Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in *Medicago sativa*. *Weiti Cui, Le Li, Zhaozhou Gao, Honghong Wu, Yanjie Xie, and Wenbiao Shen*.

Primer name	accession number	Sequences		
MsHO1	HM212768	Forward: AACTCTCATTCTCCTCGTTTAGC		
		Reverse: TTCTTTCGCCTGGTCCTTT		
APX-1	DQ122791	Forward: TCCTCTTATGCTCCGTTTG		
		Reverse: GTTCCACCCAGTAATCCCA		
APX-2	AY054988	Forward: GGAACCATCAAGCACCAAGC		
		Reverse: ACAGCAACAACACCAGCCAAC		
ECS	AM407888	Forward: CCTTCGGGTTTGAGCAG		
		Reverse: AGCCTAACCTCGGGAAAT		
GS	AM411123	Forward: CTGTCAAATGCCCTTCAATA		
		Reverse: TGTTTCCTCCTCCTTCTCTC		
hGS	AM411122	Forward: GTCGCCATCGTTTCTTCCG		
		Reverse: AAGCATTTACGCAGTTTCGC		
GR1	AM407889	Forward: TGTGTCATTCGTGGTTGTG		
		Reverse: ACCCGCTATCTTTCCCTC		
GR2	AM407890	Forward: TTCCGTTCTCCACAATCTCAT		
		Reverse: TTCACTGTCATATCTCCATCCAA		
MDHAR	JN979555	Forward: GTCAAACTAAAGGACGGAAGGGTA		
		Reverse: AGCAACATCGCCAACAGCAT		
MSC27	X63872	Forward: AGAATGGAATGTTGTGGGAGG		
		Reverse: GTCATCAACACCCTCATCTTCTC		
Actin2	JQ028730	Forward: AAAAGGATGCCTATGTTGGTG		
		Reverse: AAGTGGAGCCTCAGTTAGAAGTA		

Supplementary Table S1: The sequences of primers for real-time RT-PCR.

Supplementary Table S2: Reduced and oxidized nicotinamide (NADH and NAD⁺, NADPH and NADP⁺), and the ratio of NADH/NAD⁺ and NADPH/NADP⁺ in alfalfa seedling roots. Five-day-old seedlings were treated with 0 or 50 μ M CdCl₂ for 24 h with or without 12 h pretreatment with 10 μ M SA, 20 μ M haemin (H), 100 μ M ZnPPIX alone, or their combination treatments. Sample without chemicals was the control (C). Values are means ± SE of three different experiments with at least three replicated for each. Different letters within columns indicate significant differences (*P*<0.05) according to Duncan's multiple range test.

Treatment	NADH (nmol g ⁻¹ FW)	NAD ⁺ (nmol g ⁻¹ FW)	NADH /NAD ⁺	NADPH (nmol g ⁻¹ FW)	NADP ⁺ (nmol g ⁻¹ FW)	NADPH /NADP ⁺
$C \rightarrow C$	7.57±0.61 b	28.85±1.08 e	0.26	7.52±0.33 a	13.54±0.56 d	0.56
$SA \rightarrow C$	8.12±0.98 ab	26.17±3.45 e	0.31	7.56±0.38 a	14.68±0.94 d	0.51
$C \rightarrow Cd$	9.76±1.74 a	57.73±3.99 ab	0.17	5.63±0.88 cd	23.01±1.56 ab	0.24
$SA \rightarrow Cd$	9.35±1.88 ab	41.44±6.01 d	0.23	6.47±0.92 bc	19.51±0.86 c	0.33
$SA+ZnPPIX \rightarrow Cd$	8.91±1.36 ab	50.37±1.86 bc	0.18	6.12±0.67 bcd	20.27±1.59 c	0.30
$H \rightarrow Cd$	9.54±1.03 ab	45.08±7.28 cd	0.21	6.69±0.68 ab	20.16±2.41 c	0.33
$H+ZnPPIX \rightarrow Cd$	8.57±0.44 ab	50.24±7.36 bc	0.17	6.08±0.16 bcd	20.93±2.18 bc	0.29
$ZnPPIX \rightarrow Cd$	9.31±1.58 ab	63.41±6.28 a	0.15	5.31±0.66 d	24.18±0.88 a	0.22

Supplementary Figure S1: Effects of SA and ZnPPIX on the chlorophyll content of alfalfa seedling leaves upon Cd stress. 5-day-old seedlings were pretreated with or without 10 μ M SA, 100 μ M ZnPPIX alone, or their combination treatments for 12 h, then exposed to 0 or 50 μ M CdCl₂ for another 24 h. Values are means ± SE of three independent experiments with at least three replicates for each. Bars with different letters are significantly different at *P*<0.05 according to Duncan's multiple range test.

Supplementary Figure S2: Effect of ZnPPIX on the activity of the purified MsHO1 protein. Prokaryotic expression of recombinant MsHO1 protein was induced with IPTG and purified by Ni-affinity chromatography (Fu *et al.*, 2011). The activity of 100-fold dilution of purified protein was detected when incubated with (+ZnPPIX) or without 100 μ M ZnPPIX (-ZnPPIX). Values are means \pm SE of three independent experiments with at least three replicates for each. Bar with asterisk was significantly different in comparison with the ZnPPIX-free treatment at *P*<0.05 (*t* test).

Supplementary Figure S3: Effects of SA, haemin, ZnPPIX, CO, bilirubin (BR) and Fe (II) citrate (Fe) treatments on the CdCl₂-induced lipid peroxidation (A) and the loss of plasma membrane integrity (B) in the root tips of alfalfa.

Five-day-old seedlings were treated with or without 10 μ M SA, 20 μ M haemin (H), 100 μ M ZnPPIX alone, or the combination treatments for 12 h, and then exposed to 50 μ M CdCl₂, 50% saturation of CO aqueous solution (CO), 20 μ M bilirubin (BR), 20 μ M Fe (II) citrate (Fe) alone, or the combination treatments for another 24 h. Afterwards, the roots were stained with Schiff's reagent (A) or Evans blue (B), and immediately photographed under a light microscope. Sample without chemicals was the control. Scale bar = 1 mm.

Supplementary Figure S4: Confocal images of ROS production in root tips of alfalfa.

Five-day-old seedlings were treated with or without 10 μ M SA, 20 μ M haemin (H), 100 μ M ZnPPIX alone, or the combination treatments for 12 h, and then exposed to 0 or 50 μ M CdCl₂ for another 24 h. Sample without chemicals was the control (C). The distribution of ROS in root tips was detected by fluorescence probe H₂DCFDA after different treatments under fluorescence and bright field microscopy (TCS-SP2 confocal laser scanning microscope; Leica Lasertechnik GmbH, A). Lines 1-8 represent different treatments as follows: (1) C \rightarrow C; (2) SA \rightarrow C; (3) SA \rightarrow Cd; (4) SA+ZnPPIX \rightarrow Cd; (5) H \rightarrow Cd; (6) H+ZnPPIX \rightarrow Cd; (7) ZnPPIX \rightarrow Cd; and (8) C \rightarrow Cd. Scale bar = 300 μ m. Mean relative H₂DCFDA fluorescence densities corresponding to (A) were given in (B), taking control (C) as 100%. Values are means \pm SE of three independent experiments. Bars with different letters are significantly different at *P*<0.05 according to Duncan's multiple range test.

