Supporting Information

Synthesis and Antiangiogenic Activity of N-Alkylated Levamisole Derivatives

Anders N. Hansen^{1,#}, Christine D. Bendiksen^{2,#}, Lene Sylvest², Tina Friis², Dan Staerk^{1,3}, Flemming S. Jørgensen¹, Christian A. Olsen^{1,4,*}, and Gunnar Houen^{2,*}

* E-mails: cao@kemi.dtu.dk (CAO) and gh@ssi.dk (GH).

Contents:

Page S2–S9; LC-MS data.
Page S10–S36; ¹H NMR, ¹³C NMR, and DEPT 135 spectra.
(7a S10–12, 7b S13–15, 8a S16–18, 8b S19–21, 9 S22–24, 10 S25–27, 11a S28–30, 11b S31–33, and 12 S34–36)
Page S37; Table S1.

*Ghost peak from the UPLC-MS system.

Compound 9

Table S1. Full assignment of the NMR spectral data obtained for compound 12.

Positio	¹³ C ^a	$^{1}\mathrm{H}^{a,b}$	COSY ^{a,c}	NOESY ^{a,c,d}	HSQC ^{a,c,e}	HMBC ^{a,c,f}
n						
2	49.9	3.87 (m, A/B part of	H-3A, H-3B	H-3A, H-3B	C-2	C-3, C-8
		a larger spin system)				
		3.93 (m, A/B part of				
		a larger spin system)				
3	37.8	4.08 (m, A/B part of	H-2	H-2	C-3	C-2, C-8
		a larger spin system)				
		4.10 (m, A/B part of	H-2	H-2	C-3	
		a larger spin system)				
5	55.9	α: 3.80 (dd, <i>J</i> 5α, 5β	H-5β, H-6	H-5β, H-2'	C-5	C-6, C-8, C-1'
		=10.4, <i>J</i> _{5α, 6} =8.8)				
		β: 4.29 (t, <i>J</i> _{5β, 5α} =	Η-5α, Η-6	Η-5α	C-5	C-6, C-8, C-1'
		$10.4, J_{5\beta, 6} = 10.4$				
6	73.0	5.66 (dd, $J_{6, 5\beta}$ = 10.4,	Η-5α, Η-5β, Η-	H-2', H-5α, H-	C-6	C-5, C-2', C-6',
		$J_{6;5\alpha} = 8.8$	2', H-6'	5β		C-1"
8	179.1					
1'	136.9					
2'	129.2	7.51 (m)	H-6	Η-6, Η-5α	C-2'	C-6
3'	130.7	7.49 (m)			C-3'	
4'	131.3	7.48 (m)			C-4'	
1"	54.9	α: 2.96 (dd, <i>J</i> _{1"α, 1"β} =	H-2", H-1"β	1"β	C-1"	C-6, C-8, C-2",
		14.4, $J_{1''\alpha, 2''} = 6.29$)				C-7"
		β: 3.07 (dd, <i>J</i> _{1"β, 1"α} =	Η-2", Η-1"α	1"α	C-1"	
		14.4, $J_{1''\beta, 2''} = 8.44$)				
2"	37.0	1.46 (m)	Η-1"α, Η-1"β		C-2"	C-1"
3"	26.6	A: 1.55 (m)			C-3"	
		B: 1.15 (m)			C-3"	
4"	27.1	1.16 (m)	H-5"		C-4"	
5"	31.6	0.86 (m)	H-4"		C-5"	
6"	26.5	1.69 (m)			C-6"	
7"	31.5	A: 1.54 (m)			C-7"	C-1"
		B: 1.67 (m)			C-7"	

^{*a*} ¹H (400 MHz) and ¹³C (100 MHz) NMR spectral data obtained in CD₃OD. ^{*b*} Signal multiplicity and coupling constants in Hz are given in parentheses. ^{*c*} Signals correlate with ¹H resonance. ^{*d*} Mixing time 500 milliseconds. ^{*e*} Optimized for ¹J_{C,H} = 145 Hz. ^{*f*} Optimized for ⁿJ_{C,H} = 7.7 Hz.