Supplementary Table 1. Yeast strains

Strain	Genotype*	Source or reference	
LSY0697	MATa met17-s ADE2	1	
LSY1026	MATa met17-s ADE2 mus81::KanMX6	2	
LSY1801-4C	MATa met17-s ADE2 mus81:: KanMX6	This study	
	yen1::HIS3		
LSY2105-5A	MATa met17-s ADE2 rad1::LEU2 yen1::HIS3	This study	
LSY2105-6D	MATa met17-s ADE2 rad1::LEU2	This study	
	mus81::KanMX6		
LSY2105-29B	MATa met17-s ADE2 mus81:: KanMX6	This study	
	rad1::LEU2 yen1::HIS3		
LSY2108-3C	MATa met17-s ADE2 rad1::LEU2	This study	
LSY2109-104C	MATa yen1::HIS3 met17-s ADE2	This study	
LSY2202-10C	MATα ade2-n his3::NatMX4 met22::klURA3	2	
1 572202 114	MATa ade2 n his3::NatMY4 met22::kll/PA3	2	
L312202-11A	musli:KanMY6 radi:LEU2 veni:HUS3		
	MATa ade2 n his2::NatMY4 met22::kIUDA2	2	
LST2202-13D	MATa ade2-n his3:.NatMX4 met22:.kUNA3	2	
1012202-170	mus81:KanMY6 rad1:1 FU2		
1 SY2202-19D	$M\Delta T\alpha$ ade2-n his3::NatMX4 met22::kll IRA3	2	
1012202-190	mus81:KanMX6 ven1:HIS3		
LSY2202-24C	MATa ade2-n his3''NatMX4 met22''KLURA3	2	
1012202-240	rad1"I FU2 ven1"HIS3		
LSY2202-26A	MATa ade2-n his3::NatMX4 met22::kll/IRA3	2	
	mus81::KanMX6		
LSY2202-42A	MATa ade2-n his3··NatMX4 met22··kIURA3	2	
	ven1::HIS3		
LSY2205-3A	MATg ade2-I Ivs2::GAL-ISCEI his3::HphMX4	2	
	rad1::LEU2 yen1::HIS3		
LSY2205-6A	MATα ade2-I lys2::GAL-ISCEI his3::HphMX4	2	
	mus81::KanMX6		
LSY2205-7C	MATa ade2-I lys2::GAL-ISCEI his3::HphMX4	2	
	mus81:: KanMX6 rad1::LEU2		
LSY2205-11C	MATα ade2-I lys2::GAL-ISCEI his3::HphMX4	2	
LSY2205-11D	MATa ade2-I lys2::GAL-ISCEI his3::HphMX4	2	
	rad1::LEU2	-	
LSY2205-24D	MATα ade2-I lys2::GAL-ISCEI his3::HphMX4	2	
	yen1::HIS3		
LSY2205-67B	MATa ade2-I lys2::GAL-ISCEI his3::HphMX4	2	
	mus81::KanMX6 rad1::LEU2 yen1::HIS3		
LSY2205-77B	MATa ade2-I lys2::GAL-ISCEI his3::HphMX4	2	
	mus81::KanMX6 yen1::HIS3	2	
LSY1929	MATa-inc ura3-HOcs lys2::ura3-HOcs inc	3	
	(1.2kb) ade3::GAL-HO		
LSY2540-8A	MA I a-inc ura3-HOcs lys2::ura3-HOcs inc	I his study	
	(1.2kb) ade3::GAL-HO rad1::LEU2		
LSY2540-12A	MA I a-inc ura3-HOcs lys2::ura3-HOcs inc	I his study	
	(1.2kb) ade3::GAL-HO mus81::KanMX6		

LSY2540-16C	MATa-inc ura3-HOcs lys2::ura3-HOcs inc (1.2kb) ade3::GAL-HO yen1::HIS3	This study
LSY2540-18A	MATa-inc ura3-HOcs lys2::ura3-HOcs inc (1.2kb) ade3::GAL-HO mus81::KanMX6 yen1::HIS3	This study
LSY2540-19D	MAT a -inc ura3-HOcs lys2::ura3-HOcs inc (1.2kb) ade3::GAL-HO mus81::KanMX6 rad1::LEU2	This study
LSY2566-3D	MAT a -inc ura3-HOcs lys2::ura3-HOcs inc (1.2kb) ade3::GAL-HO rad1::LEU2 yen1::HIS3	This study
LSY2566-5A	MAT a -inc ura3-HOcs lys2::ura3-HOcs inc (1.2kb) ade3::GAL-HO rad1::LEU2 yen1::HIS3 mus81::KanMX6	This study
LSY2520	MAT a -inc ura3::HOcs lys2::ura3-HOcs inc (5.6 kb) ade3::GAL-HO	4
LSY2521	MAT a -inc ura3::HOcs lys2::ura3-HOcs inc (5.6 kb) ade3::GAL-HO yen1::KanMX6	4
LSY2548-1D	MAT a -inc ura3::HOcs lys2::ura3-HOcs inc (5.6 kb) ade3::GAL-HO rad1::LEU2	This study
LSY2548-11A	MAT a -inc ura3::HOcs lys2::ura3-HOcs inc (5.6 kb) ade3::GAL-HO rad1::LEU2 mus81::KanMX6	This study
LSY2548-29C	MAT a -inc ura3::HOcs lys2::ura3-HOcs inc (5.6 kb) ade3::GAL-HO mus81::KanMX6 yen1::HIS3	This study
LSY2548-39D	MAT a -inc ura3::HOcs lys2::ura3-HOcs inc (5.6 kb) ade3::GAL-HO mus81::KanMX6 rad1::LEU2 yen1::HIS3	This study
LSY2548-42A	MATa-inc ura3::HOcs lys2::ura3-HOcs inc (5.6 kb) ade3::GAL-HO rad1::LEU2 yen1::HIS3	This study
LSY2548-66B	MAT a -inc ura3::HOcs lys2::ura3-HOcs inc (5.6 kb) ade3::GAL-HO mus81::KanMX6	This study

*All strains are of the W303 genotype (*his3-11, 15 leu2-3, 112 trp1-1 ade2-1 can1-100*), only mating type and differences from the standard genotype are listed.

References

- 1 Bartsch, S., Kang, L. E. & Symington, L. S. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. *Mol Cell Biol* **20**, 1194-1205 (2000).
- 2 Ho, C. K., Mazon, G., Lam, A. F. & Symington, L. S. Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. *Mol Cell* **40**, 988-1000 (2010).
- 3 Aylon, Y., Liefshitz, B., Bitan-Banin, G. & Kupiec, M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. *Mol Cell Biol* **23**, 1403-1417 (2003).

4 Agmon, N., Yovel, M., Harari, Y., Liefshitz, B. & Kupiec, M. The role of Holliday junction resolvases in the repair of spontaneous and induced DNA damage. *Nucleic Acids Res* **39**, 7009-7019 (2011).

Supplementary Table 2a. Number of crossover (CO), noncrossover (NCO) and breakinduced replication (BIR) events in red/white sectored colonies

	CO	NCO	BIR	Total
WT	290	939	15	1244
yen1	114	324	4	442
mus81	114	525	15	654
rad1	270	870	26	1166
rad1 yen1	74	243	7	324
mus81 rad1	108	454	24	586
mus81 yen1	6	166	22	194
mus81 rad1 yen1	0	92	20	112

Supplementary Table 2b. Fisher's exact test *P* values between relevant strains for CO events (gray area) or BIR events (white area) in red/white-sectored colonies

	wт	mus81	rad1	mus81 rad1	mus81 yen1	mus81 yen1 rad1
WT		0.003	0.96	0.018	0.0001	0.0001
mus81	0.19		0.004	0.66	0.0001	0.0001
rad1	0.06	0.86		0.023	0.0001	0.0001
mus81 rad1	0.0002	0.075	0.033		0.0001	0.0001
mus81 yen1	0.0001	0.0001	0.0001	0.0006		0.089
mus81 yen1 rad1	0.0001	0.0001	0.0001	0.0001	0.1224	

Supplementary Figure 1. Homologous plasmid integration occurs in the absence of Mus81 and Yen1. a Digestion of genomic DNA with SnaBI (S) and BamHI (B) distinguishes between the untransformed strain (U), random integration and homologous integration at the *MET17* locus. Conversion of the chromosomal *met17-s* allele gives rise to the distinct restriction fragments observed from independent transformants. **b** Representative transformants with a stable Ura⁺ phenotype from the *mus81 A yen1 A* and *mus81 A yen1 A* mutants.

Supplementary Figure 2. Rad1 is required for noncrossover repair between 1.2 kb ectopic repeats. a, Schematic representation of the ectopic recombination assay; 1.2 or 5.6 kb sequences homologous to the *URA3* sequence and containing a mutant HO site (HOinc) are inserted at the *LYS2* locus on Chr. II. Primers P1, P2 and P3 are used to monitor cutting efficiency and repair of the 1.2 kb substrate by PCR. **b**, Repair efficiency was determined by the number of colony-forming units on galactose-containing medium compared with glucose-containing medium using at least three colonies for each strain. Errors bars show standard deviations and significance was determined by the *t* test. **c**, PCR using primers P2 and P3 detects strand invasion intermediates, crossover products and noncrossover products with an unrepaired heterologous flap.

Supplementary Figure 3. Identification of joint molecules using chromosome-specific probes. a, Cartoon shown the locations of the *URA3* probe, Chr.II and Chr.V probes used for hybridization of the 2D gel membrane. **b**, Depiction of all classes of JMs detected and their expected hybridization to chromosome-specific probes. **c**, membrane from the *mus81 yen1* mutant, 150 min time point hybridized with each of the probes. **d**, Model to explain formation of 11.5 and 9.5 JM by HO cleavage of the IS-JM. An IS-JM forms by invasion of an uncut sister chromatid by the HO cut sister. If the IS-JM is not fully gap filled and ligated then the HO would cleave only the newly synthesized strand and its complement and not the D-loop. Branch migration of one of the two junctions towards the DSB would release the junction resulting in a Y-shaped molecule of the same size predicted for a single-end invasion intermediate.

Supplementary Figure 4. Percent of each recombinant colony type from the diploid recombination assay. Colonies formed after 1-3 h I-Scel induction were scored as solid red, solid white or red/white sectored in each strain (>500 colonies were scored for each strain from at least three independent trials).

Mus81-Mms4 (MUS81-EME1)

Supplementary Figure 5. Preferred substrates for Rad1-Rad10 and Mus81-Mms4 cleavage.

Supplementary Figure 6. Model for plasmid integration by replication of a sHJ intermediate or Rad1 cleavage. We suggest Rad1-Rad10 clips the D-loop after second end capture if there is a single-stranded DNA gap adjacent to the branch point. Following gap filling and ligation a sHJ intermediate is formed that can be resolved by endonucleolytic cleavage or by replication through the junction at the next S-phase. Alternatively, after the first Rad1-Rad10 cleavage and migration of the crossed stranded structure to the other heterology boundary, if resection continued beyond the branch point the structure could be cut by Rad1-Rad10.