Structure-Based Simulations of the Translocation Mechanism of the Hepatitis C Virus NS3 Helicase along Single-Stranded Nucleic Acid

Wenjun Zheng and Mustafa Tekpinar

Physics Department, University at Buffalo, Buffalo, New York

Supporting Information

Methods

We can expand the ENM potential energy (see Eq 1 of main text) to second order:

 $E \approx \frac{1}{2} X^T H X , \qquad (1)$

where X is a 3N-dimension vector representing the 3D displacement of $N C_{\alpha}$ atoms away from their equilibrium positions, H is the Hessian matrix which is obtained by calculating the second derivatives of ENM potential energy with respect to the 3D coordinates of C_{α} atoms.

NMA solves $HW_m = \lambda_m W_m$, where λ_m and W_m represent the eigenvalue and eigenvector of mode *m*. After excluding 6 zero modes corresponding to 3 rotations and 3 translations, we keep 3*N*-6 non-zero modes, which are numbered from 1 to 3*N*-6 in order of ascending eigenvalue.

To validate NMA, we compare each mode (mode *m*) with the observed structural changes between two crystal structures (represented by a 3*N*-dimension vector X_{obs}) by calculating the following overlap:

$$I_m = \frac{\left| X_{obs}^T W_m \right|}{\left| X_{obs} \right| \cdot \left| W_m \right|},\tag{2}$$

where $X_{obs}^T W_m$ is the dot product between vectors X_{obs} and W_m , $|X_{obs}|$ and $|W_m|$ represent their magnitudes.

In addition, the following cumulative overlap is calculated to assess how well the lowest 10 modes describe X_{obs} :

$$C_{10} = \sqrt{\sum_{1 \le m \le 10} I_m^2} \,. \tag{3}$$

Because $\sum_{1 \le m \le 3N-6} I_m^2 = 1$, C_{10}^2 gives the percentage of the observed structural changes captured by the lowest 10 modes.

Discussion

Unlike linear-interpolation-based methods like the Yale Morph server, iENM is more physically based because it searches for saddle points (SP) corresponding to minimal energy barrier of a transition. Therefore, iENM can predict a distinct order of structural motions involving different protein parts rather than highly synchronized motions as predicted by linear interpolation. Compared with mixed-ENM, which is an early approximate version of iENM, iENM solves the SP equation more accurately. Compared with another ENM-based method --- MinActionPath, iENM predicts a more robust pathway independent of the mathematic form of double-well potential function and the energy offset between two end states. For a more detailed comparison between iENM and alternative methods, see ref 45.

Tables

Table S1. Comparison between the lowest 10 normal modes and the crystallographically observed conformational changes in HCV NS3hel

PDB_chain id of two	RMSD (Å)	Mode#	Overlap
NS3hel structures			
3 kqk_AD \rightarrow 3 kqu_B	3.26	#3	0.49
		#4	0.57
		#1~10	0.92
3 kqu_BM \rightarrow 3 kql_A	1.03	#1	0.61
		#1~10	0.72
3 kql_AE \rightarrow 3 kqk_A	3.37	#5	0.45
		#6	0.50
		#1~10	0.82
$308c_AC \rightarrow 308r_A$	1.58	#6	0.49
		#1~10	0.77

Figures

Figure S1. Conformational changes in NS3hel as predicted by ENM-based normal modes as follows: (a) mode #3, (b) mode #4, which are solved from the apo-state NS3hel-ssDNA structure (PDB id: 3kqk); (c) mode #1, which is solved from the ATP-state NS3hel-ssDNA structure (PDB id: 3kqu); (d) mode #5, (e) mode #6, which are solved from the ADP-Pi-state NS3hel-ssDNA structure (PDB id: 3kql); (f) mode #6, which is solved from the apo-state full-length NS3-ssDNA structure (PDB id: 3o8c).

Two structures of NS3hel (before and after the conformational changes predicted by each mode) are superimposed along domain 3. The starting NS3hel-ssDNA structure is colored cyan. The NS3hel-ssDNA structure after the conformational changes is colored as follows: domain 1, 2 and 3 are colored green, red and blue, respectively, and ssDNA is shown as a chain of yellow beads located at C4' atoms. The domain rotations are shown by arrows.

Figure S2. Time evolution of selected pairwise distances during targeted MD simulations for the following transitions in NS3hel: (a) apo state \rightarrow ATP state; (b) ADP-Pi-state \rightarrow apo state.

In panel (a), the curves for the T269:CA – T411:CA distance (measuring the closing motion between domain 1 and 2), the T411:OG1 – NA3:OP1 hydrogen bond distance, the T269:OG1 – NA6:OP1 hydrogen bond distance are colored purple, green, blue, respectively.

In panel (b), the curves for the T269:CA – T411:CA distance (measuring the opening motion between domain 1 and 2), the T411:OG1 – NA18:OP1 hydrogen bond distance, the T411:OG1 – NA17:OP1 hydrogen bond distance, the T269:OG1 – NA20:OP1 hydrogen bond distance are colored purple, green, red, blue, respectively.

Movie S1. Conformational changes in NS3hel as predicted by ENM-based normal modes as follows: (a) superposition of the lowest 10 modes, (b) mode #3, (c) mode #4, which are solved from the apostate NS3hel-ssDNA structure (PDB id: 3kqk);

(d) superposition of the lowest 10 modes, (e) mode #1, which are solved from the ATP-state NS3hel-ssDNA structure (PDB id: 3kqu);

(f) superposition of the lowest 10 modes, (g) mode #5, (h) mode #6, which are solved from the ADP-Pi-state NS3hel-ssDNA structure (PDB id: 3kql);

(i) superposition of the lowest 10 modes, (j) mode #6, which are solved from the apo-state full-length NS3-ssDNA structure (PDB id: 308c);

Domain 1, 2 and 3 are colored green, red and blue, respectively. ssDNA is shown as a chain of yellow beads located at C4' atoms. 10 snapshots are generated for each movie, with NS3hel superimposed along domain 3.

Movie S2: Transition pathways predicted by iENM for the following transitions in NS3hel:

(a) apo state \rightarrow ATP state;

(b) ATP state \rightarrow ADP-Pi-state;

(c) ADP-Pi-state \rightarrow apo state;

Domain 1, 2 and 3 are colored green, red and blue, respectively. ssDNA is shown as a chain of yellow beads located at C4' atoms. NS3hel structure is superimposed along domain 3.

Movie S3: CG simulations by iENM for the 3-state ATP cycle in NS3hel (ATP \rightarrow ADP-Pi \rightarrow apo \rightarrow ATP):

(a) all protein-DNA interactions are kept;

(b) protein-DNA interactions involving residue V432 are turned off;

(c) protein-DNA interactions involving residue W501 are turned off;

Domain 1, 2 and 3 are colored green, red and blue, respectively. ssDNA is shown as a chain of yellow beads located at C4' atoms. NS3hel structure is superimposed along domain 3.

Movie S4: targeted MD simulations for the following transitions in NS3hel:

(a) apo state \rightarrow ATP state;

(b) ADP-Pi-state \rightarrow apo state;

NS3hel, ssDNA and selected ssDNA-binding residues are represented by cartoon, lines and bonds, respectively. Key protein-ssDNA hydrogen bonds are marked by dotted lines with donor-acceptor distance labeled. NS3hel structure is superimposed along domain 3.