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1 Mathematical background

1.1 Moving average

The moving average P̂O(i) for estimating the average open probability at
a point i in a sequence I of current measurements from an ion channel is
defined as

P̂O(i) =
1

w
nO(i− w/2, i+ w/2) =

1

w

i+w/2
∑

n=i−w/2

O(In). (A1)

Here, nO(m,n) is the number of data points between Im and In that the
channel was observed to be open. O(I) classifies a current I as either open,
i.e. O(I) = 1 or closed, i.e., O(I) = 0 by thresholding. The window size w
indicates the number of data points that were used to calculate the moving
average.

In Figure S1 we show results for six traces of type II IP3R at 10 µM IP3,
5 mM ATP and different Ca2+ concentrations for a window size of w = 500
data points. Varying the window w over a wide range from 200 to 1,000 data
points did not change the activity levels that were found.

1.2 Stationary probability distribution of Markov mod-
els

For the generator Q of a Markov model, the vector of stationary probabilities
for the individual states π is obtained by solving the linear equation

πQ = 0 (A2)

This vector π is fixed by the additional condition that its components
must sum to 1. It may sometimes be easier to calculate π by taking advantage
of the detailed balance constraints

πiqij = πjqji. (A3)

1.3 Expected value, variances and standard deviations
of dwell-time distributions

The densities of dwell-time distributions fD(t) for a subset D ⊂ S of the
state set S can be calculated as explained in Colquhoun and Hawkes (1). In
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(a) 10 nM Ca2+
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(b) 50 nM Ca2+
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(c) 200 nM Ca2+
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(d) 1 µM Ca2+
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(e) 5 µM Ca2+
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(f) 10 µM Ca2+

Figure S1: The average open probability for data from type II IP3R at 10 µM
IP3, 5 mM ATP, and various Ca2+ concentrations was estimated with moving
averages over the sequence of open and closed events obtained from the data
by thresholding, see equation A1. It is clearly visible that the probability
Pw
O (t) of the IP3R jumps between nearly zero and approximately 70 %. The

window size used here was w = 500 data points.
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general, it is helpful to consider fD(t) as a mix of exponential distributions,
i.e.,

fD(t) =

nD
∑

i=1

ρi
1

τi
exp(−t/τi). (A4)

From the requirement
∫

∞

0
fD(t)dt = 1 it follows that the ρi are weights

for nD exponential distributions, i.e.
∑nD

i=1
ρi = 1.

Thus, the expected value µD for the dwell-time τD in D is

τD =

∫

∞

0

t

nD
∑

i=1

ρi
1

τi
exp(−t/τi)dt =

nD
∑

i=1

ρiτi. (A5)

By calculating the expected value of X2

E[X2] =

∫

∞

0

t2
nD
∑

i=1

ρi
1

τi
exp(−t/τi)dt =

nD
∑

i=1

2ρiτ
2

i , (A6)

the variance Var(X) is obtained as

Var(τD) = E[X2]− τ 2D =

nD
∑

i=1

2ρiτ
2

i −

(

nD
∑

i=1

ρiτi

)2

. (A7)

From Var(X) the standard deviation στD is calculated by

στD =
√

Var(X) =

√

√

√

√

nD
∑

i=1

2ρiτ 2i −

(

nD
∑

i=1

ρiτi

)2

. (A8)

For dwell-times in the park and drive modes, the standard deviation σD

is typically of a similar magnitude as τD, i.e., we have τD ≈ σD which is
characteristic for simple exponential distributions (rather than sums of ex-
ponentials).

1.4 Improved version of the algorithm by Siekmann et
al. (2011)

The main difference to the algorithm described in Siekmann et al. (2) is that
the complicated likelihood function presented there (which requires sampling
a sequence of Markov states) is replaced by a simpler version, see Eq. A12.
More details can be found in Siekmann et al. (3). Our aim is to infer the
matrix of rate constants Q of a continuous-time Markov model for an ion
channel from measured single-channel currents (Ik) of an ion channel. We
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assume that points are separated by a sampling interval τ . In a first step, the
sequence (Ik) is transformed to a sequence of open and closed events (Ek)
by thresholding or any more advanced filtering method. Based upon the
sequence (Ek) we would like to obtain the probability of a model Q. While
the probability P(Q|(Ek)) cannot be directly evaluated it can be rewritten
using Bayes’ theorem as

P(Q|(Ek)) ∝ P((Ek)|Q)P(Q), (A9)

where ∝ signifies that both sides are equal up to a multiplicative constant.
The matrix Aτ := exp(Qτ) contains the probabilities for all transitions

between a state Si and a state Sj. This can be generalised easily for tran-
sitions between classes of states. As an example, we look at the transition
from any of the open states to any of the closed states within a sampling
interval τ . We can adapt our transition matrix Aτ by multiplication with
the projection matrix IO from the left-hand side and multiplying with the
projection matrix IC from the right-hand side (where IO leaves probabilities
for open states unchanged and maps probabilities for closed states to zero
and IC is analogously defined as a projection matrix to the closed states). In
this way we obtain a new transition matrix

AOC
τ = IOAτIC , (A10)

G which accurately describes transitions from any of the open states to any
of the closed states. If our sequence (Ek) consists of these two observations
OC only, then the probability for this sequence can be calculated by

P((OC)|Q) = π ·AOC
τ · u = π · IOAτIC · u, (A11)

where π is the row vector of stationary probabilities of the model Q, see
Eq. A2, and u is a column vector which has the value 1 in every component.
Multiplication with the vector u does nothing more but summing the prob-
abilities of exiting to any of the closed states. Note that the projection IO
ensures that the transition probability will be non-zero only if at least one
of the open states has positive stationary probability.

For an arbitrary sequence (Ek), the probability P((Ek)|Q) can be calcu-
lated as follows:

P((Ek)|Q) = π · IE1 ·Aτ · IE2 · ... · IEN−1 ·Aτ · IEN · u, (A12)

where each Ek is either O or C. A Metropolis-Hastings algorithm (4, 5)
is then used to sample from the likelihood, see Eq. A12.
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2 Kinetic models for modes

2.1 Model selection

Table S1 shows mean values and standard deviations for the results of fits to
a data segment representative for the drive mode collected from type II IP3R
at 10 µM IP3, 5 mM ATP, 0.05 µM Ca2+. Models are denoted Qij where i
stands for the number of closed and j for the number of open states. All mod-
els considered here are shown in Figure 2 of the main text. The likelihoods
for these models indicate that model Q31 with three closed and one open
state fits the data best—its likelihood score is higher than for models Q11,
Q21 with fewer and Q41 with a higher number of closed states. Models with
more than one open state produced fits where all except one open states
had very low stationary probabilities for one of the open states (results not
shown) and therefore were excluded. Also, only one example for each of the
models with one open states is shown because all topologies with one open
state are equivalent (6). This lead to the conclusion that model Q31 is the
best representation for the drive mode of the type II IP3R. Also for different
ligand concentrations and type I IP3R data model Q31 achieves the highest
likelihood score. For segments representative for the park mode, model Q11

with one open and one closed state was found to be the best representation
for both receptor types (results not shown).

model Qij qij qji likelihood

Q11 q12 = 2.684893 ± 0.070417 q21 = 2.721870 ± 0.072489 -141814

Q21 q12 = 0.039019 ± 0.003728 q21 = 0.086724 ± 0.008305 -125330
q13 = 9.787732 ± 0.101025 q31 = 3.250568 ± 0.035998

Q31 q12 = 1.125150 ± 0.036311 q21 = 0.094523 ± 0.008178 -125072
q23 = 0.004706 ± 0.001427 q32 = 0.011629 ± 0.003210
q24 = 10.065905 ± 0.139341 q42 = 3.272794 ± 0.047411

Q41 q12 = 0.019692 ± 0.007848 q21 = 0.329510 ± 0.169228 -125082
q23 = 0.493762 ± 0.133622 q32 = 0.137882 ± 0.052847
q34 = 1.322551 ± 0.100999 q43 = 0.110575 ± 0.009022
q45 = 10.110514 ± 0.119087 q54 = 3.272045 ± 0.034769

Table S1: Results for fits of the drive mode for a data set collected from
type II IP3R at 10 µM IP3, 5 mM ATP, 50 nM Ca2+ to different models
shown in Figure 2 of the main text. The mean values and standard deviations
of the rate constants are given in ms−1.
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2.2 Probability distributions for park and drive mode

As explained in the main text (section “Submodels for modes”) the results
of MCMC methods are not single values such as the estimated mean values
given for simplicity in Table S1 but, in fact, consist of a set of samples that
can be used to approximate the probability distribution of rate constants qij.
Examples for results of fits to the models that were found in the previous
section to give the best representation are shown in Figures S2 (park mode)
and S3 (drive mode).
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Figure S2: Type II IP3R: Histograms of rate constants for the inactive park
mode extracted from a representative interval from a data set collected at
10 µM IP3, 5 mM ATP, 0.05 µM Ca2+. The histograms indicate how likely
different values for the rate constants are based upon the data. This approx-
imated probability distribution gives a good idea of the uncertainty of each
rate constant. Mean values µ and standard deviations σ are shown above the
plots and indicated in the plot by asterisks ‘*’ and arrows. The results shown
in these histograms were used for fitting the complete model (Figure 3c in
the main text). The multi-modality of the histogram for q54 is probably a
result from the very small number of openings observed in the experimental
trace. Nevertheless the standard deviation is low also for this rate.

2.3 Ligand-independent kinetics

Interestingly, when park and drive mode are fitted to representative data
segments at different ligand concentrations, the results are very similar, We
compare results for the drive mode for data collected from type II IP3R at
10 µM IP3, 5 mM ATP (Figure S4). For 0.01 µM Ca2+ and higher calcium
concentrations (5 µM and 10 µM) the results are inconclusive—the reason
for this is that the data segments where the drive mode is exhibited are too
short (see Figure S1) to produce reliable fits.
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Figure S3: Type II IP3R: Histograms of rate constants for the highly active
drive mode extracted from a representative interval from a data set collected
at 10 µM IP3, 5 mM ATP, 0.05 µM Ca2+. The histograms indicate how
likely different values for the rate constants are based upon the data. This
approximated probability distribution gives a good idea of the uncertainty
of each rate constant. Mean values µ and standard deviations σ are shown
above the plots and indicated in the plot by asterisks ‘*’ and arrows. The
results shown in these histograms were used for fitting the complete model
(Figure 3c in the main text).

8



 0.001

 0.01

 0.1

 1

 10

 100

Cell 2 Cell 1 Cell 3 Cell 4 Cell 1

ra
te

 c
on

st
an

ts
 [

m
s-1

]

0.05 µM Ca2+ 0.2 µM Ca2+ 1 µM Ca2+

q12
q21
q23
q32
q24
q42

Figure S4: Means and standard deviations for the probability distributions
of rate constants obtained from fits to model Q31 (Figure 2c in the main
text) for data collected from type II IP3R at 10 µM IP3, 5 mM ATP and
different calcium concentrations. The values are clearly similar for all three
Ca2+ concentrations indicating that kinetics of the drive mode is ligand-
independent.
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3 Parameters for the complete model

The probability distributions calculated by our MCMC approach provide
valuable insights into the uncertainty of each rate constant of our IP3R model
(examples are shown in Figure S2 and S3 as well as Figure 4 of the main
text). In many applications, however, IP3R models are used as components
of deterministic models of calcium oscillations or stochastic models of phe-
nomena like calcium puffs. Here, the main interest is not in the uncertainty of
individual parameters but in a model that gives the correct kinetics. There-
fore, it is more convenient to reduce the results to suitable point estimates
such as mean values. The complete model as shown in Figure 3c in the main
text consists of ligand-independent submodels for park and drive mode which
are connected by transition rates q24 and q42 that depend on concentrations
of IP3, ATP and Ca2+. Mean values and standard deviations for park and
drive mode for both type I IP3R and type II IP3R are given in Table S2.

park mode

q45 q54

Type I IP3R 11.1 · 10−3± 1.01 · 10−3 3.33 ± 0.27
Type II IP3R 4.14 · 10−3± 6.7 · 10−4 3.42 ± 0.496

drive mode

q12
q23
q26

q21
q32
q62

1.24 ± 0.121 0.0879 ± 0.0117
Type I IP3R 3.32 · 10−3± 1.64 · 10−3 0.0694 ± 0.0266

10.5 ± 0.0771 4.01 ± 0.0293

1.14 ± 0.0956 0.0958 ± 0.00945
Type II IP3R 4.75 · 10−3± 1.53 · 10−3 0.0119 ± 0.00357

10.1 ± 0.0668 3.27 ± 0.0221

Table S2: Mean values and standard deviations for rate constants of the
submodels representing park and drive mode (Figure 3c in the main text).
All values are given in ms−1

Figures 5 and 6 in the main text show the ligand-dependence of mean
values and standard deviations for the transition rates q24 and q42.
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