Plasmid	Description	Source
pPS1152	NPL3, URA3, Amp^R , 2μ	Lee et al, 96 [1]
pAM420	GFP-npl3-RK1-15, pGal. URA3, AmpR, 2µ	McBride, 05 [2]
pPS879	GFP-npl3 F160L, URA3, Amp^R , 2μ	Lee et al, 96 [1]
pBS0A1	hnRNP A1-GFP	Zhu, 02 [3]
pJL215	pRS316 with NPL3 promoter	This study
pJL226	hnRNP A1-6xHis	This study
pJL227	NPL3-6xHis	This study
pJL228	npl3-F160L-6xHis	This study
pJL229	<i>npl3</i> -RK1-15-6xHis	This study
pJL230	npl3-F160L L225S G241N E244K-6xHis	This study
pJL231	<i>npl3-</i> L225S G241N E244K-6xHis	This study

Table SI.	Plasmids	used and	generated i	in this	study
-----------	----------	----------	-------------	---------	-------

References:

- [1] M. S. Lee, M. Henry and P. A. Silver, A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export, Genes Dev 10 (1996) 1233-1246.
- [2] A. E. McBride, J. T. Cook, E. A. Stemmler, et al., Arginine methylation of yeast mRNAbinding protein Npl3 directly affects its function, nuclear export, and intranuclear protein interactions, J Biol Chem 280 (2005) 30888-30898.
- [3] D. Zhu, G. Xu, S. Ghandhi, et al., Modulation of the expression of p16INK4a and p14ARF by hnRNP A1 and A2 RNA binding proteins: implications for cellular senescence, J Cell Physiol 193 (2002) 19-25.

	Primer/Oligonucleotide	Sequence (5' - 3')
1	Npl3 NORF1 Sac For	AAAGAGCTCGGAGTGCACCAAATCTACCGCAGTG
	Npl3 NORF1 Eag Mlu Rev	ATATCGGCCGACGCGTATCCTTATGGTTTTAGCGTAATTGC
3	Npl3 ATG Mlu For	AAAAACGCGTATGTCTGAAGCTCAAGAAACTCACGTAGAG
4	Npl3 6xHIS Bam Rev:	ATATGGATCCTTAGTGATGGTGGTGATGGTGCCTGGTTGGT
	(BamHI)	ATCTTTCACGTGGAGCATCTCTGGTTCTG
5	A1 ATG Mlu For	AAAAACGCGTATGTCTAAGTCAGAGTCTCCTAAAGAGCCCGA
		ACAGCTGA
6	A1 6xHIS Bam Rev	AAAAGGATCCTTAGTGATGGTGGTGATGGTGAAATCTTCTGC
		CACTGCCATAGCTACTGCTGCTGCTGGAA
7	3137 For	TGTGTGTGTGTGGGTGTGGGTGTGGGTGTGGGGGGGGGG
8	3137 Rev	CCACACCACACCACCACCACCACACACACA
9	3137 RNA	UGUGUGUGCGUGGGUGUGUGUGUGUGUGGGUGUGGGUGUGGG
10	C-MYC PmlI top	CACGTGGAACAGAAGCTGATCTCAGAGGAGGACCTGCACGTG
11	C-MYC PmlI bottom	CACGTGCAGGTCCTCCTCTGAGATCAGCTTCTGTTCCACGTG

Table SII. Primers used to clone *NPL3* and *CBC2* genes. Oligonucleotides for gel shifts are also listed. 3137 sequences were derived from chromosome I-L

В

RRM1	14	RKLFIGGLSFETTDESLRSHFEQWGTLTDCVVMRDPNTKRSRGFGFVT	<u>Y</u> A 63	Hs	hnRNP	A1
RRM1	125	TRLFVRPF PLDVQESELNEIFGPFGPMKEVKIL RNP-2 RNP-1	<u>F</u> E 166	Sc	Npl3	
RRM2	106	KK <u>IFVGGI</u> KEDTEEHHLRDYFEQYGKIEVIEIMTDRGSGKK <u>RGFAFVT</u>	<u>F</u> D 148 :	Hs	hnRNP	A1
RRM2	200	YR <u>ITMKNL</u> PEGCSWQDLKDLARENS-LETTFSSVNTRDF <u>DGTGALE</u> : . ::	<u>F</u> P 246	Sc	Npl3	
RRM	46	ST <u>IYVGNL</u> SFYTSEEQIYELFSKCGTIKRIIMGLDRFKFTP <u>CGFCFII</u> RNP-2 RNP-1	<u>¥</u> S 95	Sc	Cbc2	

С

194	SSQRGRSGSGNFGGG <u>RGG</u> GFGGNDNFG <u>RGG</u> NFSG <u>RGG</u> FGGS <u>RGG</u> GGYGGSGDGYNGFGNDGSNFGGGGSSYN
284	:: : : : : : : : : : : : : : : : : :
	DFGNYNNQSSNFGPMKGGNFGGRSLGPYGGGGQYFAKPRNQGG 306 Hs hnRNP A1
	: : : : : : : : : : : : : : : : : :

Figure S1. Mammalian hnRNP A1 and hnRNP-related proteins in yeast, Npl3 and Cbc2, are very similar RNA processing proteins. (A) They all share RNA recognition motifs and glycine/arginine/arginine-rich regions. hnRNP A1 also has nuclear localization sequences.
(B) The amino acid sequence alignments of protein domains in human hnRNP A1, yeast Npl3, and yeast Cbc2 show highly conserved RNA recognition motifs. The RRMs, in particular, contain two well-conserved short submotifs, the RNP-1 octamer and the RNP-2 hexamer (Birney et al, *Nucl. Acid Res.*, 1993). (C) The RGG regions between hnRNP A1 and Npl3 are 38.5% identical and 45.3% similar as determined by the Matcher program (Mobyle, Pasteur Institute).

Figure S3. At steady state, *cbc2* mutants have longer telomeres than WT cells. DNA from *cbc2* and *CBC2* cells were extracted, digested, separated on gel, and blotted. Telomere fragments (indicated by bracket) were hybridized with ³²P labeled 784 bp PCR-generated Y' fragment. Ladder marker (in kb) is indicated on the left.