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SUPPLEMENTARY INFORMATION 

As it is well known, there are two types of solutions to eq. (1), as depicted in the phase plot in 

fig. S1. If 2/2H , the swimmer oscillates around the upstream direction ( 0 ) with 

angular frequency  . This corresponds to the closed orbits in the phase plot. For 2/2H , 

it keeps turning indefinitely. The case 2/2H  corresponds to the separatrix, 

2
cos

  t , which is shown as the solid curve. It is straightforward to identify the closed 

orbits around )0,0(),(   t  as the oscillating motion observed for upstream swimming, and 

the open orbits outside the separatrix with the tumbling motion observed for downstream 

swimming. However, a signicant part of a large subset of the open orbits correspond to 

downstream orientation ( 2/  ). In fact, for orbits close to the separatrix, an oscillating 

swimmer would be directed downstream most of the time. This is not observed in the 

experiment, such that a more detailed discussion is necessary. 

 

 

FIG. S1: Phase plot of trajectories of swimmer direction, )(t .  The solid curve is the 
separatrix, the dashed curve indicates the interaction with the channel boundary. If the 
channel width is of the same order the size of the swimmer, as in our case, this gives rise to 
strong discrimination among trajectories. We see that the dashed curve deeply dives into the 
family of oscillation trajectories, singling out only those which are well oriented upstream. 
 

The wall of the channel limits the sideways motion of the swimmer. The maximum distance 

of its center of mass from the centerline, rmax, depends upon its orientation  , and can be 

written as  
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This provides a boundary to the motions of the swimmer. Exploiting the linear relation 

between r and t , we can plot this boundary in the phase plot, fig. S1. It is shown as the 

dashed curve,  2cos t . An oscillation with the maximum amplitude corresponds 

to the trajectory which just touches this boundary from below. We can obtain the 

corresponding 'energy', ),( tb HE  by looking for the minimum value of H along the 

boundary curve. On that curve, we have  
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In order to find the extremum, we differentiate with respect to cos  and seek the zero. The 

resulting cubic equation  
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has for positive δ and Δ (which we assume) one real solution, which can be written down in 

closed form. The corresponding amplitude, which is given by the intersection of the 

trajectory with the t -axis, can be found by inserting the solution of eq. (S3) into eq. (2). In 

our experiments, crL 2 , such that 0 , and thus 3
2

)/(
2

1
cos   , and we have 

crlLG /)(0   . The corresponding maximal amplitude is readily found to be 
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Since ω is directly linked to the flow velocity via 

 

 lL

r

u

GU c





20

max


   Equation S4 

 

eq. (S3) can be used to fit our data for the oscillation amplitudes at different flow velocities.  

We furthermore see that the dashed boundary curve in fig. S1 separates the set of possible 

motions into those which tumble and hit the wall repeatedly ('open' trajectories), and those 

which are closed (i.e., oscillating) and limited to amplitudes which keeps them well within 

upstream directions. This is in accordance with the experimental observation.  


