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SUPPLEMENTARY TEXT 

 
Essential Dynamics Coarse-Graining 

 

The ED-CG method is described mathematically as the following:  The displacement of 

atom i at time t can be determined to be 

� 

Δri(t) =ri(t) − r i , where 

� 

ri(t)  is the location of 

atom i at time t, and

� 

r i  is the equilibrium position of atom i. Correlation between atoms is 

evaluated based on whether the two atoms move together.  If atom i and atom j are 

correlated then the displacement difference, 

� 

Δri(t) − Δrj (t)
2
, will be small. To correctly 

capture the slow motions of the system, instead of calculating the displacement difference 

using 

� 

Δri(t), we transform the atomistic coordinates into the essential subspace in which 

only the lowest frequency principle components are retained (1).  In this subspace, the 

displacements are denoted 

� 

Δri
ED (t) . For a system of n atoms, the mapping of these atoms 

to NCG coarse-grained sites will optimally capture long timescale correlations between 

atoms when the residual 

                                

� 

χ 2 =
1

3NCG

1
nt

Δri
ED (t) − Δrj

ED (t)
j> i∈I
∑

i∈I
∑
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
t=1

nt

∑
I =1

NCG

∑                                 (1) 

is minimized. In the CG representation, the position of a CG site is given by the center of 

mass (COM) of all the atoms belonging to this CG site. Using this representation, MD 

simulation data can be transformed into CG coordinates. 

 

The Hetero-Elastic Network Model method 

 

In this method, the interaction between each pair of CG atoms is represented by a 

harmonic spring.  The equilibrium distance is the average distance between each CG pair 

� 

x ij = xi − x j , and the corresponding mean-square distance fluctuation is given by 

� 

Δxij
2 = (xij − x ij )

2 , The spring constant kij is obtained by matching the mean-square 
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distance fluctuation of CG sites, calculated from the normal-mode analysis (

� 

Δxij,NMA
2 ), 

with that from the MD simulations (

� 

Δxij,MD
2 ) through the following iterative algorithm: 

                                            

� 

1
km+1 =

1
km

− 4α(Δxij,NMA
2 − Δxij,MD

2 ),                              (2) 

where m indicates the iteration. The normal mode analysis of the CG elastic network was 

performed with CHARMM version c32b2 (2). No distance cutoff was imposed to limit 

the interactions, thus for a system with NCG CG sites, HENM would yield NCG(NCG-1)/2 

spring constants. Initial values of the spring constants were set at 1 kcal/molÅ 2 and 

iterations of Eq. (2) continued until 

� 

kij
m+1 − kij

m ≤ 10−3.    

 

Twist angle per subunit 
 

Each subunit was CG into a point by calculating its center of mass (COM).   The COM of 

each strand was fitted into a smooth curve using the cubic spline function of MATLAB.  

The projection of monomer i onto the other strand i’ is defined by the point of the other 

strand with equal curvilinear distance to monomer i-1 and monomer i+1.  A third curve, 

connected by the center point of i and i’, denoted by i”, is the twist axis.  The angle 

between vector i-i” and vector (i+1)-(i+1)” projected to the plane with the norm direction 

along the vector i”-(i+1)” is the twist angle of monomer i+1 reference to monomer i.  

 

Calculation of the free energy of CG models 
 

For each CG system, the free energy could be calculated analytically by 

                                                            

� 

G = H − TS ,                                                        (3) 

where the enthalpy 

          
  

� 

H =
1
2

kij (xij − x ij )
2

i, j =1

NCG

∑ +
1
2

mivi
2

i

NCG

∑ + (1
2

NAν i +
NAν ie

−ν i / kBT

1− e−ν i / kBT )
i=1

3NCG −6

∑                 (4)  

contains the bonding energy (V) of all CG pairs, the kinetic energy, and the vibrational 

contribution. NA is Avogadro’s number, 

� 

ν i  is the ith frequency of the normal mode of the 

system, kB is Boltzmann constant, T is temperature, and the entropy 
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� 

S = [−R ln(1− e−ν i / kBT ) +
NAν ie

−ν i / kBT

T(1− e−ν i / kBT )
]

i=1

3NCG −6

∑                                (5) 

based on Normal Mode Analysis (3).  For harmonic systems, according to equipartition 

theorem, the bonding energy and the kinetic energy are both 3/2NCGRT.  The vibration 

frequency 

� 

ν i  is the square root of the eigenvalue of the mass-weighted Hessian Matrix 

� 

M
−1
H M

−1
, where M is mass and 

� 

Η ∈R3n × R3n  is the Hessian Matrix 

                                               

  

� 

H =

h11 h12  h1n
h21 h22  h2n
 
hn1 hn2  hnn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 .                                                 (6) 

 

The term 

� 

hij ∈R
3 × R3 is a super-element in H. The super-elements are given by  

                            

� 

hij =
∂ 2V /∂xi1∂x j1

∂ 2V /∂xi1∂x j2
∂ 2V /∂xi1∂x j3

∂ 2V /∂xi2∂x j1
∂ 2V /∂xi2∂x j2

∂ 2V /∂xi2∂x j3

∂ 2V /∂xi3∂x j1
∂ 2V /∂xi3∂x j2

∂ 2V /∂xi3∂x j3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
,                              (7) 

when 

� 

i ≠ j  

                                 

� 

∂ 2V /∂xi1
∂x j2

= −kij

(x j1
− xi1

)(x j2
− xi2

)
xij
2

xij = x ij

,                                   (8) 

and when 

� 

i = j  

                                 

� 

∂ 2V /∂xi1
∂xi2

= kil
l≠ i
∑

(xi1
− xl1

)(xi2
− xl2

)
xil
2

xil = x il

.                                  (9) 
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SUPPLEMENTAL TABLES AND FIGURES 
 
Table S1. Intra-subunit CG interactions for 4 intuitive sites model (ATP-bound filament) 

 
Intra-subunit pairs 

� 

x ij  
(Å) 

� 

k ij  
 (kcal/molÅ2) 

� 

σ (kij ) 
(kcal/molÅ2) 

 

� 

σ (kij ) /k ij  
1-2 26.80 (0.56) 2.68 1.23 45.9% 
1-3 25.93 (0.31) 8.31 1.89 22.7% 
1-4 35.76 (0.66) 4.54 1.31 28.9% 
2-3 39.64 (0.56) 3.04 1.53 50.3% 
2-4 29.20 (1.26) 2.93 1.47 50.2% 
3-4 25.18 (0.22) 9.75 3.05 31.3% 

 
 
Figure S1 Changes in the morphology of the D-loop (circled) alter the contacts between 
subunits along a strand in the filament.  Each frame shows the ending configuration of a 
different subunit. Note that the bottom subunit in (a) has a folded D-loop configurations 
while in all other subunits D-loop are unfolded.  This figure shows that distinct 
configurations are coupled with different contacts. 
 
Figure S2 Diagrammatic representation of the 13 six-site CG configurations of the (a) 
ATP-bound and (b) ADP-bound filament and the averaged six-site CG model 
superimposed on the all-atom backbone structure. The top row contains the 1st -5th 

subunits, the middle row contains subunits 6 -10, and bottom row contains subunits 11 -
13 and the averaged model. 
 
Figure S3   Incorporating heterogeneity into CG models better reproduces (a) the 
persistence length and (b) torsional stiffness observed in MD simulations for ADP-bound 
filament.  
 
Figure S4  Incorporating heterogeneity into CG models better represents (a) the twist per 
subunit and (b) its distribution observed in MD simulations for ADP-bound filament.  
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Figure S1   Changes in the morphology of the D-loop (circled) alter the contacts between 
subunits along a strand in the filament.  Each frame shows the ending configuration of a 
different subunit. Note that the bottom subunit in (a) has a folded D-loop configurations 
while in all other subunits D-loop are unfolded.  This figure shows that distinct 
configurations are coupled with different contacts. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 
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Figure S2 Diagrammatic representation of the 13 six-site CG configurations of the (a) 
ATP-bound (b) ADP-bound filament and the averaged six-site CG model superimposed 
on the all-atom backbone structure. The top row contains the 1st -5th subunits, the middle 
row contains subunits 6 -10, and bottom row contains subunits 11 -13 and the averaged 
model. 
 
(a)

 
(b) 
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Figure S3   Incorporating heterogeneity into CG models better reproduces (a) the 
persistence length and (b) torsional stiffness observed in MD simulations for ADP-bound 
filament.  
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Figure S4  Incorporating heterogeneity into CG models better represents (a) the twist per 
subunit and (b) its distribution observed in MD simulations for ADP-bound filament.  
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