SUPPLEMENTAL INFORMATION ### SUMO1-dependent modulation of SERCA2a in heart failure Changwon Kho¹*, Ahyoung Lee¹*, Dongtak Jeong¹, Jae Gyun Oh², Antoine H. Chaanine¹, Eddy Kizana³, Woo Jin Park², and Roger J. Hajjar¹** [Supplemental information included Eleven figures and Nine tables.] ¹Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY10029, USA. ²College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea. ³Westmead Clinical School, The University of Sydney, Sydney, Australia. ^{*} These authors contributed equally to this work. ^{**} Corresponding author; Roger J. Hajjar, MD. ## Supplementary Figure 1. SERCA2a complex analysis. (a) Two-dimensional SDS-PAGE gels of SERCA2a complexes. A silver-stained SDS-PAGE gel is shown, which reveals a 12 kDa spot (arrow) that immunoprecipitated with SERCA2a. SERCA2a enrichment was confirmed by blotting the immunoprecipitated - SERCA2a complexes with a rabbit anti-SERCA2a antibody (anti-S2a). Rabbit IgG (anti-IgG) was used as a negative control. - (b) The representative peptide fingerprint for SUMO1 was identified by tandem mass spectrometric analysis. The protein sequence of SUMO1 is shown with the matched peptide highlighted in bold. - (c) in vivo SERCA2a SUMOylation in HEK293 cells expressing flag-tagged SUMO1. Precipitated flag-tagged SUMO1 conjugates were analyzed using an anti-SERCA2a antibody. - (d) Direct interaction between SERCA2a and Ubc9 (left panel). HEK293 cells were transfected with expression vectors for myc-tagged Ubc9 and SERCA2a or a pcDNA vector (negative control). Cell lysates were subjected to immunoprecipitation (IP) with an anti-myc antibody, and the resulting precipitates were immunoblotted with anti-SERCA2a. HC, heavy chain; LC, light chain. Endogenous interaction between SERCA2a and Ubc9 in isolated adult mouse cardiomyocytes (right). Immunoprecipitation using cardiomyocyte lysates showing Ubc9 and SERCA2a interact *in vivo*. - **(e)** *in vivo* SERCA2a SUMOylation in isolated adult mouse cardiomyocytes infected with adenovirus expressing SUMO1. Immunoblot analysis showed that SUMO1 has a dosedependent affect on SERCA2a SUMOylation in cardiomyocytes. - **(f)** SUMOylated SERCA2a in human patient. Reverse IP experiments on SERCA2a SUMOylation *in vivo* was performed on same human patient as shown in Figure 1. IP was performed with anti-SERCA2a antibody and the SUMO1 conjugations were revealed by anti-SUMO1 (top panel). The same blot was stripped and re-probed with anti-SUMO2/3 (bottom panel). **Supplementary Figure 2. Distribution of SUMO1 expression after tail-vein injection.** (a) Immunoblotting for SUMO1 expression. 4 weeks after tail-vain injection of either rAAV9/SUMO1 or rAAV9/GFP, indicated mice tissues were harvested and subjected to immunoblotting to detect SUMO1 expression. H: Heart; Li: Liver; Lu: Lung; B: Brain; K: Kidney; SM: Smooth muscle; Ctl: heart of rAAV9/GFP injected mice. (b) Animals were injected by rAAV9/SUMO1 in a different amount of viral genomes (VG). Heart and liver tissues were then analyzed by immunoblotting to detect expression of SUMO1 transduction. GAPDH expression was examined for normalization purposes. (c) At 4 weeks after SUMO1 gene delivery, optical section images collected from cardiac tissues were double stained for SUMO1 (red) and DAPI (DNA, blue). rAAV9/GFP injected heart used as a control. Supplementary Figure 3. Hemodynamic analyses of SUMO1 gene delivered mouse. Representative pressure volume loops at 2 months after adeno-associated virus encoding SUMO1 (rAAV9/SUMO1) delivery (4 months after TAC operation). After induction of HF, the loops shifted rightward. The end-systolic pressure-volume relationship (ESPVR) in the LV was slightly steeper in rAAV9/SUMO1 treated animals than in rAAV9/GFP treated controls, suggesting increased cardiac contractility. Sham + rAAV9/GFP: green; TAC + rAAV9/SUMO1: light blue; TAC + rAAV9/SERCA2a: blue; TAC + rAAV9/GFP: red. #### Supplementary Figure 4. N-terminal domain of SERCA2a. The protein sequences of human (AC# P16615-2), pig (AC# P11607-2), rat (AC# P11507-2) and mouse (AC# O55143-2) SERCA2a were aligned. Putative SUMO consensus motifs (ψ KXE, where ψ is a hydrophobic amino acid) were detected at lysine 480 and lysine 585. The SUMO modification sites of SERCA2a are outlined in black. Hydrolase domains are outlined by a dotted line. ### Supplementary Figure 5. Ubiquitination of SERCA2a. HEK cells transfected with SERCA2a (WT or K480R/K585R) alone or together with flag-tagged SUMO1. 48 hours after transfection, cells were treated with 20 μM MG132 (proteasome inhibitor) for 3 hours. Cells were lysed in with lysis buffer (10 mM Tris–HCl, pH 7.5, 10 mM NaCl, 0.5% NP-40, 5 mM EDTA, 5 mM EGTA plus 20 mM NEM, 200 μM iodoacetamide, 1 mM sodium orthovanadate and 1 complete EDTA-free cocktail tablet (Roche Molecular Biochemicals). After centrifugation at 13,000 g for 10 minutes, supernatants were subjected to immunoprecipitation with anti-SERCA2a antibody. The ubiquitin conjugated SERCA2a were analyzed by anti-Ubiquitin antibody. # Supplementary Figure 6. Effects of tamoxifen-induced SUMO1 overexpression on Ca²⁺ regulatory proteins in transgenic mice. - (a) Generation of conditional SUMO1 transgenic mice. Cre/loxP conditional expression system was utilized in which administration of tamoxifen induced heart-specific SUMO1 overexpression and concomitantly inhibited EGFP expression. Cardiac SUMO1 is expressed under the control of the α -MHC promoter. - (b) Immunoblot analysis revealed that the levels of tamoxifen-induced SUMO1 expression in the transgenic mice were approximately 5-fold higher than that of wild-type littermates. WT: wild-type littermates; TG: SUMO1 transgenic mice. - (c) Representative immunoblots show alternations of cardiac protein expressions in SUMO1 transgenic mice treated with tamoxifen received in a different duration as indicated. - (d) Effect of tamoxifen-induced SUMO1 overexpression on SUMOylations of SERCA2a. Cardiac tissues were immunoprecipitated with anti-SUMO antibodies. SUMOylated forms of SERCA2a were detected by immunoblot analysis using an anti-SERCA2a antibody. S-SERCA2a: SUMOylated SERCA2a. Supplementary Figure 7. Hemodynamic analyses of SUMO1 transgenic mice both in sham and TAC operation groups. Systolic and diastolic function was determined in SUMO1 transgenic mice by pressure-volume analysis. At 3 month of TAC, the loops shifted rightward. The end-systolic pressure-volume relationship (ESPVR) in the LV was slightly steeper in TG animals than in WT, suggesting increased cardiac contractility. By contrast, the slope of the LV end-diastolic pressure-volume relationship (EDPVR) was decreased in TG mice, indicating a decreased end-diastolic LV chamber stiffness. WT [wild type littermate]-sham: black; TG [SUMO1 transgenic mice]-sham: blue; WT-TAC: red; TG-TAC, green. # Supplementary Figure 8. Dose-dependent effects of rAAV vectors containing shRNA against *SUMO1*. (a) SUMO1 shRNA construct design. A recombinant AAV was designed to express a SUMO1 shRNA under control of the U6 promoter. As a control, a scramble expression cassette was cloned into the same viral vectors. - (b) Representative immunoblot analysis of cardiac tissue extracts from mice infected with rAAV9 expressing scrambled control shRNA (rAAV9/SC) or shRNA against SUMO1 (rAAV9/shSUMO1) 3 weeks after injection (left panel). Total extracts were probed with the indicated antibodies, and the level of inhibition of cardiac SUMO1 expression was measured (5 x 10^{10} vg/mice per each group, n=5 per each group, right panel). - (c) Representative pressure-volume loops from a rAAV9/shSC and rAAV9/shSUMO1 injected mice. Pressure-volume loops are measured before and during transient inferior vena cava occlusion. SUMO1 down-regulation by rAAV9/shSUMO1 injection induced a rightward shift and decreased the slope of the linear fit line of the ESPVR. More severe effects were occurred when we injected an increased dose of rAAV9/shSUMO1. - (d) Quantitative analysis of echocardiographic assessments including internal diameters in end-diastole (LVIDd), end-systole (LVIDs), fractional shortening (FS), and ejection fraction (EF). rAAV9/shSC (5 x 10^{10} vg/mice, n=14); lower dose of rAAV9/shSUMO1 (3 x 10^{10} vg/mice, n=14); higher dose of rAAV9/shSUMO1 (5 x 10^{10} vg/mice, n=12). (e) SUMOylation of SERCA2a. Cardiac tissues were immunoprecipitated with anti-SUMO1 antibody. SUMOylated forms of SERCA2a were detected by immunoblot analysis using an anti-SERCA2a antibody. Representative immunoblots and protein - quantification results are shown (n=6 per each group). (f) ATPase activity of SERCA2a. Ca²⁺-dependence of SERCA2a's ATPase activity is measured in preparations from scramble injected (\bullet) and shRNA against SUMO1 injected hearts with 3 x 10¹⁰ vg/mice (\bullet) and 5 x 10¹⁰ vg/mice (\bullet) and 5 per each group). All data represent means \pm SD. * p < 0.05; ** p < 0.001 vs. respective control using Student *t*-test. **Supplementray Figure 9.** Effects of AAV-mediated SUMO1 gene delivery on SUMOylations of known cardiac transcriptional factors such as SRF (a), GATA4 (b), and SERCA2a (c). Cardiac tissues were immunoprecipitated with anti-SUMO1 agarose. SUMOylated forms of SRF, GATA4, and SERCA2a were detected by immunoblotting using its primary antibodies. Supplementary Figure 10. shRNA-mediated loss of SERCA2a impairs rodent cardiac function. - (a) Contractile properties of isolated rat cardiomyocytes. Maximal rate of contraction, relaxation and cell shortening were measured by IonOptix system. Values are means \pm SD; n = 20 cells per group. - (b) Immunoblotting for SERCA2a was performed with total lysates from the isolated rat cardiomyocytes at 5 days after viral infection. Lower right hand panel shows quantification of SERCA2a in the three different groups of cells. - (c) Representative M-mode echocardiography showing dilated left ventricle end diastole and systole in SERCA2a shRNA injected hearts, without or with SUMO1 overexpression compared with sham control. - (d) Evaluation of cardiac parameters: LVIDd in mm and LVIDs in mm (n=3 rats per each group). - (e) Fractional shortening measured at two different time points. - (f) Immunoblots of SERCA2a expression. Values are mean \pm SD; * p < 0.05 versus sham control; NS, no significant. Supplementary Figure 11. shRNA-mediated loss of SERCA2a impairs murine cardiac function. - (a) Contractile properties of isolated mouse cardiomyocytes. Maximal rate of contraction, relaxation and cell shortening were measured by IonOptix system. Values are means \pm SD; n = 20 cells per group. - (b) Representative M-mode echocardiography showing dilated left ventricle at end-diastole and end-systole in SERCA2a shRNA injected heart, without or with SUMO1 overexpression in comparison with sham control at 2 weeks after SERCA2a shRNA injection. - (c) Evaluation of cardiac function in six SERCA2a shRNA injected mice, four SERCA2a shRNA with SUMO1 co-injected mice and six age-matched sham control mice, showing left ventricular dimensions such as LVIDd in mm and LVIDs in mm. - (d) Fractional shortening measured at two different time points. - (e) Immunoblots of SERCA2a expression. Values are mean \pm SD; ** p < 0.001 versus sham control; NS, no significant. Supplementary Table 1. Echocardiographic parameters for SUMO1 gene transfer mice. Data represent the mean value \pm SD of cardiac functional parameters after 4 month TAC operation. LVIDd, left ventricular internal dimension-diastole; LVIDs, left ventricular internal dimension-systole; FS, fractional shortening; EF, ejection fraction; HR, heart rate. * p < 0.05; ** p < 0.001vs. rAAV9/GFP in TAC. | | Sham | TAC | | | |---------------|------------------------------|---------------------|------------------------------------|--------------------------------------| | | rAAV9/GFP
(<i>n</i> =12) | rAAV9/GFP
(n=10) | rAAV9/SUMO1 (<i>n</i> =14) | rAAV9/SERCA2a (<i>n</i> =12) | | LVIDd (mm) | 3.40 ± 0.10 | 5.13 ± 0.57 | 3.33 ± 0.38* | 3.46 ± 0.58** | | LIVDs
(mm) | 1.50 ± 0.30 | 4.08 ± 0.71 | $1.55 \pm 0.31**$ | $1.53 \pm 0.30**$ | | FS (%) | 55.13 ± 1.50 | 21.11 ± 1.71 | $53.50 \pm 5.03**$ | $55.42 \pm 2.05**$ | | EF (%) | 90.28 ± 1.02 | 48.50 ± 9.74 | 88.94 ±3.70** | $90.44 \pm 1.35**$ | | HR
(BPM) | 618.18 ± 41.70 | 589.16 ± 40.33 | 658.51 ± 32.35 | 629.34 ± 48.36 | Supplementary Table 2. Hemodynamic parameters for SUMO1 gene transfer mice. All values represent mean \pm SD. ESPVR slope; relationship between end-systolic pressure and volume; EDPVR slope; end-diastolic pressure-volume relationship; Pmax, maximum pressure point, Pmin, minimum pressure point, Pmax, maximum dP/dt; Pmin, minimum dP/dt; EDV, left ventricular end-diastolic volume; ESV, left ventricular end-systolic volume; SV, stroke volume; HR, heart rate (beats/min). Heart weight (HW) to Body weight (BW) ratio in mice was measured. * p < 0.05 vs. rAAV9/GFP in TAC. | | Sham | TAC | | | |--------------------------|--------------------|----------------------|-----------------------|--------------------------| | | rAAV9/GFP (n=3) | rAAV9/GFP (n=3) | rAAV9/SUMO1
(n =3) | rAAV9/SERCA2
a (n =3) | | ESPVR slope
(mmHg/µl) | 4.48 ± 0.63 | 1.15 ± 0.58 | 4.33 ± 0.90* | 4.56 ± 0.68* | | EDPVR slope
(mmHg/μl) | 0.03 ± 0.02 | 0.05 ± 0.02 | 0.05 ± 0.02 | 0.05 ± 0.02 | | Pmax
(mmHg) | 69.50 ± 2.51 | 102.50 ± 46.66 | 100.11 ± 31.22 | 115.66 ± 20.20 | | Pmin (mmHg) | 4.00 ± 1.41 | 13.50 ± 1.41 | 8.27 ± 6.72 | $17.70 \pm 5.33*$ | | dPmax | 4195.75 ± 2526.84 | 5761.83 ± 2439.28 | 4912.50 ± 1183.56 | 5560.48 ± 161.82 | | dPmin | -3825.25 ± 2807.56 | -4995.83
±1849.55 | -4240.00 ± 1331.69 | -4729.75 ± 529.59 | | EDV (µl) | 58.75 ± 10.96 | 124.00 ± 6.36 | $54.24 \pm 12.12*$ | $50.80 \pm 22.09*$ | | ESV (µl) | 20.91 ± 9.31 | 98.25 ± 26.51 | 21.91 ± 12.93* | 27.94 ±12.53* | | SV (µl) | 39.00 ± 2.82 | 42.50 ± 16.97 | 37.76 ± 1.74 * | $37.33 \pm 9.01*$ | | HR (bpm) | 522.50 ± 40.30 | 440.25 ± 20.15 | 528.12 ± 33.44 | 567.71 ± 76.17 | | HW/BW
(mg/g) (n=10) | 3.97 ± 0.24 | 8.57 ± 2.77 | 4.15 ± 0.66 * | 4.15 ± 1.24* | Supplementary Table 3. Echocardiographic parameters for SUMO1 transgenic mice with or without tamoxifen administration. Data represent the mean value ± SD of cardiac functional parameters after 1 month of tamoxifen treatment. WT, wild type littermate; TG, SUMO1 transgenic mice; TAM, tamoxifen; LVIDd, left ventricular internal dimension-diastole; LVIDs, left ventricular internal dimension-systole; FS, fractional shortening; EF, ejection fraction; HR, heart rate. | | WT | | TG | | |------------|--------------------|---------------------------|--------------------|---------------------------| | | TAM (-) | TAM (+) | TAM (-) | TAM (+) | | IVIDIO | (n=3) | $\frac{(n=3)}{2.12+0.05}$ | (n=3) | $\frac{(n=3)}{2.00+0.24}$ | | LVIDd (mm) | 3.26 ± 0.11 | 3.13 ± 0.05 | 3.33 ± 0.11 | 2.90 ± 0.34 | | LIVDs (mm) | 1.26 ± 0.05 | 1.30 ± 0.20 | 1.30 ± 0.10 | 1.02 ± 0.22 | | FS (%) | 61.46 ± 1.46 | 58.87 ± 5.00 | 61.40 ± 1.55 | 65.5 ± 3.74 | | EF (%) | 93.80 ± 0.69 | 92.32 ± 2.79 | 93.76 ± 0.74 | 95.46 ± 1.44 | | HR (BPM) | 630.43 ± 44.48 | 601.69 ± 22.35 | 562.45 ± 48.66 | 521.28 ± 35.65 | Supplementary Table 4. Echocardiographic parameters for SUMO1 transgenic mice after TAM-induced SUMO1 overexpression at 3 month post-TAC. Data represent the mean value \pm SD of cardiac functional parameters. WT, wild type littermate; TG, SUMO1 transgenic mice; TAM, tamoxifen; LVIDd, left ventricular internal dimension-diastole; LVIDs, left ventricular internal dimension-systole; FS, fractional shortening; EF, ejection fraction; HR, heart rate. ** p < 0.001 vs. WT in TAC. | | 2M post-TAC | | 3M post-TAC (+TAM) | | |------------|--------------------|---------------------------|--------------------|---------------------------| | | WT (<i>n</i> =12) | TG (<i>n</i> =10) | WT (<i>n</i> =14) | TG (<i>n</i> =12) | | | (12) | (10) | (11) | | | LVIDd (mm) | 4.20 ± 0.56 | 3.76 ± 0.47 | 4.40 ± 0.57 | $3.24 \pm 0.33**$ | | LIVDs (mm) | 2.60 ± 0.70 | 2.33 ± 0.61 | 2.93 ± 0.54 | $1.44 \pm 0.30**$ | | FS (%) | 41.23 ± 7.35 | 37.40 ± 8.54 | 34.30 ± 5.56 | 55.91 ± 6.70 ** | | EF (%) | 77.84 ± 8.06 | 73.27 ± 1.53 | 69.57 ± 7.28 | $90.26 \pm 4.27**$ | | HR (BPM) | 620.14 ± 30.65 | 593.60 ± 65.17 | 620.72 ± 42.60 | 550.18 ± 68.48 | Supplementary Table 5. Hemodynamic parameters based on *in vivo* pressure-volume relationships for SUMO1 transgenic mice. All values represent mean \pm SD. ESPVR slope; relationship between end-systolic pressure and volume; EDPVR slope; end-diastolic pressure-volume relationship; Pmax, maximum pressure point, Pmin, minimum pressure point, Pmax, maximum dP/dt; Pmin, minimum dP/dt; EDV, left ventricular end-diastolic volume; ESV, left ventricular end-systolic volume; SV, stroke volume; HR, heart rate (beats/min). Heart weight (HW) to Body weight (BW) ratio in mice was measured. * p < 0.05 vs. WT in TAC. | | Sham | | TAC | | |--------------------------|--------------------|----------------------|--------------------|--------------------------| | | WT (<i>n</i> =5) | TG
(<i>n</i> =5) | WT (n=5) | TG (<i>n</i> =3) | | ESPVR slope
(mmHg/μl) | 4.42 ± 1.07 | 6.12 ± 1.74 | 2.56 ± 0.71 | 4.33 ± 1.49* | | EDPVR slope
(mmHg/μl) | 0.07 ± 0.05 | 0.12 ± 0.07 | 0.08 ± 0.04 | 0.03 ± 0.01 | | Pmax (mmHg) | 56.37 ± 3.90 | 65.3 ± 9.68 | 98.90 ± 15.06 | 102.66 ± 8.95 * | | Pmin (mmHg) | 3.89 ± 1.93 | 6.50 ± 2.01 | 4.30 ± 3.30 | 12.30 ± 1.50 | | dPmax | 2708.73 ± 765.78 | 3730.10 ± 920.805 | 3751.80 ± 741.41 | 4745.33 ± 475.31 | | dPmin | -2035.03 ± 749.19 | -3004.20 ± 918.61 | -3535.80 ± 718.18 | -2853.50 ± 351.98 | | EDV (µl) | 50.08 ± 4.17 | 53.40 ± 14.34 | 120.90 ± 13.35 | 62.09 ± 22.76 | | ESV (µl) | 27.89 ± 6.44 | 27.10 ± 9.94 | 85.40 ± 23.27 | 37.45 ± 26.87 | | SV (µl) | 27.71 ± 6.97 | 33.60 ± 12.13 | 46.10 ± 11.40 | $26.90 \pm 9.33*$ | | HR (bpm) | 437.34 ± 97.16 | 448.90 ± 72.55 | 441.00 ± 70.59 | 384.90 ± 38.66 | | HW/BW
(mg/g) (n=10) | 4.61 ± 0.45 | 4.20 ± 0.99 | 8.89 ± 0.36 | 7.34 ± 0.13 * | Supplementary Table 6. Echocardiographic parameters for AAV9-mediated cardiac SUMO1 silencing mice. All values represent mean \pm SD. LVIDd, left ventricular internal dimension-diastole; LVIDs, left ventricular internal dimension-systole; FS, fractional shortening; EF, ejection fraction; HR, heart rate. ** p < 0.001 vs. rAAV9/SC. | | rAAV9/SC | rAAV9/shSUMO1 | |------------|----------------------|----------------------| | | 5 x 10 ¹⁰ | 5 x 10 ¹⁰ | | | (n=14) | (<i>n</i> =14) | | LVIDd (mm) | 1.30 ± 0.12 | 2.02 ± 0.17** | | LIVDs (mm) | 3.42 ± 0.19 | $3.85 \pm 0.17**$ | | FS (%) | 61.77 ± 4.77 | $47.63 \pm 3.07**$ | | EF (%) | 93.85 ± 1.23 | $84.51 \pm 2.63**$ | | HR (BPM) | 569.88 ± 71.35 | 639.61 ± 50.38 | Supplementary Table 7. Hemodynamic parameters for AAV9-mediated cardiac SUMO1 silencing mice. Summary of hemodynamic parameters in each group, measured using Scisense pressure–volume catheter. The data are expressed as mean values \pm S.D. ESPVR slope; relationship between end-systolic pressure and volume; EDPVR slope; end-diastolic pressure-volume relationship; Pmax, maximum pressure point, Pmin, minimum pressure point, Pmax, maximum dP/dt; Pmin, minimum dP/dt; EDV, left ventricular end-diastolic volume; ESV, left ventricular end-systolic volume; CO, cardiac output; Ea, arterial elastance; HR, heart rate (beats/min). Heart weight (HW) to Body weight (BW) ratio in mice was measured. * p < 0.05; ** p < 0.001 vs. rAAV9/SC control group. | | rAAV9/SC | rAAV9/shSUMO1 | |-----------------------------|-----------------------|-------------------------| | | 5 x 10 ¹⁰ | 5 x 10 ¹⁰ | | | (<i>n</i> =7) | (n=8) | | ESPVR slope (mmHg/μl) | 4.57 ± 0.74 | 0.96 ± 0.76** | | EDPVR slope (mmHg/μl) | 0.06 ± 0.05 | 0.06 ± 0.02 | | Pmax (mmHg) | 73.22 ± 10.22 | $54.00 \pm 9.53*$ | | Pmin (mmHg) | 7.55 ± 3.20 | 4.33 ± 2.08 | | dPmax (mmHg) | 3797.02 ± 469.32 | $2554.6667 \pm 471.28*$ | | dPmin (mmHg) | -3264.56 ± 633.37 | -2093.67 ± 553.37 | | EDV (µl) | 48.36 ± 4.81 | 47.33 ± 2.51 | | ESV (μl) | 24.33 ± 9.01 | 18.83 ± 9.46 | | SV (µl) | 29.13 ± 2.23 | 30.66 ± 4.16 | | HR (bpm) | 523.91 ± 101.88 | 492.00 ± 42.33 | | HW/BW (mg/g) (<i>n</i> =7) | 4.19 ± 0.01 | 4.80 ± 0.10 * | Supplementary Table 8. Echocardiographic parameters for shRNA-mediated SERCA2a silencing rat. Summary of cardiac function in lentiviral SERCA2a shRNA injected rats, with either adenoviral β -gal (shS2a) or adenoviral SUMO1 (shS2a+SUMO1). Age-matched sham-operated rat served as controls (n=3 per group). The data are expressed as mean values \pm S.D. * p < 0.05; ** p < 0.001 versus sham control. | | | | shSERCA2a | |------------|--------------------|--------------------|--------------------| | | Sham | shSERCA2a | + SUMO1 | | | (n=3) | (n=3) | (n=3) | | LVIDd (mm) | 5.82 ± 0.48 | 6.94 ± 0.68 | 7.01 ± 0.55 | | LVIDs (mm) | 1.68 ± 0.50 | 3.13 ± 0.16 * | $3.35 \pm 0.32*$ | | FS (%) | 70.91 ± 5.7 | 51.56 ± 3.89* | 52.22 ± 0.79 * | | EF (%) | 86.52 ± 0.45 | $67.31 \pm 2.67**$ | $67.99 \pm 0.63**$ | | HR (BPM) | 400.33 ± 27.53 | 437.40 ± 20.14 | 447.25 ± 42.83 | Supplementary Table 9. Echocardiographic parameters for shRNA-mediated SERCA2a silencing mice. Evaluation of cardiac function in lentiviral SERCA2a shRNA injected mice, with either rAAV9/GFP (shS2a, n=6) or rAAV9/SUMO1 (SUMO1+shS2a, n=4). Age-matched sham-operated mice served as controls (n=4). The data are expressed as mean values \pm S.D. ** p < 0.001 versus sham control. | | Sham (<i>n</i> =4) | shSERCA2a
(n=6) | SUMO1
+shSERCA2a
(n=4) | |------------|----------------------------|--------------------|------------------------------| | LVIDd (mm) | 3.22 ± 0.11 | $3.87 \pm 0.14**$ | 4.02 ± 0.24** | | LIVDs (mm) | 1.23 ± 0.08 | $2.14 \pm 0.18**$ | $2.29 \pm 0.18**$ | | FS (%) | 61.74 ± 1.53 | 44.54 ± 3.63** | $43.11 \pm 2.55**$ | | EF (%) | 93.94 ± 0.74 | $81.64 \pm 3.62**$ | $80.30 \pm 2.66**$ | | HR (BPM) | 608.75 ± 26.57 | 640.80 ± 19.05 | 615.00 ± 41.18 |