Fingerprint-based in silico models for the prediction of

P-glycoprotein substrates and inhibitors

Poongavanam Vasanthanathan^a, Norbert Haider^b, and Gerhard F Ecker^a, *

^a University of Vienna, Department of Medicinal Chemistry, Althanstrasse 14, 1090

Vienna, Austria

^b University of Vienna, Department of Drug and Natural Product Synthesis,

Althanstrasse 14, 1090 Vienna, Austria

Supplementary material

- Tab.1: List of physicochemical properties used for PCA
- Tab.2:List of functional group contributed to the P-gp Substrate and Inhibitor
models
- Tab.3:Summary of obtained models from substrates and inhibitor
classification

Association rules provided in the separate excel sheet "SM-FPGrowth-Rules.xlsx"

- Fig.1: Structures of Outliers, Gottesman et al., dataset (NSC170365, NSC237106, NSC237671, NSC3053, NSC356207, NSC356207, NSC38270, NSC695935) and Literature dataset (SDBethylenediamine, Cyclosporine-A, Cyclosporin-C, Olivomycin-A, Valinomycin).
- Fig.2: Distribution of LogP (O/W) of substrate and non-substrate.
- Fig.3: Applicability domain experiment shown in PCA plot

T1: List of physicochemical properties used for PCA

Properties	Description
apol	Sum of atomic polarizabilities
a_acc	Number of hydrogen bond acceptor atoms
a_acid	Number of acidic atoms
b_ar	Number of aromatic bonds
b_count	Number of bonds
b_double	Number of double bonds
b_heavy	Number of heavy-heavy bonds
LogP (o/w)	Log octanol/water partition coefficient
LogS	Log of solubility in water
MR	Molar refractivity
Radius	Smallest vertex eccentricity in graph
Reactive	Reactivity
Rings	Number of rings
TPSA	Topological polar surface area
Weight	Molecular weight
Zagreb	Zagreb index

Models	Functional groups	Bin Number			
Substrate/Non substrate	Cation	1			
	Enol	25			
	Hydroxy compounds	27			
	Alcohol	28			
	Primary Alcohol	29			
	Secondary Alcohol	30			
	1, 2-Diol	32			
	Secondary Aliphatic Amine	52			
	Secondary Aromatic Amine	54			
	Tertiary Aliphatic Amine	56			
	Lactam	84			
	Carboxylic Acid Azides	86			
	Nitrile	90			
Inhibitor/Non-inhibitor	Carbony Compound	3			
	Hydrazone	10			
	Oxime Ether	14			
	Acetal	19			
	Hemiaminal	20			
	Aminal	21			
	Secondary Alcohol	30			
	1, 2-Diol	32			
	Phenol	34			
	Alkyl Aryl ether	39			
	Amine	47			
	Primary Amine	48			
	Secondary Aliphatic Amine	52			
	Sec Alkyl Aryl Amine	53			
	Tertiary Aliphatic Amine	56			
	Carboxylic Acid	76			
	Carboxylic Acid Ester	78			
	Carboxylic Acid Secondary Amide	82			
	Lactam	84			
	Thiocarboxylic Acid Ester	101			
	Iminohetarene	108			
	Urea	133			
	Thiourea	135			
	Sulfonamide	164			
	Aromatic compound	201			
	Heterocyclic Compound	202			

T2: List of descriptors contributed to the P-gp Substrate and Inhibitor models

												G-		F-			Accurac
Models	No	Models	Dataset	ТР	FN	TN	FP	Sen.	Spec	NPP	PPP	mean	AUC	Measure	BCR	MCC	у
Substrate	13	KNN	Training	105	37	102	38	0.74	0.73	0.73	0.73	0.73	0.73	0.74	0.73	0.47	0.73
			Test	75	26	41	60	0.74	0.41	0.61	0.56	0.55	0.57	0.64	0.57	0.16	0.57
			10-fold	188	55	167	74	0.77	0.69	0.75	0.72	0.73	0.73	0.74	0.73	0.47	0.73
		SVM	Training	91	51	104	36	0.64	0.74	0.67	0.72	0.69	0.69	0.68	0.69	0.39	0.69
			Test	67	34	57	44	0.66	0.56	0.63	0.60	0.61	0.61	0.63	0.61	0.23	0.61
			10-fold	152	91	159	82	0.63	0.66	0.64	0.65	0.64	0.64	0.64	0.64	0.29	0.64
		RF	Training	106	36	120	20	0.75	0.86	0.77	0.84	0.80	0.80	0.79	0.80	0.61	0.80
			Test	73	28	69	32	0.72	0.68	0.71	0.70	0.70	0.70	0.71	0.70	0.41	0.70
			10-fold	179	64	182	59	0.74	0.76	0.74	0.75	0.75	0.75	0.74	0.75	0.49	0.75
Inhibitors	26	KNN	Training	825	56	230	157	0.94	0.59	0.80	0.84	0.75	0.77	0.89	0.77	0.58	0.83
			Test	345	54	142	126	0.86	0.53	0.72	0.73	0.68	0.70	0.79	0.70	0.42	0.73
			10-fold	1153	127	378	277	0.90	0.58	0.75	0.81	0.72	0.74	0.85	0.74	0.51	0.79
		SVM	Training	800	81	190	197	0.91	0.49	0.70	0.80	0.67	0.70	0.85	0.70	0.45	0.78
			Test	345	54	129	139	0.86	0.48	0.70	0.71	0.65	0.67	0.78	0.67	0.38	0.71
			10-fold	1153	127	307	348	0.90	0.47	0.71	0.77	0.65	0.68	0.83	0.68	0.42	0.75
		RF	Training	845	36	289	98	0.96	0.75	0.89	0.90	0.85	0.85	0.93	0.85	0.74	0.89
			Test	334	65	168	100	0.84	0.63	0.72	0.77	0.72	0.73	0.80	0.73	0.48	0.75
			10-fold	1148	132	426	229	0.90	0.65	0.76	0.83	0.76	0.77	0.86	0.77	0.57	0.81

T3: Summary of obtained models from substrates and inhibitor classification

Abbreviations: No: Number of descriptors used for models, KNN: Kappa nearest neighbor, SVM: Support vector machine, RF: Random forest, TP: True positive, TN: True negative, FP: False positive, FN: False negative, Sen.: sensitivity, Spec.: Specificity, NPP: Negative predictive power, PPP: Positive predictive power, AUC: Area under curve, BCR: Balanced classification rate, MCC: Matthews correlation coefficient, 10-fold: 10-fold cross validation of whole dataset.

F1: Structures of Outliers, First eight compounds (NSC170365, NSC237106, NSC237671, NSC3053, NSC356207, NSC356207, NSC38270, NSC695935) were present in Szakács et al., dataset and last five compounds (SDB-ethylenediamine, Cyclosporine-A, Cyclosporin-C, Olivomycin-A, Valinomycin) were present in Literature dataset.

F2: Distribution of LogP (O/W) of substrate and non-substrate.

