excep-
tions: Network pair I and J has a very stable bridge, which is
transiently populated at a high frequency in its duplicated form
even in the NEOF scenario (top plot in Fig. S3E). In contrast,
network pair K and L are connected by bridges with particularly
low stability that are not significantly populated before duplica-
tion during SUBF (Fig. S3F, Bottom).

For all the network pairs we studied, the steady-state popula-
tions of bridge gene pairs and subfunctionalized pairs after SUBF
exhibited as two clearly distinct clusters in their scatter plots with
the number of adjacent genotypes within Hamming distance 1 or
Hamming distance 2 (Fig. S6). Regression curves for the subfunc-
tionalized pairs are shown in Fig. S6. Dependence of steady-state
population ðPijÞst on the number of sequence-space neighbors
with Hamming distance 1 or Hamming distance 2 can be de-
scribed approximately by a power law. The similarity among the
six different network pairs in Fig. S6 of their separate clustering
behavior of the bridge versus subfunctionalized pairs lends sup-
port to our conclusion in the main text that in general SUBF can

*Note that the statement “μm is equivalent to μ∕n” in the second line below Eq. 1 on p. 812
of ref. 7 should read “μm is equivalent to nμ”. This error was merely typographical; it did
not affect the results in ref. 7.
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be a natural consequence of the mutational instability of the
bridge genes.

A Control Study Using a Randomized Network Topology.As a control
for the results shown in Fig. 3 in the main text, we devised a
randomized network topology that has the same number of nodes
(sequences) ω as in Fig. 1A in the main text but with randomized
connections (edges) that are not based on an underlying bio-
physical chain model. The aim of using this control network
was to assess the role of our biophysics-based model neutral net-
work topology in the trend observed in the predicted distribution
of steady state genotype populations, especially the conspicuous
separation of bridge and subfunctionalized pairs in the scatter
plots of lnðPijÞst versus number of adjacent sequence-space
neighbors within Hamming distance 2 (see Fig. 3 in the main text
and Fig. S6).

The average number of connections per node (i.e., its degree)
hAi is 4.886 in the original topology. It follows that the probability
of two nodes being adjacent would be pA ¼ hAi∕ðω − 1Þ. Based
on this statistics, a randomized adjacency matrix M of size ω × ω
was created as follows. Because a sequence cannot be adjacent to
itself, we set all diagonal elements of M to zero. For each off-di-
agonal elementm < n in the matrix, wherem, n ¼ 1; 2;…; ω are
row and column indices, a random number umn ∈ ½0; 1� was
drawn from a uniform distribution. If umn ≤ pA, nodes m and
n was assigned to be adjacent by setting Mmn ¼ Mnm ¼ 1, other-
wise we set Mmn ¼ Mnm ¼ 0. The resulting network had an ac-
tual average node degree of 4.859, which is essentially identical to
the input hAi value of 4.886 as expected. Because Hamming dis-
tance as a sequence-space distance metric is not defined on such a
randomized network, we defined another quantity that concep-
tually corresponds to the number of adjacent sequences within
Hamming distance 2 from the randomized adjacency matrix M
by considering M itself and its square, M 2. For a given node
m, we took this quantity as the number of all nonzero off-diagonal
elements ðM þM 2Þmn of the sum of matrices M and M 2. This
quantity is the conceptual equivalent of the number of neighbors
within Hamming distance 2 of node (sequence)m because a node
n ≠ m with a nonzero element in Mmn is adjacent to m and a
node n ≠ m with a nonzero element in ðM 2Þmn can be reached
by nodem in two steps in the randomized network defined byM.

When the randomized network was used to compute steady-
state populations after SUBF, no separate clusters for the original
bridge gene pairs and original subfunctionalized pairs were seen
in the scatter plot of their logarithmic steady-state populations
versus number of nodes reachable within two steps (see Inset
of Fig. 3 in the main text). Moreover, the scatter in the data for
the randomized network topology is so extensive that the approx-
imate power-law dependence of steady-state population on the
number of sequence-space neighbors within Hamming distance
2 observed for the result based on theHPmodel network topology
is all but lost. These striking differences between the original and
control calculations demonstrate clearly that the network topol-
ogy of our model plays a central role in the relationship between
mutational stability and evolutionary populations of bridge versus
subfunctionalized pairs. This comparison also underscores the
general importance of adopting network topologies that are un-
derpinned by explicit-chain models based upon sound biophysical
principles in the development of theory for molecular evolution.

The Dosage Parameter d. As described above and in the main text,
the parameter d in our model is used to characterize the relation-
ship between functional protein concentration, fractional protein
population, and the number of copies of a given gene. Essentially,
d ¼ 1 corresponds to the assumption that there is a dosage in-
crease (i.e., increase in protein concentration) upon gene dupli-
cation, whereas d ¼ 0 corresponds to the assumption that there is
no dosage increase (protein concentration remains the same)

upon gene duplication. Negative dosage effects were not consid-
ered in the present study because in that case gene duplications
are not likely to be retained.

The d ¼ 1 case may be viewed as the default assumption for a
duplicated gene that retains its promotor because the two gene
copies can then be transcribed simultaneously to provide twice
the amount of gene product. A situation related to, although not
required for, the d ¼ 1 case is that the concentration of the pro-
tein structure in question is suboptimal before gene duplication
so that an increase in concentration is allowed by the cellular ma-
chinery. Suboptimal protein concentration before gene duplica-
tion could arise from trade-offs between multiple functional/
structural states (26). Indeed, Kondrashov et al. have argued that
some gene duplicates were retained because of a beneficial
dosage increase (27, 28). In other words, the duplication itself
is beneficial and thus will be preferentially retained. Similarly,
Bergthorsson et al. (29) have also stated that the dosage increase
of a suboptimal (promiscuous), but beneficial, enzyme function
should render a gene duplication immediately advantageous.
Although further research in this area is needed, positive dosage
increase remains one of the most convincing explanations for
duplicate retention, as its beneficial effect would take place im-
mediately after the duplication and does not require additional
mutations.

The d ¼ 0 case corresponds to a situation in which the gene
duplication itself is neutral. It may be viewed as a control to
further elucidate the consequences of the d ¼ 1 assumption. At
the same time, our interest in the d ¼ 0 case was also motivated
by the argument of several authors that a gene duplication is of no
intrinsic adaptive value in itself, and that their retention during
NEOF or SUBF is purely by chance [see, e.g., reviews by Conant
and Wolfe (30) and Innan and Kondrashov (31)]. With this in
mind, the d ¼ 0 case stipulates that the protein concentration re-
mains unchanged upon the duplication of a gene i, i.e., Clði; iÞ ¼
ΦðXl; iÞ for d ¼ 0. This requirement is satisfied by the general
relationship in Eq. S2, viz., Clði; jÞ ¼ max½ΦðXl; iÞ;ΦðXl; jÞ�, be-
cause this implies that Clði; iÞ ¼ max½ΦðXl; iÞ;ΦðXl; iÞ� ¼
ΦðXl; iÞ at the duplication step. After the duplication event,
the general Clði; jÞ expression stipulates that only the sequence
with a higher Φ contributes to functional concentration. As men-
tioned above, if the biological function of a protein structure is
dependent upon its kinetic stability (23), it is reasonable to assign
a higher functional concentration to a population with a higher
kinetic stability than a population with a lower kinetic stability
when the total residence times in the beneficial structure are
identical in the two populations. Because the unfolding rate of
a protein is often negatively correlated with the thermodynamic
stability of its native state (32) and a higher unfolding rate means
a lower kinetic stability, kinetic stability is expected to be posi-
tively correlated with thermodynamic stability. It follows that if
the biological function of a protein is positively correlated with
its kinetic stability, a population with a higher thermodynamic
stability is expected to contribute more to the functional concen-
tration than an equal population with a lower thermodynamic
stability. In this context, our d ¼ 0 assignment of functional con-
centration may be viewed as a drastic prescription that nonethe-
less embodies the above biophysical trend. A direct consequence
of this preference for genes that encode thermodynamically more
stable beneficial structures is that in general a higher fitness is
assigned to SUBF pairs than to bridge pairs. Indeed, using this
setup, our analysis demonstrated that a neutral gene duplication
imposes a strong selection pressure for SUBF to occur rapidly
because SUBF is the only way to increase fitness when d ¼ 0
(Fig. 2D in the main text). This observation is of crucial relevance
to the present study because adaptive SUBF is a feature of the
EAC scenario (30, 31).

Biologically, the neutral duplication scenario embodied by our
d ¼ 0 case may apply in some situations in which protein concen-
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trations after gene duplication can be maintained essentially at
preduplication levels by regulatory mechanisms. In general, the
homeostasis of certain proteins can be well-preserved by negative
feedback loops (33), meaning that a higher concentration of a
protein will cause its own down-regulation. This mechanism
should apply after a gene duplication as well. An example of such
a general process is dosage compensation in the silencing of one
copy of the X chromosome in female human cells (34, 35). An-
other example is that extra gene copies are down-regulated by
DNA methylation after gene duplications in mammals (36). A
reduced expression of duplicates was also observed due to muta-
tions in upstream regions of genes (37). Evidence for dosage bal-
ancing mechanisms was also found in yeast, wherein only 15% of
genes are detrimental when overexpressed by increased gene
copy numbers on plasmids. The majority of genes do not produce
a different phenotype when overexpressed. Based on this data,
the authors of the study assume that gene regulatory feedback
controls protein levels (38). Finally, whole genome duplications
also provide conditions that render the overall relative stoichio-
metry of biomolecules constant, thus resulting in an effectively
neutral gene duplication (39–41). The d ¼ 0 case may serve to
capture the lack of dosage effect at the duplication step in situa-
tions similar to these, although gene regulation is not explicitly
modeled in our analysis.

It is important, however, to emphasize that the d ¼ 0 and
d ¼ 1 cases represent extreme situations that serve to bracket
a range of possible situations. In reality, even when a gene dupli-
cation increases dosage, it may not exactly double the level of
protein as assumed for the d ¼ 1 case, because both genes may
need to use the same transcriptional activators that may in turn be
limited in concentration so that expression increase may be less
than twofold. Indeed, the limited concentration of transcription
factors that presumably were evolved to be fine tuned for a single
gene locus may explain the near absence of a dosage increase
upon gene duplication in some situations, which would corre-
spond more closely to the d ¼ 0 case in this respect. As discussed
above, the present d ¼ 0 and d ¼ 1 formulations also embody dif-
ferent relationships between functional concentration and pro-
tein population. In reality, one expects the degree to which func-
tional concentration depends on thermodynamic stability and
the resulting kinetic stability to vary from protein to protein, de-
pending on the biological function in question. In view of these
considerations, future work will need to extend the treatment of
dosage effect from the present binary choices to include a con-
tinuum of possibilities between extremes exemplified by the d ¼
0 and d ¼ 1 cases here.

Experimental Evidence for Adaptation Before and After Gene Duplica-
tion. It remains a challenge in many instances to match biological
data to theoretical evolutionary scenarios such as DDC versus
EAC, or NEOF versus EAC (30). Ratios of nonsynonymous over
synonymous rates of nucleotide substitutions, Ka∕Ks (also de-
noted as dN∕dS or ω) (42) have been used to study the evolution
of gene duplicates. (The ω here should not be confused with the
variable for the number of genes in the above discussion.)
Although such methods are likely to be too crude to distinguish
between different types of SUBF, some general patterns of Ka∕Ks
are useful in distinguishing SUBF from NEOF.

For example, a Ka∕Ks study has shown that in many cases of
successful gene duplications both paralogs have Ka∕Ks < 1, im-
plying that they are under relaxed purifying selection, i.e., they
tolerate more mutations (27). In general, a Ka∕Ks value between
0 and 1 would correspond to neutral evolution constrained within
a neutral network with some nonsynonymous substitutions being
tolerated. An example of EAC is provided by Des Marais and
Rausher for the dihydroflavonol-4-reductase (DFR) genes in
plants, which are part of the anthocyanin pathway (43). The
authors provided a clear criteria for identifying EAC and distin-

guishing it from NEOF: First, both duplicates have to evolve
equally by adaptive changes during EAC, whereas in NEOF only
one copy evolves. Second, an ancestral function is improved after
gene duplication in EAC, whereas it is not in NEOF. They also
measured the evolutionary rates along the phylogeny of DFR
genes. In one branch leading towards a gene duplication (result-
ing in paralogs DFR-A and DFR-C), Ka∕Ks ≫ 1 was found, in-
dicating that the ancestor was undergoing adaptive evolution.
This finding is consistent with adaptive conflict, wherein single
amino acid substitutions improve a new function at the expense
of the old function. After duplication, purifying selection was
observed in the two duplicates, leading to divergent and an im-
provement of ancestral functions (43).

During the course of the present investigation, we found a po-
tential case of EAC for which functional data of a multifunctional
ancestor and DNA sequence alignments are available in the lit-
erature (44, 45). The proteins in question are a family of fluor-
escent proteins in corals. Matz and colleagues reconstructed the
evolution of these proteins. Without identifying their finding with
any evolutionary model, they experimentally reconstructed the
ancestor of a gene duplication leading towards green color in
one copy and red color in the other copy. The ancestor was found
to exhibit a dual phenotype: A fraction of proteins emitted green
light while another fraction emitted red light (44, 45). Although it
is not certain whether such an ancestral protein existed in natural
corals, it is remarkable that it was found in exactly the position of
the phylogeny where it would be expected by EAC. Seven of the
residues that were changed during color adaptation are thought
to exert their color-changing effect through changes of the overall
protein fold (46), which fits the structure-function assumption
adopted in our model.

We have performed a Ka∕Ks analysis of the phylogeny in
Ugalde et al. (45) based on the DNA alignment of Kelmanson
et al. (44) by using a method of Kosakovsky Pond and Frost (47).
The latter method assigns Ka∕Ks to every branch in the phylo-
geny. In particular, we found that the branch leading to the multi-
functional red/green ancestor shows strong signs of positive
selection (Ka∕Ks ≫ 1). The subsequent branch leading to the
pre-red ancestor also has Ka∕Ks ≫ 1 before duplication, which
then is reduced to Ka∕Ks ≈ 0.8 for both the green and the red
branches after duplication. These results match the analysis of
Matz and colleagues (48). The duplicates of the pre-red ancestor
specialized on different wavelengths (green and red), indicating
that the initial adaptive conflict was somewhat resolved. This be-
havior is consistent with EAC.

More recently, EAC was also indicated in the phylogeny of
plant enzymes that generate secondary metabolites by construct-
ing several ancestors and experimental measurements of enzy-
matic activities (49). Positive evolution was found in ancestral
branches before gene duplication, which is indicative of a shift
in selection pressures that might have led to adaptive conflict.
Consistent with the EAC scenario, ancestral nonpreferred enzy-
matic activities before gene duplication were enhanced in one of
the daughter enzymes after duplication (49).

Population Size, Quasi-Species, and Evolutionary Time Scale. As dis-
cussed above, the effective population size in our master-equa-
tion approach (Eqs. S4 and S5) is an infinite number of indi-
viduals. Therefore, the process modeled by the master-equation
approach corresponds to a quasi-species regime of evolution (50–
52) in which mutations are frequent. Quasi-species are found
when the product of total mutation rate μm and population size
N (i.e., the expected number of mutations per generation) is very
large (μmN ≫ 1). Under these conditions, many co-existing gene
variants arise, instead of just a single predominant variant of a
gene within a population when μmN ≪ 1. The evolutionary sys-
tem described in Eqs. S4 and S5 thus resembles fast-replicating,
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asexual organisms with large population sizes, such as viruses and
bacteria.

A small μmN is not a fundamental impediment against adap-
tation that can proceed one mutation at a time, except that evo-
lution will be slower and that alternative mechanisms such as
recombination might be more dominant. However, an epistatic
barrier such as that seen in Fig. 2F would become a formidable
obstacle if μmN ≪ 1. In that case, SUBF is less likely to occur by
neutral drift alone but would require some adaptive pressure. In
this regard, phenotypic mutations (53–55) might be an additional
mechanism to overcome this barrier.

A case of small μmN (but not μmN ≪ 1) is provided by ourMC
simulations. Because there are n ¼ 18 residues per sequence in
our 2D HP model and there areN ¼ 1;000 individuals in the po-
pulation, for μ ¼ 0.001, the number of mutations per generation
is between μmN ¼ nμN ¼ 18 (when all individuals have a single
gene) and 36 (when all individuals have two genes). Moreover,
many of the mutations in our MC simulation were lethal because
the ground states of the resulting sequences contain neither of
the two target structures. Consequently, the number of genotypes
populated at any time in our MC simulations is very limited com-
pared to that in the effectively N → ∞ “quasi-species” popula-
tion described by our master-equation formulation.

Consistent with the above considerations, we found that evo-
lution proceeds at a significantly slower pace in our MC than in
our master-equation simulations. As discussed in the main text,
evolutionary processes predicted by the two approaches for the
same network pair using the same mutation and duplication rates
and identical fitness functions exhibit very similar qualitative fea-
tures. This similarity is readily seen by comparing, e.g., the mas-
ter-equation results in Fig. 2 C and D in the main text with the
MC results in Fig. S2A. Also clear from this comparison, how-

ever, is that the rate of evolution is much slower in the MC than
in the master-equation simulations. For instance, the population
peak for the bridge pair in the SUBF case appears at generation
approximately 80 in the master-equation approach (Fig. 2D in
main text) but the corresponding peak appears at generation ap-
proximately 600 in the MC simulation (Fig. S2A, lower plot). The
relative slowdown in the MC simulation is significant even taking
into account the absence of duplication in the first 100 genera-
tions. To gain further understanding, we have also performed a
MC simulation under the same conditions as those for the lower
plot in Fig. S2A except that the number of trajectories used for
averaging was 30 (instead of 100, for computational efficiency)
and duplication was attempted at every generation in a randomly
chosen individual at a probability of 0.1 (thus corresponding to a
duplication rate of μd ¼ 10−4), instead of attempting duplication
regularly every 10 generations after the first 100 generations in a
randomly chosen individual. This MC simulation had no time lag
in duplication attempts and duplication was attempted in every
generation such that the dynamic conditions of the MC simula-
tion are essentially identical to those of the master-equation for-
mulation for Fig. 2D of the main text. Even so, the population
peak for the bridge pair appears at generation approximately
400 in this case, still significantly later than the approximately 80
generations needed to achieve the corresponding peak in the
master-equation formulation. Taken together, our observations
indicate that population size has little effect on the general rela-
tionships elucidated here between selection pressure and dosage
effect on one hand and the NEOF and SUBF scenarios on the
other; but the effectively infinite population in the master-equa-
tion formulation allows for much speedier evolutionary changes
than the finite populations in our MC simulations.
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Fig. S1. Biophysical model of protein evolution. (A) Prototype sequences πA and πB of neutral networks A and B are shown in their respective native state
conformations XA and XB. The protein chains are configured on a two-dimensional square lattice and the chains consist of hydrophobic (H) and polar (P)
residues that are depicted, respectively, by dark and light beads. Hydrophobic-hydrophobic contacts are indicated by dashed orange connections. The
two model proteins differ by three substitutions in their sequences (1, 2, and 3) and by two contacts in their structures (arrows). (B) Fitness W as a function
of structural stability. The fitness contributionWðClÞ of a beneficial protein structure Xl is modeled in this work as a function of its concentration Cl , which is in
turn a function of the stability (fractional population) of Xl . As described in the SI Text, Cl is dependent upon the number of genes (one or two) in a given
genotype; θ is an upper bound onW , i.e., fitness does not increase further with increasing Cl for Cl > θ in our model; and τ controls the deviation ofWðClÞ from
a linear relationship in the interval ½0; θ�. Promiscuous protein functions are associated with excited-state structures at low concentrations (shaded region). (C)
Fitness trade-offs between adopting structures XA and XB in Fig. 2A of the main text under various sets of ðτ; θÞ parameter values. WA and WB are fitness
contributions from XA and XB, respectively, and are plotted here in units of θ (i.e., to facilitate comparison, fitness values for different ðτ; θÞ sets are normalized
so thatWAðπAÞ ¼ 1 in all cases; exact fitness values for all data points in this plot are provided in Table S1). Fitness values are shown for three genes: prototype
πA (blue diamond), bridge βAB (magenta square), and prototype πB (red diamond). Connecting lines are used to indicate data points for the same ðτ; θÞ set of
parameter values. If the total (combined) fitness WA þWB is higher for the generalist sequence βAB than that for either of the specialist sequences πA and πB,
the trade-off between XA and XB is weak. Otherwise the trade-off is considered to be strong. The two trade-off regimes are demarcated by the dashed line.
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Fig. S2. Monte Carlo (MC) simulations show NEOF and SUBF in finite evolving populations. As described in SI Text, each simulation run involves 1,000 in-
dividuals. Every individual was initialized (at generation 0) as a single-gene genotype carrying a copy of πA. These sequences were allowed to evolve stochas-
tically in subsequent generations under a fitness function that selected for both the target structures XA and XB (shown in Fig. 1A and Fig. S1A). After 100
generations, gene duplication was imposed on a randomly chosen individual every 10 generations as long as single-gene genotypes (loci) existed among the
1,000 individuals in the simulation. After a duplication event, a second gene locus was occupied in an individual and this second sequence was then allowed to
further mutate. (A) Simulations were performed using the same sets of τ, θ fitness parameters as those in Fig. 2 in the main text. Results were averaged over 100
independent runs (i.e., 100 independently evolving populations of 1,000 individuals each). As for the master-equation results in Fig. 2 of the main text, MC
simulations were performed for the case with dosage effect (d ¼ 1; solid curves) and also for the case without dosage effect (d ¼ 0; dotted curves). Populations
of various genotypes are plotted in different colors (as indicated) using the left vertical scale; average fitness values are plotted in orange according to the right
vertical scale. Top NEOF is a consequence of strong selection pressure. Population fitness is seen to increase only upon duplication and divergence. Bottom A
lower selection pressure allows SUBF via multifunctional bridge intermediates. Population fitness increases early with the rise of transient populations of single
and duplicated bridge sequences. The fitness value averaged over generations 2,000 to 2,100 and over generations 4,000 to 4,100 are 0.9827 and 0.9844,
respectively. (B) Analysis of an example MC simulation showing SUBF. Data are presented for a single MC run using τ ¼ 1, θ ¼ 0.5, and d ¼ 1 under the same
conditions as those in A (i.e., results here are for one of the 100 runs considered in the Bottom of A). Initially only one gene locus was populated (gene 1; black
solid line), a second gene could then arise by duplication (gene 2; gray dashed lines). Three properties of the evolving population of 1,000 individuals are shown
as functions of the number of generations. Top The stability bias log10ðΦB∕ΦAÞ of the most frequent genotype. The onset of a zero bias indicates that a bistable
bridge protein has evolved from the initial πA (phase I). The commencement of the gray dashed line indicates when the duplication of a bridge gene was fixed,
i.e., became the most frequent genotype in the population (dotted vertical line; start of phase II). Eventually, the divergence of the solid and dashed lines
signals that SUBF was fixed (phase III).Middle The mean population fitness increases significantly twice during SUBF, indicating that it is an adaptive process in
this situation. Fitness is near optimal in the plateau region after the second significant increase but it still increases very gradually. For instance, the fitness
values averaged over generations 2,000 to 2,100 and over generations 4,000 to 4,100 are 0.978 and 0.984, respectively. BottomGenetic variation is measured as
the average pairwise Hamming distance. This property was computed separately for sequences in gene 1 and for sequences in gene 2. Significant genetic
variations among sequences in gene 2 are seen both before and after the fixation of the duplication of a bridge gene.
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Fig. S3. Generality of the conditions for NEOF and SUBF. The trend seen in Fig. 2 of the main text for networks A and B is verified for other networks in our
model. Shown in this figure are results from the master equation method (Eqs. S4 and S5). For A–F, τ ¼ 1, θ ¼ 1, and τ ¼ 1, θ ¼ 0.5were used for the upper and
lower plots, respectively. Results were computed using reduced gene sets as described in the SI Text. The quantities plotted are equivalent to, and are plotted in
the same style as those in Fig. 2 C and D in the main text. Corresponding results for the other network pairs in Table S1 are shown in B–F, respectively, for C and
D, E and F, G and H, I and J, and K and L.
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Fig. S4. Additional fitness landscapes and simulations with different parameter sets. Shown here are four additional examples of weak and strong trade-offs
and the resulting evolutionary dynamics (parameter sets from Fig. S1C). Except for the different combinations of τ, θ parameters, results here were obtained
using the same master-equation formulation for the network pair A and B and are presented in the same style as in Fig. 2 of the main text. (A) A low selection
pressure (τ ¼ 1, θ ¼ 0.25) leads to the permanent retention of a single bridge gene as the dominant genotype. Duplications of bridges are only transiently
successful. (B) Under a fitness function that favors promiscuous functions (τ ¼ 0.3, θ ¼ 1; cf. the τ < 1 case in Fig. S1B), excited structural states have a stronger
impact on fitness even when their populations are relatively small. Because multifunctionality is particularly rewarded, SUBF can proceed rapidly regardless of
whether dosage effect is present (d ¼ 1) or absent (d ¼ 0). (C) A fitness landscape where a bridge is only slightly fitter than nonbridges (slightly weak trade-off)
leads to an evolutionary process that bears features of both NEOF (single bridge not populated) and SUBF (bridge pairs populated when d ¼ 1). (D) NEOF arises
also when τ ¼ 2, which leads to a stronger trade-off (see Fig. S1C).
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Fig. S5. Multifunctionality allows for rapid adaptation irrespective of gene duplication rate, but is particularly advantageous when gene duplications are rare.
Using a mutation rate of μ ¼ 10−3 throughout, evolutionary data from our master-equation formulation (A) and MC simulation (B) in the presence of dosage
effect (d ¼ 1) were obtained for the network pair A and B for the NEOF (τ ¼ 1, θ ¼ 1, black curves; fitness given by the left vertical scale) and SUBF (τ ¼ 1,
θ ¼ 0.5, gray curves; fitness given by the right vertical scale) scenarios under a duplication rate that is either relatively high (solid curves) or relatively low
(dashed curves). (A) Master-equation results for infinite population. High and low duplication rates here correspond, respectively, to μd ¼ 10−4 and
μd ¼ 10−6. Adaptation occurs earlier in SUBF than in NEOF. Multifunctionality can increase before gene duplication in SUBF. Thus, for SUBF, the time needed
for adaptation to commence is not lengthened by a lower duplication rate. Adaptation is indicated by a rapid initial increase in normalized average population
fitness W̄ . After achieving a high level of fitness, further increase in fitness is sensitive to duplication rate because this second-stage increase is a result of the
positive dosage effect afforded by duplicated bridge genes. By comparison, adaptation in NEOF is a more lengthy process because in this case adaptation takes
place only after gene duplication. As a result, the process is slowed down significantly by the decrease in duplication rate (underscored by the horizontal
arrows). In other words, the time to achieve adaptation (high fitness) increases with a lower duplication rate in general. However, this delay is much more
prominent for NEOF than for SUBF because duplication is not a prerequisite for adaptation in SUBF when a single multifunctional gene can provide two
functions at sufficient levels. In contrast to the adaptation process in SUBF, adaptation in NEOF reaches the maximum fitness rapidly in a sigmoidal manner
soon after average population fitness begins to increase. (B) MC simulation results for evolving populations of 1,000 individuals. The average population fitness
were averaged from 100 independent simulation runs. Low and high duplication rates correspond, respectively, to one duplication every 10 and 100 gen-
erations. The general trend exhibited is consistent with that in A. For the small populations analyzed here, however, SUBF is seen to be much more adaptive
than NEOF when gene duplications are rare.
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Fig. S6. Mutationally unstable bridge sequences are sparsely populated in SUBF. Steady state populations ðPijÞst of genotypes with maximum fitnessWij ¼ 1 in
the SUBF scenario were computed using τ ¼ 1, θ ¼ 0.5, and d ¼ 1 as in Fig. 3, except we now broaden our consideration to six different network pairs and
reduced gene sets were used for their computational efficiency (see SI Text) to obtain the results in this figure. For a given network pair in A–F, the scatter plots
of lnðPijÞst versus the number of genotypes within Hamming distance 1 and within Hamming distance 2 from ði; jÞ are shown, respectively, on the left and right
of the panel. As in Fig. 3, bridge and subfunctionalized gene pairs are shown, respectively, as magenta squares and black diamonds. Data points for the
subfunctionalized gene pairs were fitted to y ¼ m ln x þ b, where y denotes lnðPijÞst and x represents the number of neutral genotypes within Hamming
distance 1 or 2 from ði; jÞ in the given network pair. The corresponding least-squares fits are shown as continuous curves in the scatter plots. Results were
obtained for all six combinations of neutral networks in Table S1. The corresponding numbers of subfunctionalized pairs and bridge pairs are listed, respec-
tively, as the first and second entries in parentheses as follows: (A) A and B (1,728 and 24); (B) C and D (1,480 and 28); (C) E and F (1,343 and 10); (D) G and H (276
and 4); (E) I and J (802 and 14); (F) K and L (1,092 and 1). For every network pair we considered, the scatter plot of lnðPijÞst versus Hamming distance 2 con-
sistently show all data points clustering quite tightly around the fitted curve. This observation suggests that the bridge and subfunctionalized pairs are gov-
erned by the same approximate power-law relationship between ðPijÞst and the number of neutral neighbors within Hamming distance 2. In this perspective,
the low ðPijÞst values (thus low lnðPijÞst values) for the bridge pairs are seen as a natural consequence of their low mutational robustness.
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Fig. S7. Schematics of the population changes of single genes and gene pairs as described, respectively, by Eqs. S4 (Top) and S5 (Bottom).

Movie S1. Rotational view onto fitness landscape leading to neofunctionalization (under strong selection pressure). Gene fitness is plotted over a 2D re-
presentation of sequence space. Solid black lines indicate evolutionary trajectories of preduplication gene loci, whereas green lines indicate evolution of a gene
copy arising by duplication.

Movie S1 (AVI)
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Movie S2. Rotational view onto fitness landscape leading to subfunctionalization (under weak selection pressure). Gene fitness is plotted over a 2D repre-
sentation of sequence space. Solid black lines indicate evolutionary trajectories of preduplication gene loci, whereas green lines indicate evolution of a gene
copy arising by duplication.

Movie S2 (AVI)

Table S1. Neutral network pairs used in the present study

net 1 net 2
net 1: genes with
g ¼ 1, 2, 3, 4, 5, 6

net 2: genes with
g ¼ 1, 2, 3, 4, 5, 6

number
of bridges

structure
distance

prototype
distance

prototype 1
(Φ1, Φ2)

prototype 2
(Φ1, Φ2)

most stable bridge
(Φ1 ¼ Φ2)

A B 48, 18,
14, 22,
13, 17

20, 7,
8, 10,
7, 8

7 2 2 HPHPHPPHPHPPHPPHHH
(0.998, 4.532e-05)

HPHPHHPPPHPPHPPHHH
(6.438e-03, 0.955)

HPHPHHPHHHPPHPPHHH
0.444

Fitness parameters Fitness values in Fig. S1C (WA, WB):

τ ¼ 1, θ ¼ 0.25 (0.25, 4.532e-05) (6.438e-03, 0.25) (0.25, 0.25)
τ ¼ 1, θ ¼ 0.5 (0.5, 4.532e-05) (6.438e-03, 0.5) (0.444, 0.444)
τ ¼ 1, θ ¼ 0.75 (0.75, 4.532e-05) (6.438e-03, 0.75) (0.444, 0.444)
τ ¼ 0.3, θ ¼ 1 (0.999, 0.024) (0.120, 0.993) (0.821, 0.821)
τ ¼ 1, θ ¼ 1 (0.998, 4.532e-05) (6.438e-03, 0.955) (0.443, 0.443)
τ ¼ 2, θ ¼ 1 (0.498, 1.026e-09) (2.072e-05, 0.456) (0.098, 0.098)

C D 37, 26,
26, 25,
23, 26

23, 6,
15, 8,
11, 7

8 2 3 HPPHPPHPHPPHPHPHHH
(0.998, 4.531e-05)

HPPHPPHHPPHHPHPHHH
(4.287e-05, 0.944)

HPPHPPHHHPHHPHPHHH
0.438

E F 36, 6,
28, 5,
17, 12

31, 8,
13, 10,
9, 10

5 4 4 PHPPHPHPPHPHPHHHHP
(0.980, 2.998e-07)

PHPPHHHHPHPHPPHPHP
(2.998e-07, 0.980)

PHPPHHHHPHPHPHHHHP
0.414

G H 31, 8,
13, 10,
9, 10

11, 3,
9, 3,
4, 4

3 2 3 PHPPHHHHPHPHPPHPHP
(0.980, 4.449e-05)

PHPPHHHHPHPHHPPHHP
(3.772e-05, 0.831)

PHPPHHHHPHPHHPHHHP
0.387

I J 29, 6,
20, 13,
16, 8

15, 27,
15, 19,
18, 11

9 3 5 HPHPHPPHPPPHHPPHHH
(0.955, 2.920e-07)

HPPHHPPHHPPHPHPHHH
(4.320e-05, 0.952)

HPPPHPPHHPPHPPPHHH
0.457

K L 29, 17,
34, 11,
15, 17

22, 16,
28, 19,
16, 18

5 3 5 HHPPHPHPHPPHHPPHHH
(0.946, 2.892e-07)

PHPPHPHPHPPPPHPPHH
(4.323e-05, 0.952)

PHPPHPPPHPPHPHPPHH
0.287

Unless specified otherwise, simulations were started with the entire population in the prototype sequence of the first network (net 1), which is the onewith
a larger size in comparison with the second network (net 2). Results for network pair A and B are presented in the main text, related results for other network
pairs (labeled as C and D, E and F, etc) are documented in SI. The numbers of genes with ground-state degeneracy g ¼ 1, 2, 3, 4, 5 and 6 in the networks are
given in the third and fourth columns of the table. The g ¼ 1 entries are the numbers of genes with a nondegenerate ground state. The number of bridge
sequences are provided in the fifth column. For every network pair tabulated here, there is at least one g ¼ 2 bridge gene. Structure distance (sixth column)
between the two target structures is measured by the number of different intrachain contacts between the two conformations, whereas the sequence-space
distance between the prototypes (seventh column) is their Hamming distance. Also listed for each network pair are the HP model sequences for the two
prototype genes and the most stable bridge gene, as well as the stabilities (fractional populations) of the structures in networks 1 and 2 (denoted respectively
as Φ1 and Φ2) achieved by these genes (eighth, ninth, and tenth columns). The inset table for network pair A and B provides the fitness values (WA,WB) used
for illustration in Fig. 1B. The WA, WB values listed here are not normalized by θ. For each τ, θ combination, the set of (WA, WB) that yields the highest total
fitness W ¼ WA þWB in the model is highlighted in bold.
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Table S2. Glossary of symbols used

k genotype label for single gene i or gene pair ði; jÞ
i label for a single gene, which is equivalent to a protein sequence in the model
ði; jÞ label for a gene pair
Wi fitness of gene i
Wij fitness of gene pair ði; jÞ
Wk fitness of any genotype (single gene or gene pair)
W̄ average fitness of all populated genotypes
X set of all possible structures
X b set of beneficial target structures (only sets of two target structures are considered in this study)
Xl any particular structure in X or X b

ΦðXl; iÞ stability (fractional population) of Xl relative to all possible structures of protein sequence (or gene) i
Cl intracellular concentration of proteins folded into Xl

WðClÞ fitness contribution of Xl as a function of its concentration Cl

θ upper bound for WðClÞ; selection pressure
τ deviation of WðClÞ from a linear relationship with Cl in the interval ½0; θ�
d dosage effect parameter; d ¼ 1 for dosage increase and d ¼ 0 for no dosage increase after duplication
SX b set of all single genes whose native structures belong to X b (contains neutral sets for all Xl ∈ X b)
DX b set of all pairs of genes ði; jÞ, with i; j ∈ SX b

GX b union set of SX b and DX b

ω number of genes in SX b

Ω number of genotypes in GX b

PG
X b

total population (normalized to unity in this study) of all genotypes in GX b

PiðqÞ fractional population of gene i (normalized by PG
X b
) at time q

PijðqÞ fractional population of gene pair ði; jÞ (normalized by PG
X b
) at time q

q time (discrete time steps corresponding to number of generations)
νiðrÞ label for the rth gene adjacent to gene i (in network of all genes from SX b )
νjðsÞ label for the sth gene adjacent to gene j (in network of all genes from SX b )
PνiðrÞðqÞ population of gene νiðrÞ at time q
PνiðrÞνj ðsÞðqÞ population of gene pair ðνiðrÞ; νjðsÞÞ at time q (both i and j are variables)
PνiðrÞjðqÞ population of gene pair ðνiðrÞ; jÞ at time q (i variable, j constant)
Piνj ðsÞðqÞ population of gene pair ði; νjðsÞÞ at time q (i constant, j variable)
Ai number of genes adjacent to gene i
Aj number of genes adjacent to gene j
μ rate of point mutations
μd rate of gene duplications
δij δij ¼ 1⇔i ¼ j (accounts for gene duplication of i in Eq. S5); δij ¼ 0⇔i ≠ j (no duplication in Eq. S5)
n length of gene (n ¼ 18 is used for all HP model genes considered in this study)
NðqÞ normalization factor introduced at time q in Eqs. S4 and S5 to maintain the total population PG

X b
at unity

ðPijÞst steady-state (large-time) population of genotype ði; jÞ
A, B example neutral networks from the HP model
XA,XB the corresponding example target structures from the HP model
πA, πB the prototypes, or prototype sequences (most stable genes) in A and B, respectively
βAB the fittest (most stable) bridge sequence between neutral networks A and B
CA, CB concentrations of XA and XB, respectively, achieved by a given genotype
WA,WB fitness contributions of XA and XB, respectively, where WA ¼ WðCAÞ and WB ¼ WðCBÞ
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