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ABSTRACT Equations are derived that explicitly relate
fluorescence polarization observables on a labeled muscle fiber
to attitude of the cross-bridges and to attitude of the labels
within the cross-bridges.

vectorial arguments (Fig. 1A) then show that

Ve= Va COS /U

For some years the polarized emission from either intrinsic
(1) or extrinsic (2) fluorophores imbedded in muscle cross-
bridges has been used to deduce information about the spa-
tial attitude of these cross-bridges. Until recently, however,
the guiding analysis has been limited. For example, the mea-
sured quantities have been related to the fluorophore atti-
tudes, not the cross-bridge attitudes, and the possibility of
cross-bridge torsion [now suggested by electron microscope
observations (3)] has been ignored. There has been a recent
effort (4) to remove these limitations. In the present paper,
as in ref. 5, the limitations are removed analytically; i.e., we
obtain expressions for the measured intensities in terms of
cross-bridge attitude and attitude of the fluorophore relative
to the cross-bridge; furthermore, the possibility of torsion is
included. These expressions also allow us to treat dichroism
(6) with the same generality. Another paper (7) uses a model-
independent approach to identify and define the information
obtainable from fluorescence polarization and from dichro-
ism experiments.
For visualization purposes we imagine (Fig. 1) that a

cross-bridge is a cylinder that can rotate about its principal
axis in "torsion," a motion to be described by angle /i. When
the cross-bridge "decorates" the Z axis of a "laboratory
framework" of coordinates (when the center of one of the
cylinder ends is placed on the Z axis in simulation of thick
filament assembly), the principal axis of the cylinder ac-
quires an attitude defined by the usual spherical angles, 6
(for declination) and 4 (for azimuth). Using some point on
the lateral surface of the cylinder as center of coordinates,
we construct a "moving framework." One of its axes (a) is
parallel to the principal axis; another (r) is a radius of the
cylinder; the third (t) is tangent to the cylinder and perpen-
dicular to both a and r. In this t-r-a system we position a
doublet of two unit vectors va and v, (later to be associated
with a fluorophore). The orientation of 'a is specified by two
spherical angles, ?? (for declination from the a axis) and ( (for
azimuth). Thus,

va = I sin 71 cos f + r sin 7q sin f + a cos 71 [1]

Two additional angles position V' relative to .'a. One is the
angle ,t between va and 'e. The other is the counterclock-
wise (viewed from the origin) angle, t, that the plane contain-
ing 'a and 'e makes with plane containing 'a and a. Simple

Va x 'a Vac s + asinX- sin
+

sin 71 sin 71
[2]

Substitution of Eq. 1 into Eq. 2 allows Qe to be written as

v. = t(sin ?? cos i cos u - cos q cos e sin A cos t
- sin 4 sin Au sin I) + i(sin ?7 sin e cos tk

- cos ?? sin e sin Au cos t + cos e sin ,t sin I)
+ a(cos q cos Au + sin ?? sin As cos I). [3]

The "moving framework" is thus embedded in the cross-
bridge, and va and Q are now taken as parallel to the absorp-
tion and emission dipoles of the fluorophore that "labels" the
cross-bridge. As we said above, the unit vector, a, is posi-
tioned in the "laboratory framework" by 6 and 4, so (Fig.
1B)

a = i sin 6 cos 4 + j sin 6 sin 4 + k cos 6. [4]

Rotation of the cross-bridge around its own principal axis is
measured by the counterclockwise (viewed from the origin)
angle, qi, that e makes with the plane containing a and k.
Vectorial arguments illustrated in Fig. 1B show how expres-
sions for e and f in the laboratory framework can also be
obtained:

axkxa kxaCcos4++ sin 4fsin = sin

f = i' x 'a.

[5]

[6]
By substituting Eq. 4 into Eqs. 5 and 6 we get

e = i(-cos 4 cos 6 cos 4i - sin 4 sin @) + j(sin 4 cos 6 cos 4)
+ cos 4 sin )) + k(sin 6 cos @). [5']

t = i(-sin 4 cos 4) + cos 4 cos 6 sin 4) + j(cos 4) cos 4i
+ sin 41 cos 6 sin 4)) + k(-sin 6 sin 41). [6']

In order to make further manipulations less cumbersome we
implicitly define the vector components in the {-4-a system
(Eqs. 1 and 3) as 'a= At + fAr + &4a and Oe =^jt.+ fEr +
LEa; similarly, we define the components in the i-j-k system
(Eqs. 4, 5', and 6') aEs a-iai + jaj + kak, r'iRi + jRj + kRk,
and tf iT; + jTj + kTk. Now, by substituting Eqs. 4, 5', and
6' into Eqs. 1 and 3, we obtain expressions for va and V,
referred to the "laboratory framework" but explicitly recog-
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or "below" theM plane, and because it is anticipated that we
will sum expressions from one cross-bridge with those from
every other, it is obvious that in the summation all terms
preceded by (±)m, where m is odd, will cancel. For this rea-
son we have found it expedient to omit altogether from the
expressions those terms that we know will later cancel in the
summation.
There are two types of experiments that capitalize on the

directional feature of fluorescence. In the dichroism mode
(Fig. 3A) excitation in the form of plane-polarized light in-
clined 8 to the X-Z plane travels from +X toward a fluoro-
phore at the center of coordinates. The probability of excit-
ing the fluorophore is proportional to (vEXva)2, where

VEX = j sin 8 + k cos 8. [9]

If all the fluorescence is collected, the total emission intensi-
ty is proportional to the energy absorbed-i.e., to ('Ex )2.
This geometric factor in the total emission intensity is thus
obtained by substitutions from Eqs. 7 and 9. Thus, the inten-
sity contribution from one fluorophore is

OCt {(At)2 + (ArRj)2 + (Aaaj)2 + 2AtArTjRj} sin28
+ {A2TjTk + A2R Rk + A2ajak
+ ArAt (RjTk + RkTj)} sin 28 + {(AtTk)2 + (ArRk)2
+ (Aaak)2 + 2AtArTkRk} cos28.

X \

FIG. 1. (A) Derivation of Eq. 2. Once va is positioned, v is writ-
ten as the vector sum of components parallel (cos A&) and perpendic-
ular (sin ,u) to fa; to express the latter component it is necessary to
introduce angle t. (B) Relation of the "moving" framework of coor-
dinates, the t-t-a system, to the "laboratory" framework of coordi-
nates, the X-Y-Z (or i-j-k) system.

nizing how the fluorophore sits in the cross-bridge and how
the cross-bridge is oriented in space. These expressions will
be functions of six angles*: {, 7, ;, and 6, 4, q,. It is conve-
nient at this point, however, to take into account a special
feature of the organization of cross-bridges in thick fila-
ments, namely, helical symmetry about the M plane (a plane
normal to the filament at its midpoint; see Fig. 2). Viewed
from the M plane the helical arrangement of a cross-bridge
"above" the plane is identical to that of one "below" the
plane. A consequence of this circumstance is that certain
terms in va and Qe will be negative, depending on whether the
fluorophore in question is "above" or "below" the plane,
thus,

Va = i(±AtTj ± ArRi + Aaai)
+ j(AtTj + ArRj ± Aaaj)
+ k(AtTk + ArRk ± AaAk)

In the next step we must sum the contributions from, say,
N fluorophores [it is in this summation that terms preceded
by (±)m, with m odd, would disappear], each differing, pos-
sibly, with respect to one or more of the angles, 6, iR, t, 6, 4,
and 4i. In the fluorescence polarization mode (Fig. 3B) the
fiber laid along the Z axis and containing the fluorophore in
question at the center of coordinates is excited by polarized
light traveling along one axis (X, Y, or Z), and the polarized
emission travels outward along one axis to be analyzed at the
observation station. Along any polarized excitation or emis-
sion axis there are two possible orthogonal orientations of
the electric vector. By writing out all the possibilities it is
readily found that there are nine distinct arrangements, exci-
tation-direction, observation-direction; therefore, nine dis-
tinct intensities are measurable. The "geometric factor" in
each of these intensities is (p v)2(ve )2, where p and qc can

[7]

and

Ve = i(±EtTi ± ErRi + Eaai)

+ j(EtTj + ErRj ± Eaaj)
+ k(EtTk + ErRk ± Eaak).

z

[8]

In upcoming manipulations scalar products of these vectors
will be raised to powers. In the resulting expressions many
terms will be preceded by (±)m where m is a positive integer.
Because it is equally likely for a cross-bridge to be "above"

FIG. 2. Diagram to illustrate the consequences of the helical
symmetry of the thick filament assembly about the transverse "M
plane" (here depicted as the X-Y plane). The S-1 moieties of myosin
molecules are in helical arrays about the Z and Z' axes. To an ob-
server at 0,0 the sense of the "upper" helix must look the same as
the sense of the "lower" helix, so vectors in the X-Y-Z and X'-Y'-
Z' systems must have the same coordinates in their respective sys-
tems. But, if conjugate vectors are both viewed in the upper system,
then angles 6 and 4 for an upper vector correspond to 7r - 0 and -0
for a lower vector. Angle 4k (not shown) is the same for both vectors.

A aI

8

[10]

*The angle ,u is wavelength dependent but will be otherwise regard-
ed as a constant in this treatment.
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A
tation (II 11, III, II 1, I I instead of kk, ki, jk, ji, respective-
ly),

oX Hll', sin 46 + Hl sin26 cos26 + H() cos4,

B

Observation

k

x

Excitation

k

A

x

FIG. 3. Illustrations of the experimental layouts analyzed in this
paper. (A) In the dichroism experiment the unit vector for excitation
is (0, cos 8, sin 8). For each choice of 8, all three (i, j, k) components
of the emission are recorded and summed. Since (on energy balance
grounds) the total emission is proportional to the total absorption,
this experiment gives in effect absorption as a function of (hence
the name "dichroism"). (B) The fluorescence polarization experi-
ment consists in observing a directional emission intensity in four
arrangements: (excitation direction, emission direction) necessary
and sufficient to extract the desired information. The ones shown
here, (j, i), (j, k), (k, i), and (k, k), commonly termed (1, 4), (1, II),
(11, 1), and (I1, I1), are the most practical to use (see text).

each be i, j, or k. For a general anisotropic sample, five of
the nine intensities must be measured in order to deduce the
orientation of the sample (to find the components of Va and
°e). A fiber, however, is commonly regarded as circularly
symmetrical in the X-Y plane (see below). For such an object
Aertain a-rrangements are equivalent (i, 3 andj, i; k, j and k, i;
i, k and j, k), and only four intensities haveto be mneeasured-
let us say one from each equivalent pair (j, i; k, i; j, k) plus
one more. For the fourth we choose k, k. The other two
arrangements that could have been chosen (i, i'and j, j) are
experimentally awkward in that they require either excita-
tion and emission along the same axis (an arrangement that
invites scattering errors) or using the long axis of the fiber for
light transmission (which is very difficult). If we substitute
from Eqs. 7 and 8 into (p v )2(v.q)2, for each of the four
practical arrangements, we get individual fluorophore contri-
butions of the form

oc I[(AtTp)2 + (ArRp)2 + (APap)2] [(EtTq)2 + (ErRq)

+ (Eaaq)2] + 2 {(At~p)(ArRp)[(EtTq)2 + (ErRq)2 + (Eaaq)2]
+ (EtTq)(ErRq)[(At p)2 + (ArRp)2 + (Aaap)2]}

+ 4 {(AtTp)(ArRp)(EtTq)(ErRq) + [(At~p)(Aaap)
+ (ArRp)(Aaap)][(EtTq)(Eaaq) + (ErRq)(Eaaq)I}.

oa H(') sin40 cos26 + H(l) sin26 sin24)
+ H(3) sin20 cos sin cos 4)

+ Hil sin26 cos26 cos24) + Hlicos2l sin24
+ H(icos3I sin cos + HWILcos4L cos24, [12b]

l a H(ltH sin40 sin24 + H(2) sin20 cos

+ H (3) sin20 cos sin cos

+ H(L4), sin26 cos22 sin24 + H(15) cos26 cos24

+ H (6) cos36 sin cos + H(7)1 cos44 Cos.2, [12c]
-Y

J 1 oc HP1L sin24) cos24) + H(2) sin40 sin2o cos2o
+ H(3) sin20 sin44 + H (4) sin26 sin24 cos2o
+ HI') sin26 cos44o + H (6) sin20 cos sin34 cos

+ H (7) sin20 cos sin cos3+
+ HI?8) sin20 cos22 sin2o cos2o
+ H(9) cos sin34 cos + H(10) cos sin cos

+ Hl2 cos26 sin44 + H(12) cos22 sin24 cos22)
+ H(13) cos22 cos441 + H(14) cos33 sin34) cos

+ H(1S) cos33 sin cos34)

+ H 16) cos46 sin24 cos2o. [12d]

The Hs (see Appendix) are functions of dipole position in
the cross-bridge (As and Es) and of the angle, 4i. Again, the
next step is to sum the contributions from N fluorophores.
These N fluorophores will all make contributions ofthe same
form (one of the four forms above, depending on the experi-
mental arrangement) but with possibly different values of the
angles f, iq, ;, 6, 4, and 4i.
What angles are going to characterize the cross-bridge ori-

entations and the orientations of the fluorophores embedded
in the cross-bridges is decided by physical information (or
conjecture), but how the calculated observable intensity is
obtained once the decision is made can be illustrated here.
Suppose, for simplicity, that in the processes to be studied
the fluorophores are going to retain their orientations in the
cross-bridges, then Jtot in Eq. 10, or one of the Js in Eqs. 12,
can be written as J (constants, 6, 4), ,)-i.e., dependent only
on cross-bridge orientation. We can invent a function that
tells for each choice of 6, 4, and whatfraction of the cross-
bridges have their angles between and + dO, and d4,
and 4 and di. Integration of such a function over the allowa-
ble ranges of the three angles must give unity. Because the
three angles are independent of one another, the function
must be separable-i.e., expressible as O(0)4'())T(fi). Such
a function has the characteristics of a probability distribu-
tion. Therefore (if we neglect interference effects), the sum-
mated-i.e., the observed-intensity is N times the "mathe-
matical expectation" of JO:fill

Upon substitution of the explicit expressions for the As, Es,
Ts, Rs, and as, Eq. 12 generates J for each of the four ar-
rangements, which we now write in the more customary no-

I c NfffF T I (constants, 6,4), i1/sin d d 6d. [13]

Eqs. 10 and 13, and the Appendix, show that I itself is the
sum of terms each of which is separable, and the factors are

I

[12a]
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thus individually subject to the expectation operator. It is for
this reason that each I/N is expressible in terms of simple
averages. There is experimental justification for assuming
that thick filaments are circularly symmetric in the trans-
verse plane (for example, see ref. 8). Tregear and Mendelson
(9) advanced the further argument that when whole fibers
with unavoidable imperfections are viewed, '1 is not only
symmetric but constant. This assumption greatly simplifies
the integrand in Eq. 13, for the expectation operator con-
verts the 4-containing factors in Eq. 10 or in Eqs. 12 either
into zero or into simple fractional coefficients; the price,
however, is loss of information about this important coordi-
nate. There is much less rationale for choosing either 0 or IV.
Choosing them both to be delta functions, O(8 - 6o) and 'P(qi
- i), is simplest in appearance. In this "model" the distri-
bution function would then be (const/21T) 0(6 - 60) T(tp -
0). If we believe that the cross-bridge can assume a dec-
lination anywhere in the range Oa to O6 (midpoint, Om) with
equal likelihood, then the distribution function would be
(const/2v) ((Ob - Oa)sin Om)T, provided the band is narrow.

In analysis of the dichroism experiment the assumption
that the distribution function is (const/21r) O(6 - 60) T(ip -
i0) leads to the elimination of the coefficient of sin 28 in Eq.
10, and we find

Itot oc N[F sin28 + G cos28], [14]

where

F = (1/2)[A2(cos2ifo + cos260 sin2f0) + A2(cos220 cos2,P0
+ sin2i0) + Aasin260 + 2AtAr (cos 60 sin lio
- cos260 sin 4io cos qio)]

and

G = [A2sin260 sin2410 + A2sin260 cos2i0 + A2acos260
- 2AtArsin260 sin To cos To].

Eq. 14 is of the form used by Borejdo et al. (6). Exactly their
equation is obtained if the absorption dipole of the fluoro-
phore is parallel to the principal axis of the cross-bridge [as it
should be, of course, because Borejdo et al. (6) derived their
equation in terms of fluorophores only]. In that case 4i be-
comes irrelevant, Aa = 1 and At = Ar = 0, so

Itot oc N[(1/2) sin280 sin28 + cos260 cos26]. [14']

If Eq. 14' is assumed to hold, then the particular circum-
stance in which Itot is insensitive to occurs only for a "mag-
ic" value of 60 such that (sin260)/2 = cos260. In the more
general case of Eq. 14 the circumstance F = G can be ob-
tained in a variety of ways-for example, when if is random-
ized and A2 (A2 + Ar)/2.
As already mentioned, the analysis of fluorescence polar-

ization is also greatly simplified by the assumption = con-
stant. This can be seen by inspection of Eqs. 12b-12d.
Terms containing the functions of raised to odd powers
vanish as a result of calculating the expectation (Eq. 13),
sin24 or cos2 becomes 1/2, sin44 or cos become 3/8, and
sin24 cos24 becomes 1/8. It does not seem advisable in this
paper to work oit the Is for particular "models" (choices of
0 and I) because of the inherent arbitrariness in the
choices.

In actual practice the multiplicative constant ("physical
factor") that would convert the proportionality of Eq. 13 into
a true equation is very hard to measure, and recourse is

sought in using ratios. Among 4 Is, 6 nontrivial ratios can be
formed and experimentally measured. If we view these rela-
tions as equations, we have 6 equations in 4 variables; how-
ever, since only ratios are involved, there are 4 - 1 = 3
variables. Ifwe have 6 equations in 3 variables, the variables
are overdetermined by 3; i.e., only 3 experimental ratios
have to be measured. These are the 3 "polarization func-
tions" set forth by Tregear and Mendelson (9)-e.g., PI,
I- I(III + III9, P1 (I± , - I )/(I±,l + I, and,

as Q, either (IlII, - I, )/(Il + Ill) or (III - I, 1)1(IIL +
I,1). Previous analysts have been well aware, of course, that
changes in these Ps can result as well from reorientation of
the fluorophores in the cross-bridges (cross-bridges con-
stant) as from reorientation of the cross-bridges (fluoro-
phores constant), but the calculation of the first effect is
made easy by the present results, and we close with an illus-
tration. Suppose that in a physiological process PI, is ob-
served to change; how large a change in PI, could be expect-
ed from fluorophore reorientation (say from coincident
dipoles parallel to the S-1 axis to coincident dipoles perpen-
dicular to the axis) even when cross-bridge orientation re-
mains constant? Assuming for simplicity that ,u = 0, this
change in PI, can be estimated by supposing that in the initial
state of the process, Aa = Ea = 1 (all other components are
zero), while in the final state Aa = Ea = 0 (and all other
components are V2/2). Even though cross-bridge orienta-
tion (angles 6, 4, and @i) remains constant, Eqs. 12 show that
PI, changes significantly, from (2 - 3 sin20)/(2 - sin2Q) to [2
- 3(1 - 2 sin 4i cos qi)sin26]/[2 - (1 - 2 sin i cos isin2 6 -
4], as the fluorophore dipoles rotate through 90° within the S-
1.

APPENDIX
The functions (of the fluorophore dipole components relative
to the cross-bridge, and of the cross-bridge "torsional" an-
gle, @i) are to be appropriately substituted into Eqs. 12 in
order to get the complete expressions for the four observable
polarized intensities produced by a single fluorophore. The
symbols s and c have been used as shorthand for sin if and
cos if, respectively.

H(1) - (A Ets2 + ArErC2)2 + (AtEr + ArEt)2s2c2

- IAtAr(Ets2 + E~rC2) + EtEr(AtS2 +A2c2)]sc

H(21= A2(EtS - ErC)2 + E2a(Ats - ArC)2
+ 4AaEa[(AtEtS2 + ArErC2) - (AtEr + ArEt)SCI

H=(3) AE~a

H(f) = E2(Ats -ArC)2

H(2 = (AtErS2 -ArEtC2)2 + (AtE -AtEr)2S2C2
- [AtAr(ErS2 + Et2C2) - EtEr(A2S2 + A2C2)]sc

Hf3i = 2[AtAr(EPt- Er) + EtEr(A2 -A2)]S2C2
+ 2[2AtEtArEr( 2-c2) + (Ats2 + Arrc2)(Er - tE)]SC

-2EtEr(A2S4 -Ar2C4) + 4AaEa[AtErS2
+ (AtEt - ArEr)sc - ArEtC2]
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H(4) = [(AtEtS2 + ArErC2) - (AtEr + ArEt)SC]2
+ AaEa[AaEa - 4((AtEts2 + ArErC2)
- (AtEr + ArEt)SC)I

H(5) = A2(ErS + EtC)2

H(6 = 2A2[(E2- E2)sc -EtEr(S2 - c2)]

HW(7I = A2(Es - Erc)2

H(l) = A2(Ets - ErC)2

H(2) = (4rEts2 - AtErC2)2 + (AtEt - ArEr)2S2C2
+ 2[AtAr(Ets2 + Erc2)-EtEr(AS2 + Atc2)]sc

H()= 2[2EtEr(A2 - 2Ar) + AtAr(E Et2)]S2C2
+ 2[-2AtEtArEr(s2 - c2)
+ (Et2S2 + Er2C2)(A2 _ A2)]sc + 2AtAr(E,~4-E2 c4)

+ 4AaEa[(AtErC2 - ArEtS2) + (ArEr - AtEd)sc]

H(4)= [(AtEts2 + ArErC2) - (AtEr + ArEt)SCI2

+ AaEa[AaEa - 4((AtEts2 + ArErC2)
-(AtEr + ArEt)sc)I

H Ea(Ars + AtC)2

H(6) = 2Ea[(A2- A2)sc + AtAr(S2 -c2)]

H(7) = Ea(Ats - ArC)2

H(1) = (ArErS2 + AtEtC2)2 + (AtEr + ArEt)2s2c2

+ 2[AtAr(Er~S2 + Et2C2) + EtEr(A2S2 + A2C2)]SC

H(2) = AaEa

Hff) = A2(ErS + EtC)2

H14) = -4AaEa[ArErS2 + (AtEr + ArEt)sc + AtEtC2j

H(5) = Ea(Ars + AtC)2

H(6) + -2A2[EtEr(S2 - c2) + (Et2 - E)scJ

-4AaEa[(AtErS2 - ArEtc2) + (AtEt -ArEr)scl

HI = 2Ea[AtAr(S2- c2) + (At - Ar)sc
+ 4AaEa[(ArEtS2 - AtErc2) + (AtEt -ArEr)scl

-8)= A'(Ets - ErC)2 + Ea(Ats - ArC)2
+ 4AaEa[(AtEts2 -ArErC2) - (AtEr + ArEt)SCI

H(9) = 2AtAr(E2S4 - Elc4)
+ 2[AtAr(Et2- Er) + 2EtEr(At2- AN)Js2c2
+ 2[(A' -Ar)(EA s2 + Et2C2)
+ 2AtEtArEr(s2 - c2)sc

HTo) = -2EtEr(A2S4 - A2C4) - 2[EtEr(A2 - A2)

+ 2AtAr(E~t- Er)]s2c2

-2[(E2 - E2)(A s2 + A2C2) + 2AtEtArEr(S2 -c2)]sc

Hf 1) = (AtErs2 - ArEtC2)2 + (AtEt -_ArEr)2s2c2

+ 2[-AtAr(Er2S + EtC2) + EtEr(A2S2 + A2C2)JSc

HS12) = 4{(Ar - At)(Et - Er)s2c2 - [AtAr(Et - E)
+ EtEr(A2- A2)](s2 - c2)sc
- AtArEtEr(S2 -C)2i

H(3= (AtErC2 + ArEtS2) + (AtEt - ArEr)2s2c2

+ 2[AtAr(Et~S2 + E~rC2) - EtEr(A2S2 + A2C2)]SC

Htj= -2EtEr(AtS4 - Arc4) +2[2AtAr(Et2-EA)
+ EtEr(At2-SA )Js2c2

- 2[(Et - Er)(At~s2 + ArC2)- 2AtEtArEr(s2 -c2)Jsc

= 2AtAr(E~S4 - EAc4) - 2[AtAr(E2- E2)

+ 2EtEr(A2-2)]S2C2
+ 2[(A -A2 )(E2s2 + Ec2) -2AtEtArEr(S2 -c2)]sc

Ht16) = (AtEts2 + ArErC2) + (AtEr + ArEt)2s2c2
-2[AtAr(Et2S + E2c2) + EtEr(AS2s + Arc2)]sc.
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