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1 Using the Proposed Algorithm for Classification Purposes

The proposed algorithm can be easily extended for classification purposes. Given a training

data set, the algorithm first learns a feature weight vector, then computes the averaged

distances between a test sample and the training samples with the positive and negative

class labels, respectively, and assigns the test sample to the class with a smaller distance.

We perform some experiments on the UCI datasets contaminated by varying numbers of

irrelevant features ranging from 0 to 10000. The kernel width and regularization parameter

are estimated through ten-fold cross validation using the training data. The classification

errors averaged over 10 runs and the standard deviations are reported in Table 1. We observe

that the performance of our algorithm is largely insensitive to a growing number of irrelevant

features. For comparison, the classification errors of SVM, KNN and C4.5 performed on the

UCI datasets containing 5000 irrelevant features are presented in Table 2. The latter three

algorithms clearly suffer from the curse of dimensionality.

2 Experiments Using Simba and Gflip

We perform some experiments to compare our algorithm with the well-known Simba and

Gflip algorithms [3]. Both algorithms are also based on local learning. Our work is, in

part, motivated by the Simba algorithm. Compared to RELIEF, Simba re-evaluates the
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Table 1: Classification errors and standard deviations (%) obtained by using our algorithm

performed on the seven UCI datasets containing a varying number of irrelevant features,

ranging from 0 to 10000. The classification errors are nearly insensitive to the growing

number of features.

Number of Irrelevant Features

0 100 500 1000 5000 10000

diabetes 24.8(1.8) 24.9(1.8) 24.0(2.0) 24.3(1.7) 25.3(2.3) 24.8(2.1)

heart 17.5(4.7) 17.5(4.6) 17.6(4.5) 17.6(4.5) 17.8(4.5) 17.7(4.2)

splice 10.8(1.4) 10.8(1.5) 10.7(1.3) 10.8(1.2) 10.6(1.7) 10.5(0.9)

thyroid 6.1(1.8) 6.0(1.7) 6.1(1.8) 6.1(2.0) 6.2(1.8) 6.4(1.5)

waveform 13.8(0.8) 13.9(0.9) 13.8(0.9) 13.9(0.8) 14.7(1.0) 14.9(1.0)

banana 11.2(0.6) 11.2(0.6) 11.2(0.6) 11.2(0.7) 11.2(0.6) 11.3(0.6)

twonorm 4.6(0.5) 4.6(0.6) 4.6(0.6) 4.6(0.5) 4.6(0.6) 4.6(0.6)

Table 2: Classification errors and standard deviations (%) obtained by using SVM, KNN,

C4.5 and our algorithm performed on the seven UCI datasets containing 5000 irrelevant

features. The three competing algorithms clearly suffer from the curse of dimensionality.

Methods

SVM KNN C4.5 Our Algorithm

diabetes 34.3(1.9) 36.7(2.0) 36.2(3.7) 25.3(2.3)

heart 35.4(3.4) 34.8(4.5) 35.8(4.1) 17.8(4.5)

splice 40.5(1.7) 40.3(1.9) 14.0(1.9) 10.6(1.7)

thyroid 30.1(3.9) 32.3(3.7) 12.0(3.7) 6.2(1.8)

waveform 32.9(0.2) 31.0(0.9) 23.9(1.5) 14.7(1.0)

twonorm 35.0(1.0) 36.4(1.7) 28.4(2.4) 4.6(0.6)

banana 32.9(0.2) 49.2(1.7) 40.6(11.5) 11.2(0.6)
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distances according to learned weight vectors, and thus is superior to RELIEF. One major

problem with Simba and Gflip, however, is their implementation. The objective function

optimized by Simba/Gflip is characterized by many local minima. This problem is mitigated

in Simba/Gflip by restarting the algorithms from several different starting points. Neverthe-

less, the reach of a global optimal solution is not guaranteed. The codes of Simba and Gflip

are downloaded from [3]. The non-linear sigmoid activation function is used. The number of

starting points is set to 5, while the default values of the original codes are 5 and 1, respec-

tively. Also, we set the number of passes of the training data to be 5, the default value of

which is 1. All other parameters use their default values. The computational complexity of

Gflip and Simba are O(N2
J

2) and O(N2
J), respectively. Here, J is the number of features

and N is the number of samples. When J � N , Gflip is computationally much more ex-

pensive than Simba. Due to computational reasons, Gflip is run on the UCI and spiral data

containing only 500 irrelevant features. The feature weights learned by Gflip and Simba are

plotted in Figs. 1 and 2, respectively. For comparison, the feature weights learned by Simba

performed on the UCI data with only 100 irrelevant features are also plotted in Fig. 3. Gflip

can only provide information of whether a feature is selected (1) or not selected (0). From

the figures, we can see that Gflip performs much worse than Simba, while Simba performs

very well when the number of irrelevant features is small, but may fail completely when the

number of irrelevant features become excessively large (for example, banana, spiral and dia-

betes). One possible explanation is that the chance for Simba to be stuck into local minima

is increased dramatically with the increased number of features. In contrast, our algorithm is

not sensitive to the number of features (see Fig. 4). The CPU times of Gfilp and Simba are

reported in Table 3. As expected, Gflip is computationally much more intensive than Simba

and our algorithm. The computational complexity of Simba is greater than ours, partially

due to the fact that Simba restarts the algorithm from five different initial points to alleviate

the local-minima problem.

3 Experiments Using AMS

AMS [1], along with RFE [2], is among the first to perform feature selection directly in the

SVM formulation. The basic idea of AMS to automatically tune the scaling parameters of

a kernel by minimizing some generalization error bounds. The code is downloaded from

[1]. The default settings of the algorithm are used, and the span bound is minimized. Due

to computational reasons, AMS is only applied to the UCI and spiral data with only 1000

irrelevant features. The learned feature weights are plotted in Fig. 5. AMS performs very

well to identify the useful features (except for spiral), but leads to many false positives.

Moreover, AMS is computationally much more expensive than both Simba and ours (see
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Figure 1: Feature weights learned by Gflip in one sample trial of the spiral and seven UCI

datasets with 500 irrelevant features. The red dashed line indicates the number of original

features. The weights plotted on the left side of the dashed line are associated with the

original features, while those on the right, with the additional 500 irrelevant features.
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Figure 2: Feature weights learned by Simba in one sample trial of the spiral and seven UCI

datasets with 5000 irrelevant features.
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Figure 3: Feature weights learned by Simba in one sample trial of the spiral and seven UCI

datasets with 100 irrelevant features.
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Figure 4: Feature weights learned by our algorithm in one sample trial of seven UCI datasets

with and without 5000 irrelevant features. The performance of our algorithm is nearly

insensitive to the presence of 5000 irrelevant features. The results empirically confirm that

(1) our algorithm is a fixed-point method; and (2) the algorithm has a logarithmical sample

complexity. The figure is better viewed electronically.
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Table 3). (The computational complexity of both Simba and our algorithm is linear with

respect to the number of features.)
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Figure 5: Feature weights learned by AMS in one sample trial of the spiral and seven UCI

datasets with 1000 irrelevant features.

4 More Experimental Results on Breast Cancer Study

We perform an experiment on the breast cancer data that shows that the choice of the kernel

width is not critical, and our algorithm yields nearly identical prediction performance for a

wide range of sigma values (Fig. 6).

5 Prostate Cancer Study

We conduct a computational study to investigate whether a genetic based model can out-

perform a clinical nomogram1 for predicting the recurrence of prostate cancer after radical

prostatectomy, and the combination of nomogram and genetic information can lead to an

improved prognostic performance (i.e., using nomogram prediction scores as a feature along

with microarray data). The gene expression and clinical data used in the study are provided

by the senior author Dr. William Gerald of [5]. The gene expression data was built from

tissue samples obtained from 79 patients with clinically localized prostate cancer treated by

1Nomogram is a commonly used clinical tool for predicting prostate cancer recurrence after radical prosta-

tectomy. See, for example, [4].
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Table 3: CPU times (in seconds) of four algorithms performed on the spiral and seven UCI

datasets. The number of irrelevant features is indicated in the parentheses. The computa-

tional complexity of both Simba and our algorithm is linear with respect to the number of

features.
Methods

AMS (1000) Simba (5000) Gflip (500) Our Algorithm (5000)

spiral 5672 516 246 139

diabetes 3335 507 271 267

heart 477 79 31 73

splice 6475 2263 1326 330

thyroid 353 60 24 13

waveform 1429 389 205 157

twonorm 1120 373 204 162

banana 2345 413 198 97
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Figure 6: ROC curves of the breast cancer prognostic systems using the gene signatures

identified by using different sigma values, ranging from 2 to 8. All prognostic systems perform

very similarly.
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radical prostatectomy at MSKCC between 1993 and 1999. Thirty-nine cases had disease

recurrence as classified by 3 consecutive increases in the serum level of prostate specific anti-

gen after radical prostatectomy, and forty samples were classified as non-recurrent samples

by virtue of maintaining an undetectable prostate specific antigen (< 0.05 ng/mL) for at

least 5 years after radical prostatectomy. No patient received any neo-adjuvant or adjuvant

therapy before documented disease recurrence. The complete clinical characteristics of the

79 primary tumors are listed in [5].

The experimental procedures are exactly the same as those in the breast cancer study

presented in the main text. Fig. 7 presents the ROC curves comparing the prediction

performance of the nomogram, genetic and hybrid (combination of nomogram and genetic)

models constructed by using our algorithm, and the ROC curves obtained by using SVM-

RFE, norm-1 regularized logistical regression and AMS. Our algorithm outperforms the three

competing algorithms. However, the results do suggest that using advanced computational

algorithms to combine both nomogram and genetic information can indeed improve the

prognosis performance of prostate cancer. The clinical implications of the results and the

biological significance of the identified genes are discussed elsewhere.
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Figure 7: (a) Receiver operating characteristic (ROC) plot comparing the prediction perfor-

mance of the nomogram, genetic and hybrid (combination of nomogram and genetic) models

constructed by using our algorithm. (b-d) ROC curves obtained by using SVM-RFE, norm-1

regularized logistical regression and AMS.
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