Item	Gene ID	Protein Definition	PDB	Target	Gene Ontology (GO)	Properties and implications for the therapy of cardiovascular diseases
			ID	Class		
1	ACE	Angiotensin-converti	1086	AC	Regulation of vasoconstriction	ACE inhibitors are widely used in the treatment of cardiovascular diseases, including
		ng enzyme	luze		Regulation of vasodilation	congestive heart failure, coronary artery disease and hypertension[1].
			2c6f			
			2iul			
2	CALM1	Calmodulin	11vc	AC	Response to calcium ion	Calmodulin mediates the control of a large number of enzymes and other proteins by
						calcium ions which are key intracellular messengers in the cardiovascular system[1].
3	CYP3A4	Cytochrome P450	2v0m	AC	Oxidation reduction	CYP3A4 is a member of cytochrome P450 family, which is involved in the
		3A4				biotransformation of a diverse range of xenobiotics, including therapeutic drugs and
						toxins. CYP3A4 in the liver metabolizes over 50% of drugs [2].
4	F2	Prothrombin	1awh	AC	Positive regulation of blood	Drug target of anticoagulants. Involved in blood clotting cascade [1].
			2b5t		coagulation	
5	NOS3	Nitric oxide synthase,	1m9k	AC	Positive regulation of	In vivo models of myocardial infarction suggest that NOS3 overexpression can limit
		endothelial	3nos		vasodilation	compensatory hypertrophy in the remote myocardium and preserve left ventricular
					Regulation of systemic arterial	performance. The development of therapeutic strategies designed to enhance NO
					blood pressure by endothelin	signaling in cardiac myocytes may target maladaptive left ventricular remodeling and
						improve functional recovery after myocardial infarction[3].
6	SERPINC1	Antithrombin-III	2b5t	AC	Blood coagulation	Drug target of anticoagulants. Involved in blood coagulation cascade [1].
7	EGFR	Epidermal growth	1ivo	AC	Positive regulation of MAP	Activation of the EGFR causes activation of PI3K and JNK pathways, which play
		factor receptor			kinase activity	fundamental roles in the regulation of myocardial contractility and hypertrophy.
			1mox			Blockade of the EGFR attenuates Ang II-mediated cardiac hypertrophy[4].
8	EGF	Pro-epidermal	livo	А	Positive regulation of EGFR	EGF positively regulates epidermal growth factor receptor (EGFR) activity and activates
		growth factor			activity	MAPK activity. Inhibition of EGFR or MAPK has beneficial effects for cardiovascular

					Activation of MAPK activity	diseases[4,5].
9	ADH5	Alcohol	1teh	А	Oxidation reduction	ADH5 catalyzes the oxidation of long-chain primary alcohols and the oxidation of
		dehydrogenase			Response to redox state	S-(hydroxymethyl) glutathione.
		class-3				
10	AKR1C4	Aldo-keto reductase	2fvl	Α	Oxidation reduction	Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the
		family 1 member C4				less active form.
11	CN	Calcineurin	1m63	Α	Calcium ion binding	Inhibition of calcineurin has proved to be effective for the treatment of cardiac
			1mf8		Calmodulin binding	hypertrophy[6].
12	FGFR1	Basic fibroblast	1agw	А	MAPKKK cascade	Fibroblast growth factor 2 (FGF2) plays an important role in inducing cardiac
		growth factor				hypertrophy. Many of the effects of FGF-2 are mediated by binding and activating
		receptor 1				FGFR. The FGF2-FGFR1 axis needs to be considered as a potential target for the
						management of hypertrophy[7].
13	GAPDH	Glyceraldehyde-3-ph	1u8f	А	Oxidation reduction	Independent of its glycolytic activity, it is also involved in membrane trafficking in the
		osphate				early secretory pathway.
		dehydrogenase				
14	HLA-DRB1	HLA class II	1bx2	Α	Immune response	Human leukocyte antigens (HLA) are the designation for antigens in the major
		histocompatibility				histocompatibility complex (MHC), a major determinant of the immune response. It is
		antigen, DRB1-1 beta				considered to play a significant role in the pathophysiology of atherosclerosis[8].
		chain				
15	INSR	Insulin receptor	1ir3	Α	Activation of MAPK activity	INSR binds insulin and mediates metabolic functions of insulin. Can activate PI3K either
			2hr7			directly by binding to the p85 regulatory subunit, or indirectly via IRS1. PI3K signaling
						plays a fundamental role in the regulation of myocardial contractility and hypertrophy[9].
16	KIT	Mast/stem cell	1t46	А	Transmembrane receptor	This is the receptor for stem cell factor (mast cell growth factor). It has a tyrosine-protein
		growth factor			protein tyrosine kinase	kinase activity. Binding of ligands leads to the autophosphorylation of KIT and its
		receptor			signaling pathway	association with substrates such as phosphatidylinositol 3-kinase (PI3K).

17	LCK	Proto-oncogene	1x27	А	Release of sequestered calcium	Tyrosine kinase that plays an essential role in the selection and maturation of developing
		tyrosine-protein			ion into cytosol	T-cell in the thymus and mature T-cell function.
		kinase LCK				
18	MME	Neprilysin	1r1i	А	Cell-cell signaling	MME is implicated in the pathogenesis of arterial hypertension, congestive heart failure,
						left ventricular remodeling after myocardial infarction and other cardiovascular diseases.
						It is a novel target for the treatment of heart diseases[10].
19	NQO1	NAD(P)H	1d4a	А	Nitric oxide biosynthetic	NQO1 is critically involved in the detoxification of xenobiotics as well as ROS and
		dehydrogenase	1dxo		process	might function as an effective O ⁺ ₂ scavenger in cardiac cells. Oxidative stress plays
		[quinone] 1			Oxidation reduction	critical roles in the development of various forms of cardiovascular disorders, including
						myocardial ischemia-reperfusion injury, congestive heart failure, coronary arterial
						atherosclerosis, and chemical induced cardiotoxicity. Activation of NOQ1 increases
						resistance to oxidative cardiac cell injury[11].
20	OAT	Ornithine	1gbn	А	Ornithine-oxo-acid	Enzyme associated with amino-acid biosynthesis.
		aminotransferase,	1oat		transaminase activity	
		mitochondrial	2can			
			2oat			
21	RXRB	Retinoic acid	1h9u	А	Regulation of transcription,	Nuclear hormone receptor. Involved in the retinoic acid response pathway.
		receptor RXR-beta			DNA-dependent	
22	BST1	ADP-ribosyl cyclase	1isg	Е	Humoral immune response	ADPR-cyclase synthesizes cyclic ADP-ribose, a second messenger that elicits calcium
		2				release from intracellular stores. BST1 is an important mediator of cardiac hypertrophy,
						and inhibition of ADPR-cyclase attenuates angiotensin II-induced cardiac hypertrophy
						[12].

23	DAPK1	Death-associated protein kinase 1	1ig1 1jks	Е	Induction of apoptosis by extracellular signals Calmodulin binding	DAPK is a calmodulin-regulated serine/threonine protein kinase implicated in diverse apoptosis pathways, including those involved in neuronal cell death and tumour suppression. DAPK could be a potential therapeutic target for diseases characterized by rapid neurodegeneration, such as stroke or traumatic brain injury[13].
24	GCK	Glucokinase	1v4s	E	Positive regulation of insulin secretion	GCK intervenes in the regulation of glucose metabolism[14].
25	PIK3CG	Phosphoinositide 3-kinase gamma	1e8z 2a4z	Е	G-protein coupled receptor protein signaling pathway	PIK3CG appears to negatively control cardiac contractility, thus becoming a possible drug target for the treatment of critical human cardiac pathologies, such as infarction or heart failure[15].
26	MAPK12 (ERK6)	Mitogen-activated protein kinase p38 gamma	1cm8	Е	MAP kinase activity Ras protein signal transduction	It is highly likely that p38 and JNK are both required to generate a hypertrophic or apoptotic response in overloaded hearts. It has been known that MAP kinases are sensitive to oxidative stress and antioxidants preferentially inhibit JNK and p38 [5].
27	МАРК14	Mitogen-activated protein kinase p38 alpha	1wbv	Е	MAP kinase activity Ras protein signal transduction	See MAPK12 (Item 26).
28	MAPK8 (JNK1)	c-Jun N-terminal kinase 1	2no3	U	JUN kinase activity JUN phosphorylation	See MAPK12 (Item 26).
29	ARF1	ADP-ribosylation factor 1	1hur	U	GTPase activity Small GTPase mediated signal transduction	Arfs are Ras-related small GTP-binding proteins[16] that are implicated in regulation of endothelial function, smooth muscle cell contraction, proliferation, and migration, as well as cardiomyocyte hypertrophy. Targeting small G proteins could constitute promising therapeutic approaches in cardiovascular disorders[17].
30	DAPK2	death-associated protein kinase 2	2a2a	U	Induction of apoptosis by extracellular signals Calmodulin binding	See DAPK1 (Item 23).

					Calmodulin-dependent protein	
					kinase activity	
31	mTOR	Mammalian target of	1nsg	U	Phosphoinositide 3-kinase	mTOR functions in the regulation of cardiac growth. Inhibition of mTOR attenuates the
		rapamycin	2fap		complex	development of pressure overload cardiac hypertrophy and regresses established cardiac
			4fap		Protein serine/threonine kinase	hypertrophy[18].
					activity	
32	HLA-A	HLA class I	1x7q	U	Immune response	See HLA-DRB1 (Item 14).
		histocompatibility				
		antigen, a-11 alpha				
		chain				
33	HLA-DRA	HLA class II	1bx2	U	Immune response	See HLA-DRB1 (Item 14).
		histocompatibility	1seb			
		antigen, dr alpha	2icw			
		chain				
34	IRAK4	Interleukin-1	2oib	U	I-kappaB kinase/NF-kappaB	IRAK-4 plays a central role in mediating NFκB activation and innate immunity signaling
		receptor-associated			cascade	and thus could be potential target for inflammatory diseases[19].
		kinase 4				
35	MMP1	Interstitial	4ayk	U	Metalloendopeptidase activity	MMP activity contributes to left ventricular (LV) dilation and progression to LV
		collagenase			calcium ion binding	dysfunction and direct MMP inhibition can attenuate this process [20].
36	MSN	Moesin	1ef1	U	Leukocyte adhesion	Probably involved in connections of major cytoskeletal structures to the plasma
						membrane.
					Leukocyte migration	
37	NCF1	Neutrophil NADPH	107k	U	Innate immune response	NADPH oxidase has emerged as a major source of oxidative stress in the artery wall,
		oxidase factor 1				particularly in artery disease. Nitric oxide and targeted inhibitors of NADPH oxidase are
					superoxide release	more likely to prevent the deterioration of vascular function that leads to stroke and heart
						attack, than are conventional antioxidants[21].

38	RAC3	RAS-related C3	2g0n	U	GTPase activity	Rac3 is a member of the Rho family of small GTP-binding proteins. Small G proteins are
		botulinum toxin	2ic5		Small GTPase mediated signal	implicated in regulation of endothelial function, smooth muscle cell contraction,
		substrate 3			transduction	proliferation and migration, as well as cardiomyocyte hypertrophy. Targeting small G
						proteins could constitute promising therapeutic approaches in cardiovascular
						disorders[17].
39	TGFA	Protransforming	1mox	U	Activation of MAPK activity	TGFA is able to bind to the EGF receptor to regulate epidermal growth factor receptor
		growth factor alpha			Positive regulation of EGFR	(EGFR) activity. It is also able to activate MAPK activity. Inhibition of EGFR or MAPK
					activity	has beneficial effects for cardiovascular diseases[4,5].

Reference

- Maglott D, Ostell J, Pruitt KD, Tatusova T (2005) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res: D54 - 58.
- 2. Guengerich F (1999) Cytochrome P450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39: 1-17.
- Bloch KD, Janssens S (2005) Cardiomyocyte-Specific Overexpression of Nitric Oxide Synthase 3: Impact on Left Ventricular Function and Myocardial Infarction. Trends in Cardiovascular Medicine 15: 249-253.
- 4. Shah B, KJ C (2003) A central role of EGF receptor transactivation in angiotensin II -induced cardiac hypertrophy. Trends in Pharmacological Sciences 24: 239-244.
- Pandya N, Santani D, Jain S (2005) Role of mitogen-activated protein (MAP) kinases in cardiovascular diseases. Cardiovasc Drug Rev 23: 247-254.
- Sheng H, Zhu J, Wu X, Zhang J (2008) Blockade of calcineurin reverses cardiac hypertrophy and induces the down-regulation of JNK mRNA expression in renovascular hypertensive rats. Journal of Renin-Angiotensin-Aldosterone System 9: 139 - 145.
- 7. Kardami E, Jiang Z-S, Jimenez SK, Hirst CJ, Sheikh F, et al. (2004) Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovasc Res 63: 458-466.
- Diamantopoulos EJ, Andreadis EA, Vassilopoulos CV, Vlachonikolis IG, Tarassi KE, et al. (2003) HLA phenotypes as promoters of cardiovascular remodelling in subjects with arterial hypertension. J Hum Hypertens 17: 63-68.
- Oudit GY, Sun H, Kerfant B-G, Crackower MA, Penninger JM, et al. (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. Journal of Molecular and Cellular Cardiology 37: 449-471.
- De Vos J, Thykjaer T, Tarte K, Ensslen M, Raynaud P, et al. (2002) Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 21: 6848-6857.
- 11. Cao Z, Zhu H, Zhang L, Zhao X, Zweier JL, et al. (2006) Antioxidants and Phase 2 Enzymes in Cardiomyocytes: Chemical Inducibility and Chemoprotection Against Oxidant and Simulated Ischemia-Reperfusion Injury. Experimental Biology and Medicine 231: 1353-1364.
- 12. Gul R, Park J-H, Kim S-Y, Jang KY, Chae J-K, et al. (2009) Inhibition of ADP-ribosyl cyclase attenuates angiotensin II-induced cardiac hypertrophy. Cardiovasc Res 81: 582-591.
- 13. Schumacher A, Velentza A, Watterson D (2002) Death-associated protein kinase as a potential therapeutic target. Expert Opin Ther Targets 6: 497-506.
- Mordier S, Iynedjian PB (2007) Activation of mammalian target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochemical and Biophysical Research Communications 362: 206-211.
- Alloatti G, Montrucchio G, Lembo G, Hirsch E (2004) Phosphoinositide 3-kinase gamma: kinase-dependent and -independent activities in cardiovascular function and disease. Biochem Soc Trans 32: 383-386.
- Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, et al. (2005) The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res 33: D418-424.
- 17. Barandier C, Ming XF, Yang ZH (2003) Small G proteins as novel therapeutic targets in

cardiovascular medicine. News Physiol Sci 18: 18-22.

- McMullen J, Sherwood M, Tarnavski O, Zhang L, Dorfman A, et al. (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109: 3050-3055.
- 19. Ringwood L, Li L (2008) The involvement of the interleukin-1 receptor-associated kinases (IRAKs) in cellular signaling networks controlling inflammation. Cytokine 42: 1-7.
- 20. Peterson JT, Hallak H, Johnson L, Li H, O'Brien PM, et al. (2001) Matrix Metalloproteinase Inhibition Attenuates Left Ventricular Remodeling and Dysfunction in a Rat Model of Progressive Heart Failure. Circulation 103: 2303-2309.
- 21. Dusting GJ, Selemidis S, Jiang F (2005) Mechanisms for suppressing NADPH oxidase in the vascular wall. Mem Inst Oswaldo Cruz, Rio de Janeiro 100(Suppl. I): 97-103.