Name	Sequence
brlA-F	5'-TATCCAGACATTCAAGACGCACAG-3'
brlA-R	5'-GATAATAGAGGGCAAGTTCTCCAAAG-3'
abaA-F	5'-GAGTGGCAGACCGAATGTATGTTG-3'
abaA-R	5'-TAGTGGTAGGCATTGGGTGAGTTG-3'
aflA-F	5'-CCTATAAGTGCTTCAAAGATCGTGATCG-3'
aflA-R	5'-CGTACATGGATGACACGTTGTCCCAG-3'
aflC-F	5'-CCTATTCTAGCCGCCTTTCTTGAC-3'
aflC-R	5'-CATGTTGCCAGATTCCTCATATTCC-3'
aflD-F	5'-TGTATGCTCCCGTCCTACTGTTTC-3'
aflD-R	5'-TGTAGTCTCCTTAGTCGCTTCATC-3'
aflM-F	5'-GCGGAGAAAGTGGTTGAACAGATC-3'
aflM-R	5'-CAGCGAACAAAGGTGTCAATAGCC-3'
aflP-F	5'-CGATGTCTATCTTCTCCGATCTATTC-3'
aflP-R	5'-TCTCAGTCTCCAGTCTATTATCTACC-3'
aflR-F	5'-GCAACCTGATGACGACTGATATGG-3'
aflR-R	5'-TGCCAGCACCTTGAGAACGATAAG

 Table S1
 Oligonucleotide primers used for qPCR

Fig. S1. Preparation of $\Delta nsdD$ knockout mutants. (A) Schematic diagram of the knockout vector pNsdD*niaD* used to generate the $\Delta nsdD$ knockout mutants. The dashed lines show the region expected to undergo recombinational replacement of the wild-type DNA with DNA containing the *nsdD* gene disrupted by the *niaD* selectable marker gene. Direction of transcription is indicated by horizontal arrows. P1 and P2 denote oligonucleotide primers used to confirm identity of $\Delta nsdD$ transformants by PCR of genomic DNA. The lengths of expected PCR products of either wild-type CA14 or $\Delta nsdD$ transformant DNA are shown under horizontal lines. (B) Results of PCR of CA14 and putative $\Delta nsdD$ transformant DNAs. Primers P1 and P2 amplification of DNA from CA14 DNA generated a product of 1.1 kb that was the expected size for the wild-type *nsdD* gene. All three of the putative $\Delta nsdD$ mutants demonstrated a product of 6.9 kb that was of the expected size for recombinational inactivation of the *nsdD* gene by the pNsdD-*niaD* plasmid.

Fig. S2. Preparation of $\Delta nsdC$ knockout mutants. (A) Schematic diagram of the knockout vector pNsdC-pyrG used to generate the $\Delta nsdC$ knockout mutants. The dashed lines show the region expected to undergo recombinational replacement of the wild-type DNA with DNA containing the *nsdC* gene disrupted by the pyrG selectable marker gene. Direction of transcription is indicated by horizontal arrows. P1 and P2 denote oligonucleotide primers used to confirm identity of $\Delta nsdC$ transformants by PCR of genomic DNA. The lengths of expected PCR products of either wild-type CA14 or $\Delta nsdC$ transformant DNA are shown under horizontal lines. (B) Results of PCR of CA14 and putative $\Delta nsdC$ transformant DNAs. Primers P1 and P2 amplification of DNA from CA14 DNA generated a product of 2.8 kb that was the expected size for the wild-type *nsdC* gene. All three of the putative $\Delta nsdC$ mutants demonstrated a product of 3.6 kb that was of the expected size for recombinational inactivation of the *nsdC* gene by the pNsdC-pyrG plasmid.

Fig. S3. PCR and RT-PCR analysis of Δnsd complementation strains. (A) Results of PCR of genomic DNAs from the wild-type CA14, Δnsd mutants, and Δnsd complementation (comp) strains. All three of the $\Delta nsdD$ and $\Delta nsdC$ complementation strains demonstrated PCR products of 1.1 kb and 2.8 kb respectively, as was observed for the wild-type CA14 amplification product. (B) Expression of *nsdC* and *nsdD* from 48 and 72 h cultures of the CA14, Δnsd mutants, and $\Delta nsdC$ C5 and $\Delta nsdD$ C4 complementation strains. Results of RT-PCR demonstrate that the Δnsd complementation strains are generating their respective *nsd* transcripts as observed from PCR of the CA14 but not the Δnsd mutant cDNAs.

Fig. S4. Effect of the melanin biosynthesis inhibitor, tricyclazole, on pigment production in the Δnsd mutants. 1) *A. alternata*; 2) CA14 $\Delta nsdC$ 17; 3) CA14 $\Delta nsdD$ 3; 4) CA14. Spores of the wild-type CA14, $\Delta nsdC$ 17 and $\Delta nsdD$ 3 mutants, and *Alternaria alternata* were point inoculated onto YGT-U agar supplemented with 100 µg/ml tricyclazole. Plates were incubated for 5 days at 30°C under illumination. Note that there is no significant change of pigmentation of the CA14 or Δnsd strains in the presence of tricyclazole. However the *A. alternata* colony pigmentation has been altered from a black to reddish-brown color indicative of inhibition of melanin biosynthesis.

Fig. S5. LC/MS results confirming that little to no AFB1 (m/z=313 positive ion and m/z 311 neg ion) is present in extracts of the $\Delta nsdC$ strain but is present in the $\Delta nsdD$ mutant and the wild-type *A. flavus* CA14.