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S1. THEORETICAL DERIVATIONS 
 
S1.1. Solution of hidden Markov model by variational Bayes 
 
The time series of experimental data provided is given as X = {x1, ... , xN}, where N is the total 
number of data points, with each individual data point in the time series assigned to one of the states. 
The latent variables Z = {z1, ... , zN} and zn ={zn1, ... , znK} are defined so that znk is equal to 1 if the 
molecule belongs to the k-th state at time n, and 0 otherwise, where K is the number of states, i.e. znk 
satisfies znk ∈{0,1}  and znkk=1

K∑ = 1 . In the hidden Markov model (HMM), the simple Markov 
chain model is often assumed, that is, the probability distribution of the state at the n-th time step 
depends only on that at the (n-1)-th data point and is given by constants. The transition probability 
matrix A is introduced, the elements of which are described as 	 to 
represent the probability that the transition from the i-th state to the j-th state occurs (i ≠ j) or the 
molecule stays in the i-th state (i = j). Aij satisfies 0 ≤ Aij ≤ 1 and . The conditional 
distribution of transition probability can be written as 

 
 
p(zn | zn−1,A) = Aij

zn−1,iznj

j=1

K

∏
i=1

K

∏ . (S1) 

The initial state z1 is separately given by the conditional distribution as  

 
 
p(z1 | π) = π i

z1i

i=1

K

∏ , (S2) 

where π is a vector probability, the elements of which are defined as πk ≡ p(z1i = 1) and satisfy 0 ≤ πi 
≤ 1 and . The experimental observable xm at time m is dependent on the latent variable zm 
and is connected via the emission probability distribution p(xm|zm, φ), where φ is a set of parameters. 
The joint probability distribution can be written as: 

 
 
p(X,Z |Θ,M ) = p(π)p(A)p(φ)× p(z1 | π)× p(zn | zn−1,A)

n=2

N

∏ × p(xm | zm ,φ)
m=1

N

∏ , (S3) 

where Θ = {π, A, φ} denotes all the parameters related to the model and M represents the assumed 
model.  
 Parameters Θ and Z distribution are commonly optimized by maximum likelihood 
estimation (MLE) using the expectation-maximization (EM)-algorithm (1). In the E-step, Z 
distribution is optimized by a forward-backward algorithm, such as the Baum-Welch algorithm. 
Parameters are then optimized in the M-step. The E- and M-steps are iterated until the Θ and Z 
distributions converge. Finally, a max-sum algorithm, such as the Viterbi algorithm, is used to 
optimize the state transition trajectory.  
 In this paper, the HMM is solved by the variational Bayes (VB), which treats the marginal 
probability, so-called evidence, p(X|M) as shown in Eq. 5. The log evidence can be written as   
   ln p(X |M ) = Lq +KL(q || p) , (S4) 
where  
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Lq = dΘq(Z,Θ)ln p(X,Z,Θ |M )

q(Z,Θ)
⎧
⎨
⎩

⎫
⎬
⎭∫

Z
∑ , (S5) 

 . (S6) 

Terms Lq and KL(q||p) are functionals with respect to distribution functions p and q, where p is 
given with the model and q is to be fitted. The term KL(q||p) is the Kullback-Leibler divergence, 
which represents the similarity of two distribution functions, satisfies KL(q||p) ≥ 0 and vanishes 
when p and q are identical. Because the value of the term ln p(X|M) is fixed once the model M is 
assumed and the observable X is given, the other term Lq converges to ln p(X|M) as KL(q||p) 
decreases. In that sense, the term Lq represents the lower bound of the evidence. Eq. S5 can be 
maximized through an approximation procedure, similar to the mean field theory in physics. If we 
assume that Z and Θ are disjoint, the distribution function can be factorized, i.e.  
 , (S7) 
and the distribution functions q(Z) and q(Θ) can be optimized by 
   lnq

*(Z) = EΘ ln p(X,Z,Θ |M )[ ]+ const , (S8) 
   lnq

*(Θ) = EZ ln p(X,Z,Θ |M )[ ]+ const , (S9) 
where   Ex [ ]  denotes the expectation with respect to x (1).  
 Calculation of Eq. S8 can be simplified by a procedure similar to the E-step in the EM-
algorithm. By taking the exponential of Eq. S8, we obtain  

 
  
q*(Z)∝ p(z1 | π,M )× p(zn | zn−1,A,M )

n=2

N

∏ × p(xm | zm ,ϕ,M )
m=1

N

∏  (S10) 

with   

 
  
p(z1 | π,M ) = exp lnπ i( )z1i

i

K

∏ , (S11) 

 
  
p(zn | zn−1,A,M ) = exp lnAij( )zn−1,iznj

j

K

∏
i

K

∏ , (S12) 

 
  
p(xm | zm ,φ,M ) = exp ln p(xm | zm ,φ,M )( ) , (S13) 

where overlines represent the mean. The optimized q*(Z) can be calculated by the forward-
backward algorithm using Eqs. S11–13 instead of Eqs. S2, S1 and p(xm|zm, φ, M), respectively.  
 Calculation of the optimized q*(Θ), which is given by Eq. S9, corresponds to the M-step of 
the EM-algorithm. q*(Θ) can be factorized with respect to parameter groups disjoint to each other. 
Once q(Θ) is obtained, the expectation  for a parameter θ, together with , which is often 
necessary for the E-step calculation, can be evaluated.  
 The variational lower bound defined by Eq. S5 can be written more simply as  

 

    

Lq = E ln p(π)[ ]+E ln p(A)[ ]+E ln p(φ)[ ]

−E lnq(π)[ ]−E lnq(A)[ ]−E lnq(φ)[ ]+ ln
n=1

N

∑ cn
, (S14) 

where  cn  is the scaling factor introduced for the forward-backward algorithm in the E-step 
calculation (1,2). The E- and M-steps are iterated until the lower bound Lq converges. Finally, Lq is 
compared among models to choose the likeliest model.  
 
S1.2. VB-HMM-TS 
 
The TS data are given by a single scalar value xn = Δtn, which represents the time lapsed after the 
previous photon. For ideal TS signals, Δt obeys the exponential distribution. The emission 
probability is then given as   
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p(xm | zm ,I) = Ii exp(−Iixm ){ }zmi

i

K

∏ . (S15) 

 In the HMM, the transition probability distribution p(zn|zn-1) is commonly given with the 
transition probability A-matrix under the assumption that time intervals between data points are 
uniform. In such cases, the transition probabilities represented by elements in the A-matrix are 
directly related to the transition rates, which we are essentially interested in physically, chemically 
and biologically. However, because the TS signals have variable time intervals between data points, 
their transition probabilities are not constant but depend on the data themselves. Therefore, we 
introduce the transition rates ki and κij, which are defined only for i ≠ j, to replace the A-matrix. 
Under the assumption that the transition rates from the i-th to the j-th state (i ≠ j) are constant during 
the experiment, ki is defined as the rate that the molecule leaves from the i-th state. κij (i ≠ j) is the 
probability that the molecular state changes into the j-th state once the transition from the i-th state 
occurs with 0 ≤ κij ≤ 1 and . The probability distribution is then written as  

 
 
p(zn | zn−1, xn−1,k,κ,I) = exp −kixn−1( )zn−1,izni × κ ij{1− exp(−kixn−1)}⎡⎣ ⎤⎦

zn−1,iznj

j≠i

K

∏
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪i

K

∏ . (S16) 

This is marginalized with respect to xn-1 to obtain 
  

p(zn | zn−1,k,κ,I) = dxn−1p(xn−1 | zn−1,k,κ,I)∫ p(zn | zn−1, xn−1,k,κ,I)  (S17) 

  = Ii
ki + Ii

⎛
⎝⎜

⎞
⎠⎟

zn−1,izni

×
kiκ ij

ki + Ii

⎛
⎝⎜

⎞
⎠⎟

zn−1,iznj

j≠i

K

∏
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

K

∏ . (S18) 

 Now, we obtain the joint probability distribution to represent the TS intensity signal: 

 
 
p(X |Z,Θ,M ) = p(π)p(k)p(κ )p(I)× π z1i

i

K

∏ × Ii
ki + Ii

⎛
⎝⎜

⎞
⎠⎟

zn−1,izni

×
kiκ ij

ki + Ii

⎛
⎝⎜

⎞
⎠⎟

zn−1,iznj

j≠i

K

∏
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

K

∏
n=2

N

∏  

  × Ii exp(−Iixm ){ }zmi
i

K

∏
m

N

∏ . (S19) 

 The E-step can be calculated by using Eq. S11 and similarly derived   

 
  
p(zn | zn−1,k,κ,I) = exp ln Ii − ln(ki + Ii )( )zn−1,izni × exp ln ki + lnκ ij − ln(ki + Ii )( )zn−1,iznj

j≠i

K

∏⎡

⎣
⎢

⎤

⎦
⎥

i

K

∏ , 

  (S20) 

 
  
p(xm | zm ,I) = exp ln Ii − Iixm( )zmi

i

K

∏ . (S21) 

 For the M-step calculation to optimize parameters, the distribution functions for parameters 
must be obtained as follows.  
 The distribution function for the initial state distribution π is commonly given by the 
Dirichlet distribution as   

 q*(π) =
Γ u0

π +1( )
Γ ui

π + z1i( )
i

K

∏
π i
ui
π +z1i−1

i

K

∏  (S22) 

where Γ(x) is the Gamma function. The Dirichlet distribution is also given as the prior probability 
distribution. ui

π are the hyperparameters for the prior distribution and u0
π = ui

π
i

K∑ . From Eq. S22, 
expectations to estimate parameters and to be used in the E-step calculation are obtained as 

 π i =
ui
π + z1i
u0
π +1

, (S23) 
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 lnπ i =Ψ ui
π + z1i( )−Ψ u0

π +1( ) , (S24) 

respectively, where  is the digamma function. We gave ui
π = 1 for all 

states to assume a flat probability distribution.  
 The probability distributions for the transition rate k and the intensity I cannot be factorized, 
so that the distribution function must be written together :   

 q*(ki , Ii ) =
Γ(Nii + Nij ) bi

I
i +Ti( )ai

I
iNi

Γ(ai
INi )Γ(Nii )Γ(Nij )

× Ii
ai
I +Ni+Nii−1ki

Nij−1

(ki + Ii )
Nii+Nij

× exp −(bi
I +Ti )Ii( ) . (S25) 

where Ni = znin=1

N∑ , Ti = znixnn=1

N∑ , Nii = zn−1,iznin=2

N∑ , Mij = zn−1,iznjn=2

N∑  and 

Nij = Mijj≠i

K∑ = zn−1,iznjj≠i

K∑n=2

N∑ . The scale-invariant prior distribution p(ki) = Ci
k ki

-1 and the 

Gamma distribution p(I ) = Ii
ai
I −1 exp(−bi

I Ii )  are given for ki and Ii, respectively, with 
hyperparameters Ci

k, ai
I and bi

I. We gave Ci
k = 1 as described below, ai

I = 1 and bi
I = 1/ I  for all 

states, where I  = N/T is the average intensity over the whole data with the total time length T. 
Necessary expectations are obtained as 

 ki =
(ai

I
i + Ni )Nij

(Nii −1)(bi
I
i +Ti )

, (S26) 

 ln ki =Ψ (ai
I + Ni )+Ψ (Nij )−Ψ (Nii )− ln(bi

I +Ti ) , (S27) 

 Ii =
ai
I
i + Ni

bi
I
i +Ti

, (S28) 

 ln Ii =Ψ (ai
I + Ni )− ln(bi

I +Ti ) , (S29) 
 ki + Ii = ki + Ii , (S30) 
 ln(ki + Ii ) =Ψ (ai

I + Ni )+Ψ (Nii + Nij )−Ψ (Nii )− ln(bi
I +Ti ) . (S31) 

 A possible problem with using the transition rate k may be the choice of the prior probability 
distribution for ki. We employed the scale-invariant prior distribution p(ki) ∝ ki

-1, which requires no 
prior knowledge about the transition rates, not even their order. This can be advantageous, because 
it is usually difficult and not desirable to predict the transition rates in advance of experiments. 
However, it may be mathematically problematic that integration of the scale-invariant prior 
distribution does not converge. We introduced the normalizing coefficient Ci

k as a hyperparameter. 
Ci

k is cancelled in the derivation of q(ki, Ii) as shown in Eq. S25, while it remains in the calculation 
of the variational lower bounds given by Eq. S14. We expediently gave Ci

k = 1 and conclude that it 
is valid from the results of numerical experiments.  
 κij are disjoint from other parameters and are given as the Dirichlet distribution. Similarly to 
π, the distribution function can be obtained as 

 q*(κ ij ) =
Γ(ui0

κ + Nij )

Γ(uij
κ +Mij )

j≠i

κ

∏
κ ij

uij
κ +Mij−1

j≠i

κ

∏ , (S32) 

where uij
κ are hyperparameters and ui0

κ = uij
κ

j≠i

K∑ . Expectations are then calculated as 

 κ ij =
uij
κ +Mij

ui0
κ + Nij

, (S33) 

 lnκ ij =Ψ (uij
κ +Mij )−Ψ (ui0

κ + Nij ) . (S34) 
We set uij

κ = 1/(K-1) for all i and j (i ≠ j).  
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S1.3. VB-HMM-TS-FRET 
 
The TS-FRET data analysis is based on the TS intensity analysis. We therefore need to extend the 
observable from a scalar xn to a vector xn, adding a new quantity   

 ρn =
0 (donor)
1 (acceptor)

⎧
⎨
⎪

⎩⎪
 (S35) 

so that xn = {Δtn, ρn}. We also add a new parameter E, the FRET efficiency. Now each state is 
characterized by I and E, which can be written in principle as, 
 I = IA + ID , (S36) 

 E = IA
IA + ID

, (S37) 

where IA and ID are the acceptor and the donor intensities, respectively. The relationships of Eqs. 
S36 and S37 are, however, not consistent in most of the experimental situations because of various 
factors, such as background signals, differences in the quantum yields and the detection efficiencies, 
crosstalk over the optical filter and direct excitation of the acceptor. It is usually necessary to 
compensate for these errors to obtain the true I and E values (3,4). However, we do not consider 
these compensations in this paper. As long as those errors are constant during the experiments, we 
need only to carry out the analysis with the apparent I and E and compensate for them after they are 
optimized.  
 The emission probability is factorized with respect to Δtn, I and ρn, E and written as 
 p(xm | zm ,I,E) = p(ρm | zm ,E)× p(Δtm | zm ,I)  (S38) 

  = Ei
ρm × (1− Ei )

1−ρm{ }× Ii exp(−IiΔtm )⎡⎣ ⎤⎦
zmi

i

K

∏ , (S39) 

which gives 

 
 
p(xm | zm ,I,E) = exp ρn lnEi + (1− ρn )ln(1− Ei )+ ln Ii − IiΔtn( ){ }zmi

i

K

∏ . (S40) 

As E is independent of the other parameters, its distribution function can be calculated separately. 
q*(E) is given by the binomial distribution in the range [0, 1] as 

 q*(Ei ) =
Γ(ui

E +ν i
E + Ni )

Γ(ui
E + ε i )Γ(ν i

E + Ni − ε i )
× Ei

ui
E+εi−1 × (1− Ei )

νi
E+Ni−εi−1 , (S41) 

where the binomial prior distribution is given with hyperparameters ui
E and vi

E. Ni = znin=1

N∑ and 

ε i = zniρnn=1

N∑  are defined. We gave ui
E = 1 and vi

E = 1 for all states to assume a flat probability 
distribution. Finally, necessary expectations are calculated as 

 Ei =
ui
E + ε i

ui
E +ν i

E + Ni

, (S42) 

 1− Ei =
ν i
E + Ni − ε i

ui
E +ν i

E + Ni

, (S43) 

 lnEi =Ψ (ui
E + ε i )−Ψ (ui

E +ν i
E + Ni ) , (S44) 

 ln(1− Ei ) =Ψ (ν i
E + Ni − ε i )−Ψ (ui

E +ν i
E + Ni ) . (S45) 

 
 
S1.4. VB-HMM-PC 
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In time-binned SPC measurements, the number of photons is counted for each time bin with fixed 
width. Data xn is the photon counts and the mean photon counts µ is given in unit of counts/bin. It is 
well known that this type of signal obeys the Poisson distribution, in which case the emission 
probability can be written as 

 p(xm | zm ,µ) =
µi
xm

xm !
exp(−µi )

⎧
⎨
⎩

⎫
⎬
⎭

zmi

i=1

K

∏ . (S46) 

 For the SPC signals, the transition probability matrix A can be employed to describe the 
transition probability distribution p(zn|zn-1). Elements of the A-matrix are independent of other 
parameters and are given as the Dirichlet distribution. Similarly to π, the distribution q*(A) can be 
obtained as 

 q*(A) = Γ(ui0
A +Mi )

Γ(uij
A + Nij )

j

K

∏
Aij
uij
A+Nij−1

j

K

∏
i

K

∏ , (S47) 

where the Dirichlet prior distribution is given with hyperparameters uij
A and ui0

A = uij
A

j

K∑ . 

Nij = zn−1,iznjn=2

N∑  and Mi = Nijj

K∑ = zn−1,iznjj

K∑n=2

N∑  are defined. We set uij
A = 100 (i = j) or 1 

(i ≠ j) for all i and j to assume that transitions do not occur too frequently and every state has an 
equal chance as the destination after transition. In contrast to the transition rates k, the A-matrix is 
given the Dirichlet distribution as the prior distribution. While it is mathematically consistent, it 
may be a drawback that some preliminary knowledge about the transition rates is required to 
determine hyperparameters, especially, for the diagonal elements of the matrix. Expectations are 
calculated as 

 Aij =
uij
A + Nij

ui0
A +Mi

, (S48) 

 lnAij =Ψ (uij
A + Nij )−Ψ (ui0

A +Mi ) . (S49) 
 The parameter µ is also independent of other parameters and its distribution q*(µi) can be 
obtained as 

 q*(µi ) =
(bi

µ + Ni )
ai
µ+Ci

Γ(ai
µ +Ci )

× µi
ai
µ+Ci−1 × exp −(bi

µ + Ni )µi( ) , (S50) 

where Ci = znixnn

N∑  and Ni = znin

N∑ . The Gamma distribution p(µi ) = µi
ai
µ−1 exp(−bi

µµi )  is 

given as the prior distribution, with hyperparameters ai
µ = 1 and bi

µ = 1/ I  for all states. Necessary 
expectations are calculated as 

 µi =
ai
µ +Ci

bi
µ + Ni

, (S51) 

 lnµi =Ψ (ai
µ +Ci )− ln(bi

µ + Ni ) , (S52) 
 
 
S1.5. VB-HMM-PC-FRET 
 
The SPC signal is extended to dual-channel detection, and data are now given as vector xm = {dm, 
am}, where dm and am are the photon counts in the m-th bin on the donor and the acceptor detection 
channels, respectively. Both dm and am obey the Poisson distribution and then the emission 
probability can be written with µ and E as 

 p(xm | zm ,µ,E) =
{µi (1− Ei )}

dm

dm !
exp −µi (1− Ei )( )× (µiEi )

am

am !
exp(−µiEi )

⎧
⎨
⎩

⎫
⎬
⎭

zmi

i=1

K

∏  
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  = (1− Ei )
dm Ei

am

dm !am !
× µi

dm+am exp(−µi )
⎧
⎨
⎩

⎫
⎬
⎭

zmi

i=1

K

∏ . (S53) 

The terms on µ and E can be factorized and then the distribution q*(µi) and expectations µi  and 
lnµi  can be obtained by Eqs. S50–52, respectively. The distribution q*(Ei) is given as 

 q*(Ei ) =
Γ(ui

E +ν i
E +Ci )

Γ(ui
E + Ai )Γ(ν i

E + Di )
× Ei

ui
E+Ai−1 × (1− Ei )

νi
E+Di−1 , (S54) 

where the binomial prior distribution is given with hyperparameters ui
E and vi

E, which are both 
assumed to be 1 for all states. Di = znidnn

N∑ , Ai = zniann

N∑  and Ci = Di + Ai are defined. 
Necessary expectations are then calculated as 

 Ei =
ui
E + Ai

ui
E +ν i

E +Ci

, (S55) 

 1− Ei =
ν i
E + Di

ui
E +ν i

E +Ci

, (S56) 

 lnEi =Ψ (ui
E + Ai )−Ψ (ui

E +ν i
E +Ci ) , (S57) 

 ln(1− Ei ) =Ψ (ν i
E + Di )−Ψ (ui

E +ν i
E +Ci ) . (S58) 

 
 
S1.6. Step-by-step procedure 
 
The actual procedure of the VB-HMM analysis is as follows: 
 
1. Assume the number of states. 
2. Apply initial values to all parameters of every state. 

Because the results may depend on initial values, a group of analyses should be repeated with 
different initial values, which may be applied with a degree of randomness. 

3. Optimize the Z-distribution (Eq. S8). 
Eq. S10 should be maximized with, for the case of VB-HMM-TS-FRET, Eqs. S11, S20 and 
S40. Various numerical methods, such as the forward-backward algorithm (1), are available 
for this purpose. 

4. Update parameters (Eq. S9). 
For the case of VB-HMM-TS-FRET, Eqs. S26–S31 and S42–45 should be calculated for use 
in step 3 of the subsequent cycle. 

5. Calculate the lower bound Lq (Eq. S14). 
The expectations of prior probability distributions p can be calculated with hyperparameters 
and do not change during iteration. The probability distributions q can be calculated using S22, 
S25, S32 and S41 with S24, S27–S31, S34 and S44, respectively, for the case of VB-HMM-
TS-FRET. The variables  cn  in the last term are calculated during the forward-backward 
algorithm in step 3. 

6. Judge convergence of the lower bound Lq. 
This can be judged by, for example, checking whether the difference from the previous cycle is 
small enough. If Lq has not yet converged, go on to the next cycle, repeating from step 3. 

7. Optimize the state transition trajectory. 
Using a max-sum algorithm, such as Viterbi algorithm. 

 
To find the optimum number of states, one must repeat the above procedure with different numbers 
of states to find the optimum number, which gives the highest lower bound. 
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S2. MATERIALS AND METHODS 
 
S2.1. Numerical experiments 
 
S2.1.1. Procedure 
Each simulation proceeds as follows. The molecule is simulated to change its state at the given 
transition rates and emit photons according to the given intensity related to each state. It is assumed 
that the molecule has three states and that each of the two other states has an equal chance to be 
chosen as the next state after the transition occurs, i.e. κij = 0.5 or Aij = (1 - Aii)/2 for all i and j (i ≠ j). 
During dual-channel FRET simulation, each photon is assigned to the donor or the acceptor detector 
channel, on which the photon is detected, according to the FRET efficiency related to the state. 
Once the TS signal is generated, the SPC signal is derived from it with three bin sizes, 1, 5 and 10 
ms, for SPC analyses. The same data are then analyzed by several analytical methods with 
assumptions of the NoS from 2 to 6 and the likeliest NoS is determined. Cycles of data generation 
and analysis are repeated 1000 times and the statistics of the results are summarized.   
 The first set of simulation treats the single-channel TS intensity signals. Total signal length, 
T, is fixed to 10 s, while two parameters are varied. The first parameter varied is the intensity for 
states Ii (i = 1–3). We assumed that I1 < I2 < I3 and the ratio of intensities between adjacent states 
was constant, i.e. Iratio ≡ I2/I3 = I1/I2. The parameters I3 = 10,000/s and Iratio = {0.25, 0.5} were then 
given. Another parameter varied is the transition rate. We defined transition rates with an average 
lifetime of states, λi. We assumed λ3/λ2 = λ2/λ1 = Iratio so that the average number of photons per 
state was constant, because the resolvability of states is thought to depend on the number of photons 
for TS signals (5). We fixed {λ1, λ2, λ3} = {{2, 1, 0.5}, {4, 2, 1}, {8, 4, 2}, {20, 10, 5}, {48, 24, 12}, 
{120, 60, 30}} ms. The probability of choosing one of two states as the destination for individual 
transitions is always 50%, as described above. The simulated data were analyzed by VB-HMM-TS 
and then converted to SPC data with bin sizes of 1, 5 and 10 ms for analysis by VB-HMM-PC. The 
TS signal was also analyzed by the CPD-MLE method (5), which was conducted with the 
probability of a type-I error α = 0.01 and the probability for the confidence interval β = 0.01. We 
did not employ CPD-Bayes method (6) due to lack of clarity about how to pick the threshold for the 
Bayes factor.  
 The second set of simulations is based on the dual-channel TS-FRET signals. Analytical 
methods are all variants of VB-HMM for this set. The parameter of the intensity I is defined as the 
total photon rate, including the donor and the acceptor photons and is fixed to 10,000/s for all states. 
As a state-dependent parameter, the FRET efficiency Ei is given as E1 = 0.5 - ΔE, E2 = 0.5 and E3 = 
0.5 + ΔE with ΔE = {0.2, 0.1}. Transition rates are defined by λ, which is given the same value for 
all states this time and varied as λ = {6.25, 25, 100, 400} ms. T = 10 s except for cases where ΔE = 
0.2, in which simulation is performed with T = 3 s and λ = {2, 4, 8, 16} ms. This set of simulated 
data are first analyzed by VB-HMM-TS-FRET and then converted to SPC-FRET data with bin 
sizes of 1, 5, and 10 ms, to be analyzed by VB-HMM-PC-FRET. Finally, VB-HMM-TS and VB-
HMM-PC methods are applied to only the donor channel data from TS-FRET and SPC-FRET 
signals, respectively.  
 
S2.1.2. Dependence on the total signal length 
Among the various simulation parameters, the total signal length T may be a sigificant parameter 
influencing the analysis result. The numbers of observed states and transitions between them are 
determined by T. The more events that are observed, the more robust and reliable the inference will 
be.  
 To investigate dependence on T, we conducted another series of simulations, in which T was 
a variable parameter, given as T = {0.625, 1.25, 2.5, 5.0, 10.0, 20.0} s.  
 First, analyses of the intensity signals with VB-HMM-TS, CPD-MLE and VB-HMM-PC 
were given parameters I3 = 10,000/s, Iratio = 0.5 and {λ1, λ2, λ3} = {20, 10, 5} ms. Because the sum 
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of λ over three states is 35 ms, each state will be observed a few tens of times on average within the 
shortest T. 
 Second, FRET analysis using VB-HMM-TS-FRET, VB-HMM-PC-FRET, VB-HMM-TS 
and VB-HMM-PC were performed with parameters I = 10,000/s, ΔE = 0.1 and λ = 100 ms. The 
summed lifetime is 300 ms in this case. Because the transitions are made stochastically, some of 
simulated traces at short T may not include all three states. 
 The results are shown in Figs. S8–9.  
 
S2.1.3. Influence of noise 
SPC signals intrinsically contain “shot noise”. However, while it is called “noise”, it actually means 
ununiformity of photon distribution due to stochasticity of photon emission and it is therefore 
unavoidable. It is considered in our analyses through emission probabilities, such as in Eqs. 1 and 2. 
 Except for this, typical external noise sources in SPC signals are the dark count of the 
detector and contributions from the background light. Counts due to both noise sources, as well as 
the signal photon counts, obey Poisson statistics and their rates are constant if the experimental 
apparatus is carefully set up. When some Poissonian signals are mixed, the total distribution of 
counts is also Poissonian, whose count rate (mean count per bin) is the sum of each. Therefore, 
photon-based analyses, such as our VB-HMM methods or CPD, can be applied to the apparent 
intensity signal, including noise. Therefore, the user should be careful when interpreting results, i.e. 
the parameters I or E estimated by analysis include a noise component of I’ = I + B or E’ = (IA + 
BA)/(IA + BA + ID + BD), where I’ and E’ are the apparent intensity and the estimated FRET 
efficiency, and B, BA and BD are the noise components of intensity, on the acceptor and the donor 
channel, respectively. 
 As a matter of course, there is a disadvantage in treating signals with a low S/N ratio. 
Because the noise component becomes a bias to the signal, it lowers the signal contrast between 
states. For example, when two states with intensities I and 0.5I exist, addition of 0.25I noise 
degrades the contrast from 0.5 to 0.75I/1.25I = 0.6. If a two-state signal with E1=0.4 and E2=0.6 is 
contaminated with 0.25I noise, the apparent FRET difference becomes 0.16, decreased from 0.2. 
Because a higher signal contrast improves the performance of analysis, as shown in Figs. 4–5 and 
S5–S6, noise should also be reduced as much as possible in photon-based signals. 
 To investigate the tolerance of the analyses to noise, we conducted another series of 
simulations. First, the intensity signals were simulated with parameters I3 = 10,000/s, Iratio = 0.5, {λ1, 
λ2, λ3} = {20, 10, 5} ms and T = 10 s and given extra counts with rates 0, 0.05I3, 0.1I3, 0.2I3, 0.5I3 
and I3 as a noise component, with which we defined the noise-to-signal (N/S) ratio as 0, 0.05, 0.1, 
0.2, 0.5 and 1, respectively. 
 Second, FRET simulation used parameters I = 10,000/s, ΔE = 0.1, λ = 100 ms and T = 10 s. 
The additional noise count rates were 0, 0.05I3, 0.1I3, 0.2I3, 0.5I3 and I3, again, but divided into two 
detector channels, half and half. 
 The results are shown in Figs. S10–11. 
 
S2.2. Sample preparation 
 
S2.2.1. Holliday junction DNA 
A set of oligonucleotides (Japan Bio Services Co., Ltd., Saitama, Japan) was synthesized for the 
assembly of HJ. Four oligonucleotides were annealed to form a four-way junction structure, as 
described elsewhere (7). The sequences of oligonucleotides we used are the following: 

1: biotin-5'-TCT TTT GAT AAG CTT GCA AGC ATA CAT ATC TCG TAA TTT CCG GTT 
AGG T-3' 

2: 5'-ACC TAA CCG GAA ATT ACG AGA TAT CGA TGC ATG CAA GCT TCA CA-3' 
3: 5'-TGT GAA GCT TGC ATDG CAT CGA TTT AAT ACG TGA GGC CTA GGA TC-3' 
4: 5'-GAT CCT AGG CCT CAC GTA TTA AAT GTA TGC TATG CAA GCT TAT CA-3' 
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TD and TA are thymines labeled with fluorescence dyes AlexaFluor488 and AlexaFluor594 as the 
FRET donor and the acceptor, respectively. Underlined bases represents the exchangeable parts in 
branch migration. This HJ is expected to migrate between 3 conformational states.  
 
S2.2.2. Immobilization 
A sample cell is made of cleaned coverslips with double-sided tapes as spacers. The cell was treated 
with 1 mg/ml biotinylated BSA (Sigma, St. Louis, MO) in TES buffer (pH 7.5, 10 mM Tirs-HCl, 
150 mM NaCl and 1 mM EDTA) for 10 min, washed with TES buffer, treated with 0.2 mg/ml 
streptavidin (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) in TES buffer for 10  
min and washed with TES buffer, again. ~50 pM HJ solution in TES buffer was introduced and 
incubated for 10 min. Finally the solvent was exchanged to TN40M buffer (pH 7.5, 10m M Tris-
HCl, 10 mM NaCl and 40 mM MgCl2) for measurement. 1 mM Trolox and 10 mM 2-
mercaptoethylamine (cysteamine) were added to prevent photobleaching of dyes and to scavenge 
the oxygen radicals (8).  
 
S2.3. Apparatus 
 
Single-molecule FRET measurements were conducted on a confocal microscope system based on a 
Ti-E system (Nikon, Tokyo, Japan) equipped with an oil-immersion objective lens Apo TIRF 60× 
NA 1.49 (Nikon, Tokyo, Japan) and a piezo-driven sample scanning stage P-542.2CL (Physik 
Instrumente GmbH, Karlsruhe, Germany). The excitation laser was Sapphire 488-100 CDRH 
(Coherent, Santa Clara, CA) with wavelength of 488 nm. Laser light was attenuated down to ~44 
nW at the sample by ND filters and introduced to the sample by a custom-made dichroic cube beam 
splitter (c/o 540nm (S-polarization; excitation)/470nm (P-polarization); Sigma-Koki, Tokyo, Japan), 
which prevents astigmatism. Fluorescence was collected through a pinhole with 100 µm diameter 
and a double notch filter NF03-488E-25 (Semrock, Lake Forest, IL) to remove residual laser light. 
After a dichroic filter Q570LP (Chroma Technology Corp., Bellows Falls, VT) to separate 
fluorescence into a donor and an acceptor channels, each light was focused onto an avalanche 
photodiode (APD) single-photon-counting detectors (SPCM-AQR, Perkin Elmer, Optoelectronics, 
Freemont, CA). (Dark counts are typically < 150/s for both APDs.)  The time stamp signal was 
acquired by a PC equipped with a counter board LPC-632104 (Interface Corp., Hiroshima, Japan), 
which detects photon pulses based on a 10 MHz clock. The measurement system was controlled by 
a LabVIEW (National Instruments Corp., Austin, TX) program written in-house.  
 
S2.4. FRET calculation 
 
S2.4.1. Calculation of true FRET 
The FRET efficiency was calculated as  

 EFRET =
IA − β ID

IA + (α − β )ID
, (S59) 

where IA and ID are the detected fluorescence intensities after subtraction of the background signals 
on the acceptor and the donor detectors, respectively. α is a factor correcting differences in the 
dyes’ quantum yields and the detection efficiencies between dyes and detectors, while β is the 
coefficient for leakage of the donor fluorescence onto the acceptor channel. We determined the 
values of α and β experimentally from the acceptor’s photobleaching events (3,4) for molecules 
immobilized on the coverslip surface. The typical values for α and β in our system were ∼3.6 and 
∼0.35, respectively. 
 
S2.4.2. Calculation of compensated intensity 
In single-molecule FRET measurements, fluorescence signals are modulated not only by FRET 
changes, but also by unexpected photochemical effects, such as blinking or quenching. One may 
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expect that the FRET changes do not affect the total fluorescence intensity (IA + ID) and therefore 
the real FRET dynamics can be distinguished from unexpected fluctuations. However, it is not 
correct because IA and ID are affected by the quantum yield, the detection efficiency and the 
fluorescence leakage as mentioned above. Here, we introduce the compensated fluorescence 
intensity IC: 

 IC =
IA
α

+ 1− β
α

⎛
⎝⎜

⎞
⎠⎟ ID , (S60) 

where α and β are identical to those used in Eq. (S59). IC is proportional to the total excitation 
energy given to the donor and is kept constant while fluorescence intensities are modulated only by 
the FRET changes.  
 Once we obtain fluorescence intensities, we can calculate IC. If IC trace fluctuates beyond the 
noise level, the fluctuation must be caused by some unexpected effects other than FRET changes. If 
we want to focus only on the FRET dynamics, we can discard such data selectively. We can choose 
data showing constant IC except for shot-noise fluctuations as shown in Fig. 6 C and make further 
detailed analysis of FRET dynamics.  
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S3. SUPPLEMENTARY DATA 
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Figure S1: Example results of analyses of an intensity signal. Full length data of Fig. 2. (A) The 

SPC-signal with 5 ms time bin (black) is converted from a simulated TS signal. (B) The 
trajectories of the state transition. The original simulated data (red), the results of VB-
HMM-TS (blue) and CPD (green) assign a state to each photon. The VB-HMM-PC 
result (gray; only result with 1 ms bin is plotted) is time bin-based. Iratio = 0.5 and λi = 
{20, 10, 5} ms were applied for this simulation. 
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Figure S2: Example results of inference scores (the variational lower bound for VB-HMM methods, 

the Bayesian information criterion for CPD) obtained for the data in Fig. S1. 
Dependence on the assumed NoS is shown for (A) VB-HMM-TS, (B) CPD and (C) VB-
HMM-PC with a 1 ms bin, respectively. The inset of (B) emphasizes the difference at 
NoS ≥ 3. All analyses gave a maximum value at NoS of 3. 
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Figure S3: Example results of analyses of a dual-channel FRET signal. Full length data of Fig. 3. 

(A) The SPC-signals with 5 ms time bin (donor: green, acceptor: red) are converted from 
the simulated TS signal. The FRET trajectory (blue) is calculated from the SPC 
trajectories. (B) The trajectories of the state transition. The original simulated data (red), 
the results of VB-HMM-TS-FRET (blue) and VB-HMM-TS (light blue) assign a state to 
each photon. The results of VB-HMM-PC-FRET (dashed gray) and VB-HMM-PC (light 
gray) only with 1 ms bin are shown. VB-HMM-TS/-PC analyses treat only the donor 
photons. ΔE = 0.1, I = 10,000 and λ = 100 ms for all states are given for this simulation. 
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Figure S4: Example results of the variational lower bounds obtained for the data in Fig. S3. 

Dependence on the assumed NoS is shown for (A) VB-HMM-TS-FRET, (B) VB-HMM-
PC-FRET (1 ms bin), (C) VB-HMM-TS and (D) VB-HMM-PC (1 ms bin), respectively. 
All analyses gave a maximum value at NoS of 3. 
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Figure S5: Statistics of an intensity analysis on 1000 Monte-Carlo-simulated time series data with 

Iratio = 0.25 and 0.5. (A)(B) The accuracy of the NoS estimation. VB-HMM-TS achieves 
almost 100% accuracy over this parameter range, while VB-HMM-PC with 1 ms bin is 
close. (C)(D) The accuracy in reproducing the state transition trajectory. VB-HMM-TS 
and VB-HMM-PC (1 ms) are again superior to others. CPD, another TS-based analysis, 
is equivalent at large λ. (E)(F) The accuracy of parameter estimation of the intensities. 
(G)(H) The accuracy of parameter estimation of the transition rates given by the state 
lifetim λ. Estimated λ should be same as the assumed λ given for simulation. In that 
sense, VB-HMM-TS shows almost perfect results. Parameter estimation seems 
sufficiently accurate in the parameter range giving high NoS accuracy. Statistics of (C–
H) are evaluated from results that estimated NoS correctly. Error bars designate the 
standard deviation.  
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Figure S6: Evaluation of the FRET signal analysis on 1000 Monte-Carlo-simulated time series data 

with ΔE = 0.2 and 0.1. Solid lines show the results of the FRET analyses, while dashed 
lines are of the intensity analyses. (A)(B) The accuracy of the NoS estimation. VB-
HMM-TS-FRET as well as VB-HMM-PC-FRET (1 ms) show the best performance. 
(C)(D) The reproducibility of the state transition trajectory. VB-HMM-PC-FRET (1 ms) 
appears to be the best, while VB-HMM-TS-FRET is close to it. (E)(F) Estimation of the 
intensities. It is natural that FRET analyses estimate the intensities exactly, because I 
was constant during simulation. (G)(H) Estimation of the FRET efficiencies. Estimation 
is almost exact when the time bin is not too large and λ is not too small.  (I)(J) 
Estimation of the transition rates, given by the state lifetime λ. VB-HMM-TS-FRET 
again shows almost perfect results. Statistics of (C–J) are evaluated from results that 
estimated NoS correctly. Overall, the FRET analyses are superior to the intensity-based 
analyses. Error bars designate the standard deviation.  
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Figure S7: Results of the state lifetime λ estimation are replotted from (A) Fig. S5 G, (B) Fig. 4 C 

(S5 H), (C) Fig. S6 I and (D) Fig. 5 C (S6 J), respectively, so that λ is rescaled as the 
ratio to the bin size on both the horizontal and the vertical axes. In each graph, the 
curves almost overlap, which indicates that correctness of analysis seems to depend on 
the relative bin size to the state lifetime rather than the absolute bin size. When the ratio 
is large enough (> ~10), the curves are on the diagonal lines, meaning correct 
estimations. With the ratio getting smaller than 10, the curves begin to deviate from the 
diagonal lines and the errors are significant where the ratio < 1. There are some curves 
showing the substantial deviation from the diagonal line even with the ratio > 1. Most of 
them are VB-HMM-PC results for state 2, which is the intermediate state among three 
states. Those errors are presumably caused by frequently missed short-lived stays of the 
state 2.  
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Figure S8: Dependence of intensity analyses on the total signal length T. 1000 Monte-Carlo-

simulations were conducted with conditions described in S.2.1.2. (A) The accuracy of 
the NoS estimation. (B) The reproducibility of the state transition trajectory. (C) The 
accuracy of parameter estimation of the intensities. (D) The accuracy of parameter 
estimation of the transition rates given by the state lifetime, λ, which should be {λ1, λ2, 
λ3} = {20, 10, 5} ms. (E) The estimated λ is normalized by the correct λ given to 
simulation. 
 The shortest T = 0.625s, at which each state appears ~20 times in average, is long 
enough to give the correct result for VB-HMM-TS. There seems to be little dependence 
on T except for VB-HMM-PC with large bins. It may be noticeable that estimation of λ 
by VB-HMM-TS again appears to be perfect.  
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Figure S9: Dependence of FRET analyses on the total signal length T. 1000 Monte-Carlo 

simulations were conducted with conditions described in S.2.1.2. (A) The accuracy of 
the NoS estimation. (B) The reproducibility of the state transition trajectory. (C) 
Estimation of the intensities. (D) Estimation of the FRET efficiencies. (E) Estimation of 
the transition rates, given by the state lifetime, λ, which should be 1000 ms. 
 The NoS estimation become severely erroneous when T < 2 s, within which each 
state appears < 7 times on average. Because the state transition is stochastically 
generated during simulation, some of these signal traces may not include all three states. 
The resultant incompleteness of the signal presumably causes part of the error. VB-
HMM-TS-FRET and VB-HMM-PC-FRET with a 1 ms bin appears to be satisfactory 
with T > 2 s, i.e. a signal longer than a few seconds is sufficient.  
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Figure S10: Dependence of intensity analyses on the noise-to-signal (N/S) ratio. 1000 Monte-Carlo-

simulations were conducted with conditions described in S.2.1.3. The leftmost points in 
the graphs represent results with a N/S ratio = 0. (A) The accuracy of the NoS 
estimation. (B) The reproducibility of the state transition trajectory. (C) Estimation of 
the intensities. Estimated values increase with N/S ratio because the analyses estimate 
the apparent intensities including noise photons. (D) Estimation of the transition rates, 
given by the state lifetime, λ, which should be {λ1, λ2, λ3} = {20, 10, 5} ms. (E) The 
estimated λ is normalized by the correct λ given to simulation. 
 There appears to be little influence from noise, except for a gradual degradation in 
the trajectory reproducibility.  
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Figure S11: Dependence of FRET analyses on the N/S ratio. 1000 Monte-Carlo-simulations were 

conducted with conditions described in S.2.1.3. The leftmost points in the graphs 
represent results with a N/S ratio = 0. (A) The accuracy of the NoS estimation. (B) The 
reproducibility of the state transition trajectory. (C) Estimation of the intensities. (D) 
Estimation of the FRET efficiencies. Estimated intensities and FRET efficiencies 
change with N/S ratio because the analyses estimate the apparent values of those 
parameters, including noise photons. (E) Estimation of the transition rates, given by the 
state lifetime, λ, which should be 1000 ms. 
 There appears to be little influence from noise, except for a gradual degradation in 
the trajectory reproducibility, especially for VB-HMM-TS-FRET and VB-HMM-PC-
FRET with a 1 ms bin.  
 Because, under our experimental conditions, the N/S ratio was typically less than 5%, 
noise may not be worth considering. However, care should be taken that the estimated 
parameters (intensity and FRET efficiency) include the counts originating from noise 
and should be compensated for later, if necessary.  
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Figure S12: Examples of experimental FRET data from single HJs in the PC-representation with a 

bin size of 5 ms. Donor (green) and acceptor (red) fluorescence signals, compensated 
intensities (yellow) and FRET efficiencies (purple). VB-HMM-TS-FRET results (blue) 
are also shown. (A) is identical to Fig. 6 B–D. 
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index intensity FRET eff. transition rate 

3 6.47±0.96 0.502±0.011 15.6±5.8 
2 6.64±0.96 0.429±0.013 8.9±4.1 
1 6.85±0.97 0.286±0.027 11.6±5.5 

 
 
Table S1: VB-HMM-TS-FRET analysis result: Estimated parameters for states reproduced from 

the smFRET observations of HJ branch migration shown in Figs. S12.  
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