Supporting information

One-Electron Oxidation of Neutral Sugar Radicals of 2'-Deoxyguanosine and 2'-deoxythymidine. A Density Functional Theory (DFT) Study

Anil Kumar, Venkata Pottiboyina, and Michael D. Sevilla* Department of Chemistry Oakland University, Rochester, Michigan 48309

List of Contents

Figure S1- The B3LYP/6-31++G(D) optimized structure of 2'-deoxyguanosine with atom numbering. In the adjacent table the sum of the three angles centering the $C_{1'}$, $C_{2'}$, $C_{3'}$, $C_{4'}$ and $C_{5'}$ atoms in 2'-deoxyguanosine are given in degrees, see discussion in text. Optimized structure of the 1'-NH2-furanose (sugar moiety) (guanine base replaced by NH2 group) used for the calculations, see text.

Figure S2- B3LYP/6-31++G(D) optimized structures of C1^{**}, C2^{**}, C3^{**}, C4^{**} and C5^{**} radicals in gas phase and in solution. Distances are given in Å. Values in bold are the sum of angles centering the carbon atoms.

Figure S3- B3LYP/6-31++G(D) optimized structures of sugar radicals in their cation states. Structures were fully optimized in gas phase and in aqueous phase using PCM. Values in bold are the sum of angles centering the carbon atoms.

Figure S4- ω B97x/6-31++G(D) optimized structures of C1', C2', C3', C4' and C5' radicals in gas phase and in solution. Distances are given in Å. Values in bold are the sum of angles centering the carbon atoms.

Figure S5- ω B97x/6-31++G(D) optimized structures of sugar radicals in their cation states (C_{1'}⁺, C_{2'}⁺, C_{3'}⁺, C_{4'}⁺, C_{5'}⁺). Structures were fully optimized in gas phase and in aqueous phase using PCM. Values in bold are the sum of angles centering the carbon atoms.

Figure S6- B3LYP/6-31++G(D) optimized structures of C1^{''}, C2^{''}, C3^{''}, C4^{''} and C5^{''} radicals of 2'-deoxythymidine and their cation in gas phase. Distances are given in Å. Values in bold are the sum of angles centering the carbon atoms.

Figure S7- B3LYP/6-31++G(D) optimized structures of C1^{''}, C2^{''}, C3^{''}, C4^{''} and C5^{''} radicals of 2'-deoxythymidine and their cation in solution. Distances are given in Å. Values in bold are the sum of angles around the respective Cn' site.

Figure S8- B3LYP/6-31++G(D) optimized two diastereoisomeric forms of 5'-8-cyclo-2'dG in their radical and cation states. Structures were fully optimized in the gas phase.

Figure S9- B3LYP/6-31++G(d) calculated Mulliken spin density distribution in sugar radicals $(dT(C1'\bullet) - dT(C5'\bullet))$. Spin densities were calculated with 0.002 electron/bohr³.

Table T1- B3LYP/6-31++G(D) and ω B97x/6-31++G(D) calculated vertical ionization potentials (IPs) in eV of neutral sugar radicals in gas phase and in aqueous solution using the 1'-NH2-furanose model system. See Figure S1 in the SI.

Table T2 B3LYP/6-31++G(D) calculated Mulliken Atomic Spin Densities and isotropic hyperfine couplings for the C1', C2', C3', C4' and C5'

Angle	Deg.	Angle	Deg.
N9-C _{1'} -O	109.0	C _{3'} -C _{4'} -O	106.6
O-C _{1'} -C _{2'}	105.6	O-C _{4'} -C _{5'}	110.0
C _{2'} -C _{1'} -N9	114.4	C _{5'} -C _{4'} -C _{3'}	114.7
Sum	329.0	Sum	331.3
C _{1'} -C _{2'} -C _{3'}	103.0	C _{4'} -C _{5'} -O _{5'}	109.3
C _{3'} -C _{2'} -H _{2''}	113.1	O _{5'} -C _{5'} -H _{5"}	110.6
С1'-С2'- Н2"	112.1	C _{4'} -C _{5'} -H _{5"}	108.7
Sum	328.2	Sum	328.6
C _{2'} -C3'-C _{4'}	102.8		
C _{4'} -C _{3'} -O _{3'}	106.6		
C _{2'} -C _{3'} -O _{3'}	112.8		
Sum	322.2		

1'-NH2-furanose

Figure S1- The B3LYP/6-31++G(D) optimized structure of 2'-deoxyguanosine with atom numbering. In the adjacent table the sum of the three angles centering the $C_{1'}$, $C_{2'}$, $C_{3'}$, $C_{4'}$ and $C_{5'}$ atoms in 2'-deoxyguanosine are given in degrees, see discussion in text. Optimized structure of the 1'-NH2-furanose (sugar moiety) (guanine base replaced by NH2 group) used for the calculations, see text.

Figure S2- B3LYP/6-31++G(D) optimized structures of C1^{''}, C2^{''}, C3^{''}, C4^{''} and C5^{''} radicals in gas phase and in solution. Distances are given in Å. Values in bold are the sum of angles centering the carbon atoms.

Figure S3- B3LYP/6-31++G(D) optimized structures of sugar radicals in their cation states. Structures were fully optimized in gas phase and in aqueous phase using PCM. Values in bold are the sum of angles centering the carbon atoms.

Figure S4- ω B97x/6-31++G(D) optimized structures of C1^{*}, C2^{*}, C3^{*}, C4^{*} and C5^{*} radicals in gas phase and in solution. Distances are given in Å. Values in bold are the sum of angles centering the carbon atoms.

Figure S5- ω B97x/6-31++G(D) optimized structures of sugar radicals in their cation states (C_{1'}⁺, C_{2'}⁺, C_{3'}⁺, C_{4'}⁺, C_{5'}⁺). Structures were fully optimized in gas phase and in aqueous phase using PCM. Values in bold are the sum of angles centering the carbon atoms.

Figure S6- B3LYP/6-31++G(D) optimized structures of C1['], C2['], C3['], C4['] and C5['] radicals of 2'-deoxythymidine and their cations in gas phase. Distances are given in Å. Values in bold are the sum of angles around the respective Cn' site.

Figure S7- B3LYP/6-31++G(D) optimized structures of C1^{''}, C2^{''}, C3^{''}, C4^{''} and C5^{''} radicals of 2'-deoxythymidine and their cations in solution. Distances are given in Å. Values in bold are the sum of angles centering the carbon atoms.

Figure S8- B3LYP/6-31++G(D) optimized two diastereoisomeric forms of 5'-8-cyclo-2'dG in their radical and cation states. Structures were fully optimized in the gas phase.

Figure S9- B3LYP/6-31++G(d) calculated Mulliken spin density distribution in sugar radicals $(dT(C1'\bullet) - dT(C5'\bullet))$. Spin densities were calculated with 0.002 electron/bohr³.

A small delocalization of spin on N9, C4, C8 and N7 atoms of guanine is seen from the spin density distribution maps (Figure 1) of C_{1'} and C_{2'} radicals Therefore, we tested the degree that the guanine base lowers the IP of the sugar radicals by considering a model of deoxyribose (sugar) by replacing the guanine base with NH₂ group connected at the C_{1'} atom of the sugar ring, see Figure S1 in the SI. Using this model of the sugar moiety, we calculated the IPs of C_{1'}, C_{2'}, C_{3'}, C_{4'} and C_{5'} radicals in the gas phase and in solution. The calculated vertical IPs by the B3LYP/6-31++G(D) and ω B97x/6-31++G(D) methods are given in Table S1. The calculated vertical IPs of C_{1'}, C_{2'}, C_{3'}, C_{4'} and C_{5'} using this sugar model are slightly lower both in the gas phase and in solution than those calculated for the corresponding sugar radical of 2'-deoxyguanosine and 2'deoxythymidine. The gas phase IPs of C₂[•] and C₅[•] are in close agreement while the IPs of C_{1'}[•], C_{3'}[•] and C₄[•] differ by ca. 0.4 eV, see Tables 2 and S1. In both the models C_{1'}[•] has the lowest IP while C_{2'}[•] has the highest IP.

Table T1- B3LYP/6-31++G(D) and ω B97x/6-31++G(D) calculated vertical ionization potentials (IPs) in eV of neutral sugar radicals in gas phase and in aqueous solution using the 1'-NH2-furanose model system. See Figure S1 in the SI.

Sugar	B3LYP/6-31++G(d)		ωB97x/6-31++G(d)	
radical	Gas phase	Aqueous phase ^a	Gas phase	Aqueous phase ^a
	IP ^{vert}	IP ^{vert}	IP ^{vert}	IP ^{vert}
C _{1'}	5.99	4.13	6.19	4.41
C _{2'} •	8.01	6.00	8.24	6.16
C _{3'}	6.92	4.90	7.22	4.99
C _{4'}	6.76	4.95	6.87	5.05
C _{5'} •	7.55	5.30	7.69	5.34

^aCalculated using IEFPCM model with $\varepsilon = 78.38$.

	atom	Spin (1)	Isotropic
dG(C1'•)			Gauss
16	1 O(17)	.095790	-10.36925
28 9 9	2 C(13)	1.004808	78.66118
20	3 C(13)	184000	.18772
10	4 C(13)	.011642	.18643
22 8	5 C(13)	053298	52089
2	6 N(14)	070142	.08451
	7 C(13)	016806	2.73380
¹⁹ 6 31	8 C(13)	.033301	26014
	9 N(14)	.037717	.75494
	10 C(13)	.037819	2.11742
20	11 N(14)	.003980	02145
5	12 C(13)	.011525	.38513
25 23 11 12	13 N(14)	.006482	.14033
	14 C(13)	.011772	39325
	15 N(14)	.002957	.15483
4 15	16 O(17)	001236	.04958
29 24 21	17 O(17)	.002884	48232
	18 C(13)	.007748	1.57890
30	19 O(17)	000779	20398
1 ¹	20 H(1)	.003388	.16708
	21 H(1)	.000246	.25424
20	22 H(1)	001532	.00318
	23 H(1)	.06/436	29.61253
	24 H(1)	001088	13.88135
	25 H(1)	003632	1.03004
	20 H(1)	.000938	./1034
	$2/ \Pi(1)$	00313/	.221/4
	$20 \Pi(1)$	002018	-1.34099
	27 П (1) 20 П (1)	008330	30903
	30 H(1)	- 0000189	02330
	эт <u>п(</u> 1)	000040	20444

Table T2- B3LYP/6-31++G(D)calculated Mulliken Atomic Spin Densities and Isotropic Hyperfine Couplings for the C1', C2',
C3', C4' and C5' sugar radicals of 2'deoxyguanosine (dG)

dG(C2'•)	atom	Spin (1)	Isotropic
			Gauss
22	1 O(17)	.003557	-1.95062
	2 C(13)	039321	-8.46080
27	3 C(13)	1.034888	43.43506
16	4 C(13)	047842	-6.95101
19 9	5 C(13)	035507	.31864
26 18 28	6 N(14)	.010460	5.53764
10 . 14	7 C(13)	.031608	02738
	8 C(13)	000228	1.09475
	9 N(14)	.000141	.09414
17 31	10 C(13)	024543	.10857
5 6 7	11 N(14)	.006452	.48546
25	12 C(13)	.001660	.26972
	13 N(14)	000020	.05273
29	14 C(13)	005611	.08964
4 21	15 N(14)	000373	00864
3 23 15	16 O(17)	.000961	04356
	17 O(17)	.046506	-9.22707
24 30	18 C(13)	.013046	09621
47	19 O(17)	.000087	81983
	20 H(1)	003452	-2.12156
	21 H(1)	000023	01034
20	22 H(1)	.000737	.21185
3	23 H(1)	.048640	33.27585
	24 H(1)	055442	-23.18284
	25 H(1)	000932	.24098
	26 H(1)	001016	.15335
	27 H(1)	.000121	.14086
	28 H(1)	006848	.61945
	29 H(1)	.022276	13.14030
	30 H(1)	000012	.00108
	31 H(1)	.000031	.04250

dG(C3'•)	atom	Spin (1)	Isotropic
			Gauss
16	1 O(17)	.017746	-2.46813
	2 C(13)	.014308	12.76649
28	3 C(13)	108405	1.24025
22 29 14	4 C(13)	1.058274	82.78717
10 8	5 C(13)	133865	.30793
	6 N(14)	.001821	.05727
18 19 13 31	7 C(13)	.004610	.25614
1 6 7	8 C(13)	.004436	02308
	9 N(14)	.002999	.05855
5 12	10 C(13)	.000033	00087
26 2 11 21	11 N(14)	000078	00542
	12 C(13)	.001426	.01089
23	13 N(14)	.000267	.00185
24 30	14 C(13)	000080	.00333
4 3	15 N(14)	.000194	.00528
	16 O(17)	000084	.00149
	17 O(17)	.094805	-7.77108
	18 C(13)	006549	8.99870
37 25	19 O(17)	001580	35128
	20 H(1)	002608	-2.23934
	21 H(1)	.000010	.00567
20	22 H(1)	000/10	09814
	23 H(1)	000688	83642
	24 H(1)	.030804	23.01/9/
	25 H(1)	.006888	2.593/1
	20 H(1)	.018392	/.29619
	2/ H(1) 28 U(1)	002698	1536/
	20 H(1)	.000/11	1.08104
	$29 \Pi(1)$ 20 $\Pi(1)$	000401	.004/2
	$50 \Pi(1)$ 21 $\Pi(1)$.000027	00093
	ЭТ П(Т)	000003	00540

dG(C4'•)	atom	Spin (1)	Isotropic
			Gauss
22	1 O(17)	.116901	-9.83518
	2 C(13)	.030216	-1.23324
	3 C(13)	011565	.46338
19	4 C(13)	023744	-8.20723
21	5 C(13)	.839962	48.45674
28	6 N(14)	.003231	.18773
9	7 C(13)	.011952	.06931
26 10	8 C(13)	.000664	.02797
	9 N(14)	000644	00455
5 1 16	10 C(13)	.004782	.02060
8	11 N(14)	000443	.04499
6 14	12 C(13)	000374	.03787
24 2 7	13 N(14)	.000047	.00509
29 4	14 C(13)	000472	.00865
3 12	15 N(14)	000022	00120
23	16 O(17)	.000110	00500
11	17 O(17)	.002423	-23.10410
17 12	18 C(13)	0641/3	03/5/
25	19 O(17)	.015352	-24.90018
20	20 H(1)	.016433	4.53084
15 21	21 H(1)	000008	001/0
30	22 H(1) 22 H(1)	.022498	3.89289
	23 H(1) 24 H(1)	.000383	3.65310
	24 H(1) 25 H(1)	.000021	.30024
	25 H(1) 26 H(1)	.001230	7 11666
	20 H(1) 27 H(1)	004040	2 1/668
	27 H(1) 28 H(1)	- 000109	03522
	20 H(1)	022291	9 41355
	30 H(1)	000059	00055
	31 H(1)	.000017	.00217

dG(C5'•)	atom	Spin (1)	Isotropic
			Gauss
16	1 O(17)	.028166	-17.72113
22 9 🔎	2 C(13)	.009646	.50800
28	3 C(13)	.013820	11022
27 10 11	4 C(13)	017880	4.74279
19 8	5 C(13)	035726	1.55080
	6 N(14)	.003641	.07573
18	7 C(13)	006912	.07515
13 31	8 C(13)	.012552	01276
6	9 N(14)	.000204	.03398
	10 C(13)	008817	.09186
5	11 N(14)	.000124	.00442
26 24 2 12	12 C(13)	000067	00270
	13 N(14)	.000055	.00095
21	14 C(13)	.001515	00491
1 3 23	15 N(14)	.000002	.00003
29	16 O(17)	000007	.00034
20	17 O(17)	000019	.02298
25	18 C(13)	.953522	58.32471
17	19 O(17)	.096312	-8.29907
	20 H(1)	.000413	.27229
	21 H(1)	.000000	00020
20	22 H(1)	005553	-3.53/49
3	23 H(1)	.002073	1.52325
	24 H(1)	000177	01212
	25 H(1)	.001280	.32034
	20 П(1) 27 H(1)	.003327	12 07841
	27 H(1) 28 H(1)	000081	-12.37041
	20 H(1)	- 009475	50200
	30 H(1)	- 000009	- 00034
	31 H(1)	000001	.00168