Supplementary Material: Proof of NP-Completeness of FBA-GAP

We specify an instance of the decision problem FBA-GAP as follows:

FBA-GAP[R, M, k, l, L, U, L^{src} , U^{src} , L^{esc} , U^{esc}]. Given a set of metabolites M and reactions R,

does there exist a set of k source reactions and a set of l escape reactions that can be added such

that there exist fluxes satisfying the lower and upper bounds, including having flux through the

biomass reaction more than $L_{biomass}$?

Theorem. FBA-GAP is NP-Complete.

Proof. Follows directly from Lemmas 1 and 2 below.

Lemma 1. FBA-GAP is in NP.

Proof. If a set of source reactions for a set of metabolites M_s with $|M_s| = k$ and escape

reactions for metabolites M_e with $|M_e|=l$ is given, then set $x_i=1$ for $i \in M_s$ and $x_i=0$,

otherwise and set $y_i = 1$ for $i \in M_e$ and $y_i = 0$, otherwise. Solve the following linear program

 $\max v_{biomass}$

Subject to

$$\mathbf{S}\mathbf{v} + \mathbf{b}^{esc} + \mathbf{b}^{esc} = \mathbf{0}$$

$$\mathbf{L} \le \mathbf{v} \le \mathbf{U}$$

$$(\mathbf{L}^{src})^{T} \mathbf{x} \le \mathbf{b}^{src} \le (\mathbf{U}^{src})^{T} \mathbf{x}$$

$$(\mathbf{L}^{esc})^{T} \le \mathbf{b}^{esc} \le (\mathbf{U}^{esc})^{T} \mathbf{y}$$

If the objective value associated with an optimal solution has $v_{biomass} \ge L_{biomass}$, then the sets of source and escape reactions are sufficient. Solving the linear program is polynomial in the size of the inputs, so FBA-GAP is in NP.

Lemma 2. FBA-GAP is NP-hard.

Proof. CLOSED HEMISPHERE, known to be strongly NP-complete (Johnson & Preparata, 1978), can be reduced to FBA-GAP. The decision problem for CLOSED HEMISPHERE is stated as follows:

CLOSED HEMISPHERE [m, d, A, n]. Given a set of m linear inequalities $Ax \ge 0$: $A \in \mathbb{R}^{m \times d}$ does there exist an $x \in \mathbb{R}^d$ such that ||x|| > 0 and at least n of the inequalities are satisfied?

Suppose an instance of CLOSED HEMISPHERE, [m, d, A, n] is given. The problem is equivalent to the following intermediate problem: given m, d, A, is there an $x \in \mathbb{R}^d$ with ||x|| > 0 and an $s \in \mathbb{R}^m_+$ such that at least n of the equalities Ax - s = 0 is satisfied?

This intermediate problem can be phrased as a collection of d instances of FBA-GAP. Each column of A corresponds to a reaction and each row corresponds to a metabolite. Positive elements in a column of A are the stoichiometric coefficients for products and negative elements are (the negative of) stoichiometric coefficients for reactants. Each variable x_j corresponds to the flux through reaction j. For now, there are no bounds on the flux through each reaction. Each of the x_j variables corresponds to a one-sided escape reaction for a metabolite.

With the sets of metabolites M and reactions R as specified, create an instance of FBA-GAP for each x_j , j = 1,...,d where x_j corresponds to the flux through the biomass reaction $v_{biomass}$. Set $L_{biomass} = 0$, for each instance. Each instance of FBA-GAP involves determining if there exists a set of k = m - n source reactions (and l = 0 escape reactions) such that the flux through the biomass reaction is more than 0.

If the answer to an instance of CLOSED HEMISPHERE is 'yes', then there exists a certificate for the instance with $x_j > 0$ for some j. This certificate will solve the instance of FBA-GAP where x_j corresponds to $y_{biomass}$. If one of the d instances of FBA-GAP has a 'yes' certificate, then there is a solution to the intermediate problem with the corresponding $x_j > 0$. Therefore, ||x|| > 0, and the instance of CLOSED HEMISPHERE has a 'yes' certificate. The transformation of CLOSED HEMISPHERE to d instances of FBA-GAP involves only the

introduction of the s_i variables for each instance, and is therefore a polynomial-time transformation.