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Supporting Material

A Molecular ratchet: reconstruction from the literature

Here we describe the reconstructed cyclic sequence of known nucleosome modifications in the transcription cycle found in
yeast (figure S-1). It is well established that many yeast transcription factors such as Gcn4p and Gal4 interact with complexes
SAGA and NuA4 that contain histone acetylases Gcn5 and Esa1, respectively (1, 2, 3). This leads to the acetylation of several
sites in the H3 histone tail, namely H3K14, H3K9 and H3K18 by Gcn5, as well as acetylation of K5, K8 and K12 of the H4 tail
by Esa1 (4). Acetylation of H3K14 has been shown to enhance binding and nucleosome-displacing activity of the remodeling
complex SWI/SNF (5). Both the acetylation of histone tails and the removal of nucleosomes from the TATA-box of the
promoter contribute to establishing the initiation-permissive state. It was demonstrated that the basal transcription factors
Bdf1, which promotes binding of TFIID has high affinity for acetylated H4 (6), and that histone displacement accompanies
transcription activation (7).

Once the promoter becomes accessible, the initiation complex containing polymerase is assembled; the elongation compe-
tent PolII is known to associate with the chromatin-modifying complex COMPASS responsible for the H3K4 mono-, di- and
tri-methylation (8). These histone marks promote the deactivation of the promoter in several ways. H3K4 di-methylation
has been shown to attract the Set3 complex (9) containing HOS2 and Stp1 enzymes capable of deacetylating the H3 and
H4 lysine residues (10). Both di- and tri-methylated H3K4 facilitates the binding of the nucleosome-remodeling complex
Isw1 (11), which has been implicated in limiting gene activation - one might speculate through reversing the remodeling that
caused exposing the TATA-box. In order to complete the transcriptional cycle and return the promoter to the original state
demethylation of H3K4 is required. An enzyme KDM1 has been demonstrated to have relevant activity(12), however, its
specificity towards histone modifications has not been described so far.

B Waiting Time Distributions

As there is limited experimental information on the mechanisms of protein complex assembly, we investigated the effects of
the assembly mechanism on the form of the transition waiting time distribution as well as of the reversibility of binding events
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Figure S-1: Core events of the transcription initiation cycle on a regulated yeast promoter. The mechanism is
a based on available experimental data for transcription factor and covalent histone modification mediated progression of
transcription initiation in yeast.

and kinetic constants. We considered the assembly-time statistics of complexes of four proteins on chromatin; following either
a completely sequential, a fully random, or one of out six different partially random mechanisms. The assembly schemes
are shown in Figure S-2A. For the example of the partially random mechanism 2 (Fig S-2A) we demonstrate how the first
passage time distribution for complex formation can be calculated in different ways.

Assuming that all reactions are irreversible, it is possible to derive this PDF as a convolution of PDFs for each binding
step. The respective probability densities for each step are:

pstep1(t) = (k1a + k1b)e−(k1a+k1b)t

pstep2(t) =
k1a

k1a + k1b
× k2ae

−k2at +
k1b

k1a + k1b
× k2be

−k2bt

pstep3(t) = (k3a + k3b)e−(k3a+k3b)t

pstep4(t) =
k3a

k3a + k3b
× k4ae

−k4at +
k3b

k3a + k3b
× k4be

−k4bt (S-1)

The convolution of these PDFs equals the first passage time distribution of complex formation and can be expressed in form
of its laplace transform:

L(p(t)) = f(s) = L(p(step1))× L(p(step2))× L(p(step3))× L(p(step4)) (S-2)

The moments of the first passage time distribution are then given by

〈ta〉 = (−1)a
daf(s)
dsa

|s=0. (S-3)
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Figure S-2: Evaluation of assembly-time distributions for different four protein complex formation mechanisms
. a) Different assembly mechanisms: sequential (Seq), six partially random mechanisms (PR), and fully random (Ran). b)
Assembly time distributions for the eight assembly mechanisms (modeled irreversible with equal effective rate constants k =
0.3min−1: product of diffusion-limited association rate of 3.6nM−1min−1 and 0.083nM protein concentration corresponding
to 50 molecules in 1pL nuclear volume). c) Mean assembly times for the eight mechanisms. d) Noise in assembly time for
the eight assembly mechanisms.
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If all the rate constants are equal the full PDF can be determined:

p(t) = 4 exp−2kt k × (2 + kt+ expkt×(kt− 2)) (S-4)

Alternatively, the first passage time distribution can be described as a phase-type distribution. The continuos phase-type
distribution for partially random mechanism 2 can be written as

p(t) = αeStS0 (S-5)

S =


−k1a− k1b k1a k1b 0 0 0

0 −k2a 0 k2a 0 0
0 0 −k2b k2b 0 0
0 0 0 −k3a− k3b k3a k3b
0 0 0 0 −k4a 0
0 0 0 0 0 −k4b


α = (1, 0, 0, 0, 0, 0, 0, 0)T

S0 = S(1, 1, 1, 1, 1, 1, 1, 1)T ,
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Figure S-3: Reversibility causes long tails in first passage time distributions. First passage time PDFs for the
mechanism shown in the inset. Effective k+ = 0.3min−1, irreversible case (black) and k+/k− ratios 0.1 (red), 0.5 (green)
and 1 (blue). Solid lines represent exact waiting time PDFs for the indicated mechanism, dashed lines correspond to gamma
distributions with the same mean and variance.

with the first two moments given by:

〈t〉 = −αS−11 (S-6)
〈t2〉 = 2αS−21 (S-7)

The elements Sij of the matrix S equal the rate constants for the reaction leading from state i to state j. This naturally
allows to include reversible reactions. As shown in figures S-3 reversibility of reactions has a significant effect on the shape
of the first passage time distribution if the apparent association rates are less than an order of magnitude larger than the
dissociation rates.

However, even though reversibility can significantly change the first passage time distributions for individual ratchet
transitions, the waiting time distributions for individual transitions as well as the convolution of several such distributions
describing the distribution of the life time of an on or off -state can well be approximated by a gamma distribution that
has the same mean and variance for the range of biologically relevant parameters. In simulations with uniformly random
sampling of parameters for the assembly of protein complexes within ranges 10−4s−1 ≤ k+ ≤ 100s−1, 10−2s−1 ≤ k− ≤
10−1s−1 and 10−2s−1 ≤ kmod ≤ 10−1s−1 the average KL-divergence index between the complete waiting time pdf and a
gamma distribution with the same mean and variance was between 0.024and0.026 for either single ratchet transitions or
convolutions of 3 or 5 transitions with different mechanisms for complex assembly (sequential, or 3 different preferential
random mechanisms). The low KL-indices show that for this parameter range resulting waiting time distributions for on-
and off -states can well be approximated by gamma distributions, independent of the number of complexes that need to be
formed on the DNA and independent of the details of the assembly mechanism.

C Burst-Size Distributions

For general distributions of h(t), the waiting time distribution characterizing the time required for transcription initiation
and promoter clearance, the moments of the burst-size distribution can be obtained in form of Laplace transforms. For
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Ton = ton:

pb(B = b|Ton = ton) = pb(B ≥ b|Ton = ton)− pb(B ≥ b+ 1|Ton = ton)

=
∫ ton

t=0

(h(t)b − h(t)(b+1))dt (S-8)

The expectation value and variance of this distribution as a function of ton are known in queuing theory as the renewal
function and the variance function, respectively (e.g. (13)). For general distributions of h(t), they can be expressed in terms
of their Laplace transforms (14, 15):

〈b(t)〉 = L−1

( L(h(t))
1− L(h(t))

)
(S-9)

and

〈δb(t)2〉 = L−1

(L(h(t))(1 + L(h(t)))
(1− L(h(t)))2

)
. (S-10)

The moments of the burst-size distribution can be obtained after integrating over all Ton equivalently to Eq. 1:

〈b〉 =
∫ ∞
t=0

〈b(t)〉g(t)dt (S-11)

〈b2〉 =
∫ ∞
t=0

(〈δb(t)〉+ 〈b(t)〉2)g(t)dt

D mRNA noise for the ratchet model

D.1 Moments of steady-state mRNA distributions - Instantaneous burst model

First we consider a simplified model for a system with very pronounced bursts that can be approximated as producing a
number of B transcripts instantaneously, where B is drawn from a general burst-size distribution. The time intervals between
bursts are described by the distribution of the life times of the off -state and assumed to be independent of the burst-size (in
queuing theory this description corresponds to a G/M/∞ queue with batch arrival). For exponentially distributed life times,
the noise in mRNA levels for such a burst model can be described by the use of a stochastic hybrid system and Dynkin’s
formula (16) (which allows to solve for steady state moments as well as describing the time evolution of moments) or through
the use of the chemical master equation in combination with moment equations (17) (exact solution for the steady-state
mRNA noise and an approximation for systems with non-exponentially distributed life times of the off duration).

The method presented here consists of two steps: first, to use boundary conditions to determine the first k raw moments
of the mRNA distribution at the onset and the end of a burst, and second to derive the moments of the full steady-state
mRNA distribution from this. The evolution of the moments of the mRNA distribution during the off -state is described by
degradation as the only process. Since each mRNA molecule has the same probability to be degraded within a certain time
t (the life time distribution of mRNAs is exponential and therefore memoryless), the number of mRNAs after time t, given
that no new burst has occurred yet, is distributed according to a binomial distribution, where the initial number of molecules
that are present at the beginning of the off -state and the duration of the off -state are random variables themselves. Denote
the moment generating function (mgf) of the copy number distribution at time t as M(z, t) and M(z, 0) = Mi(z). Since
each mRNA molecule has a survival probability of e−kdt, the mgf at time t can be expressed as a function of Mi(z):

M(z, t) = Mi(Log[1 + e−kdt(ez − 1)]) (S-12)
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and therefore at the end of the off -state:

M(z, toff ) =
∫ ∞
t=0

Mi(Log[1 + e−kdt(ez − 1)])f(t)dt (S-13)

Let the mgf of the burst-size be Mburst(z), then the convolution of the probability distributions of molecules left from previous
bursts and the probability distribution of a new burst are described by:

M(z, tburst) = M(z, 0) = Mburst(z)M(z, toff )

= Mburst(z)
∫ ∞
t=0

Mi(Log[1 + e−kdt(ez − 1)])f(t)dt (S-14)

This allows to determine the moments of the mRNA copy number at the time of a burst. The kth moment is given by

〈nk〉i =
dMi(z)
dz

∣∣∣∣
z=0

(S-15)

Taking the first k derivatives of Mi(z) with respect to z yields a set of linear equations that can be solved for the first k
moments of the mRNA copy number distribution at t = 0:

〈n〉i = 〈nburst〉+
∫ ∞
t=0

e−kdt〈n〉if(t)dt (S-16)

〈n2〉i = 〈n2
burst〉+ 〈nburst〉〈n〉i +

∫ ∞
t=0

(e−2kdt〈n2〉i + e−kdt(1− e−kdt)〈n〉i)f(t)dt

Assuming a gamma distribution with shape parameter Nf and rate parameter kf for the distribution of the life time of the
off -state, f(t), these moments are given by:

〈n〉i =
〈nburst〉

1−
(

kf

kf +kd

)Nf
(S-17)

〈n2〉i =
〈n2
burst〉+ kNf

(
(1 + 2〈nburst〉)(kf + kd)−Nf − (kf + 2kd)−Nf

) 〈n〉i
1−

(
kf

kf +2kd

)Nf

With this, the moments at any time t during the off -state can be determined from Eq. S-12 as:

〈n(t)〉 = 〈n〉ie−kdt (S-18)
〈n2(t)〉 = 〈n2〉ie−2kdt + e−kdt(1− e−kdt)〈n〉i

The moments of the full mRNA distribution can be obtained by averaging over the moments at times t weighted according
to the probability that the next burst has not yet occurred at t, i.e. the survival probability ps(t) = 1− F (t) (with F (t) as
the cumulative distribution function of the distribution of off -state life times):

〈n〉 =
1

〈toff 〉
∫ ∞
t=0

〈n(t)〉(1− F (t))dt

〈n2〉 =
1

〈toff 〉
∫ ∞
t=0

〈n2(t)〉(1− F (t))dt (S-19)
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Figure S-4: For average life times of the on-state that are considerably shorter than the average degradation
time, the instantaneous burst model is a good approximation of the gene switch modeled with gamma
distributed life times. The rate of transcription initiation ktr was adjusted to keep the average steady-state mRNA level
constant at 〈n〉 = 10. Red lines indicate the use of the effective burst-size in the instantaneous burst model, whereas for the
blue lines the regular burst-size was used. a) both on and off -state modeled with exponentially distributed life times. b) life
times of on and off -state modeled with Erlang(5) distributions.

The solution to a full ratchet model with general duration distributions for on- and off -states in the following section
allows to explore the range of applicability of the instantaneous burst model. Figure S-4, shows the percent deviation in the
mRNA noise for an instantaneous burst model as compared to the full model as a function of the average durations for on-
and off -states. The approximation is valid when the average duration of the on-state is shorter than the average life time
of mRNA while the ratio of the average durations of on and off -states has a relatively small effect on the approximations
validity. The approximation is improved when the effective burst-size instead of the regular burst-size is used. The deviations
are larger for an exponential switch than for peaked distributions for the durations of both states.

D.2 Moments of steady-state mRNA distributions - general waiting time distributions for
f(t) and g(t)

The simplified instantaneous burst model can be extended to one that explicitly takes into account the duration(distribution)
of the on-state as well: transcription initiation and mRNA degradation are described as first-order processes with rate
constants kh and kd, and the distributions for the life times of on and off -states are described by general waiting time
distributions. The reason for modeling transcription initiation with an exponential distribution is that the exact distribution
for transcription initiation has a minor effect on the burst-size distribution and is therefore also expected to have little
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effect on the steady state mRNA distribution. However, the approach described here only requires that the moments of
birth-death process occurring during the on-state as a function of time are known; for general waiting time distributions of
transcription initiation and promoter clearance, moments of this distribution can be calculated recursively (18). Depending
on the time scales, the waiting time distribution for degradation of mRNA can have large effects, that can be difficult to
predict intuitively. However, many measurements of mRNA turnover in mammalian cells can well be fit with an exponential
decay model (19).

Let time t = 0 be the beginning of an off -state and M(z, t) be the mgf of the number of mRNA molecules at time t
(0 ≤ t ≤ ton + toff ). Completion of one cycle (off - and on-state) defines the boundary condition

M(z, 0) = M(z, ton + toff ) =
∫ ∞
s=0

∫ ∞
t=s

M(z, t)g(t− s)f(s)dsdt. (S-20)

With the assumption of exponential life times of mRNAs the probability that one molecule is still present after time ∆t is a
Bernoulli random variable with mgf h(z, t):

h(z,∆t) = 1 + e−kd∆t(ez − 1). (S-21)

Starting with the generating function M(z, 0) = Mi(z) and considering only degradation of mRNAs, at time t the compound
mgf equals

M(z, t) = Mi(Log[h(z, t)]). (S-22)

Therefore, at the end of an off -state the moment generating function is given by:

M(z, toff ) =
∫ ∞
t=0

Mi(Log[h(z, t)])f(t)dt. (S-23)

During an on-period degradation of the mRNA molecules that have been present at the beginning of the burst continues
as described through the function h(z, t) with Mdeg(z, toff + u) = Mi(Log[h(z, u + toff )]). In addition mRNAs are also
created and degraded according to a birth-death-process with exponential waiting times. This can be described as an effective
burst-size, Beff , since this term only takes into account those mRNA molecules synthesized that survive at least until time
u. The transient distribution for this birth-death process as described in (20) is given by:

pbirth/death(Beff = beff , u) =
1

beff !

(
kh
kd

(
1− e−kdu

))beff
(
e

kh
kd

(e(−kdu)−1)
)

(S-24)

It is a Poisson distribution with average λu = kh/kd(1 − e−kdu) and mgf Mburst(z, toff + u) = eλu(ez−1). During an on-
state the probability distribution of the mRNA copy number distribution is given by the convolution of the distributions of
molecules that are still present from previous bursts and the effective burst-size distribution. The generating function equals
the product of the two individual generating functions:

M(z, toff + u) = Mdeg(z, toff + u)Mburst(z, toff + u) (S-25)

=
∫ ∞
s=0

Mi(Log[1 + e−kd(s+u)(ez − 1))ekh/kd(1−e−kdu(ez−1))f(s)ds

With Eq. S-20:

M(z, toff + ton) = M(z, 0) = Mi(z) (S-26)

=
∫ ∞
s=0

∫ ∞
u=0

Mi(Log[1 + e−kd(s+u)(ez − 1)])ekh/kd(1−e−kdu(ez−1))f(s)g(u)dsdu

=
∫ ∞
s=0

∫ ∞
t=s

Mi(Log[1 + e−kd(t)(ez − 1)])ekh/kd(1−e−kd(t−s)(ez−1))f(s)g(t− s)dsdt
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This integral equation is difficult to solve for general waiting time distributions, g and f , however the moments at t = 0
can be solved by differentiation of Eq. S-26. Taking the first k derivatives of M(z, 0) with respect to z yields a set of linear
equations that can be solved for the first k moments of the mRNA copy number distribution at t = 0:

〈n〉i =

∫∞
u=0

λug(u)du
1− ∫∞

s=0

∫∞
u=0

e−kd(s+u)g(u)f(s)duds
(S-27)

〈n2〉i =

∫∞
u=0

∫∞
s=0

(λu(1 + λu) + 〈n〉i(e−kd(u+s) − e−2kd(u+s) + 2e−kd(u+s)λu))g(u)f(s)duds
1− ∫∞

s=0

∫∞
u=0

e−2kd(s+u)g(u)f(s)duds

The moments at any time t in the transcriptional cycle are then given by the derivatives of Eqs.s S-22 and S-25. To obtain the
moments of the total mRNA copy number distribution one needs to average over all times according to their probabilities:

〈nk〉 =
1

〈ton〉+ 〈toff 〉
(∫ ∞

s=0

〈nk〉s(1− F (s))ds+
∫ ∞
u=0

〈nk〉u(1−G(u))du
)
, (S-28)

with 〈nk〉s as the kth moment of the mRNA copy number distribution at time s during the off -state (given by derivatives
of Eq. S-22) and 〈nk〉u as the kth moment at time t = toff + u during the on-state (derivatives of Eq. S-25) and F and G
as the cumulative distribution functions of the duration distributions of off and on-states, respectively.

Figure S-5 shows a contour plot of the noise in the mRNA copy number for models where the waiting time distributions
were modeled as either exponential or as Erlang distributions (four reactions in sequence). When the durations of the on
and off state were varied, the average time between mRNA synthesis events was adjusted to keep the average transcript level
constant at 10 molecules/cell. Figure S-5 indicates that multistep mechanisms in gene switching as well as in the initiation
mechanism does reduce noise, but they have their largest effects in different parameter regimes. While multistep switching
between on and off states leads to significant noise reduction in a burst regime (i.e. long off states interspersed with short
periods of transcriptional activity), it’s effects in a regime where the gene is on most of the time is less pronounced. In
contrast, the multistep initiation mechanism has it’s largest effect for a constitutively expressed gene where it reduces the
noise in the mRNA distribution below the Poisson limit. In a bursting regime, the multistep initiation mechanism has almost
no effect at all on the mRNA distribution as was already suggested by the analysis of noise in burst sizes. In a regime where
the gene switches rarely to the off state and spends most of the time in the on state, the absolute magnitude of the noise
reduction caused by either a multistep mechanism in the initiation or in the switching becomes comparable. Figure S-5C
shows the distributions in this regime. Although the model with multistep switching and one step initiation mechanism has
the exact same noise in mRNA copy numbers (black line) as a model with multistep initiation and single step switching
(blue dashed line), the two distributions differ: the multistep switching mechanism leads to an almost zero probability of
having no mRNA molecules in a cell but the distribution has a somewhat broader tail to the right in comparison with the
distribution for the multistep initiation/single step switching model. This analysis suggests that depending on whether a
gene is highly active, bursty, or constitutively active different aspects of the design of transcription determine the noise in
transcription.

D.3 Steady State mRNA Distribution of a “Deterministic Switch”

As a limit to very precise life-time distributions for both states, these durations can be considered deterministic. The noise
in the steady-state mRNA distribution then derives from the birth-death process that occurs during the on-state and the
ongoing degradation during the off -state. Modeling synthesis and degradation of mRNA again with exponential waiting
times again, the complete steady-state mRNA distribution of this ’deterministic switch’ can be solved analytically. With
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Figure S-5: Multistep mechanisms in switching between on and off states as well as in the initiation mechanism
itself can reduce noise in mRNA copy numbers A. Cartoon depicting the different models used: blue lines indicate a four
step mechanism for switching between on and off states, black lines a single step. Dashed lines are used for models with a four step
mechanism for transcription initiation, while continuous lines are used for models with one step initiation. B. Contour plot of the noise
in mRNA copy number distributions for the four models depicted in A for varying on and off state durations. The average time for
transcription initiation was adjusted to keep the mean transcript level fixed at 10 molecules. Contours shown are for noise levels of
0.2, 0.6, 1, and 2. C. Copy number distributions for the three points indicated in B obtained through simulations.
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deterministic times for both states Eq. S-26 simplifies to:

M(z, toff + ton) = M(z, 0)

= M(Log[1 + e−kd(t)(ez − 1)])ekh/kd(1−e−kd(t−s))(ez−1) (S-29)

rewriting this with probability generating functions, P (z, t) = M(Log[z], t) yields:

P (z, 0) = Pi(z) = Pi(1 + e−kdt(z − 1))ekh/kd(1−e−kd(t−toff ))(z−1), (S-30)

For t = ton + toff this equation can be solved by iteration:

P (z, ton + toff ) = P (z, 0)

= Pi(1 + e−kd(ton+toff )(z − 1)])ekh/kd(1−e−kd(ton))(z−1)

= Pi(1, 0)︸ ︷︷ ︸
=1

∞∏
n=0

ekh/kd(1−e−kd(ton))ekdtoff (1+e−nkd(ton+toff )(z−1))

= e

e
kdtoff (−1+ekdton)kh„
−1+e

kd(toff +ton)
«

kd

(−1+z)

, (S-31)

which is the pgf of a Poisson distribution. During the off -state (t < toff ), P (z, t) evolves according to:

P (z, t) = e

e
kd(toff−t)(−1+ekdton)kh„
−1+e

kd(toff +ton)
«

kd

(−1+z)

= eλoff (t)(z−1), (S-32)

while during the on-state

P (z, t) = e

e
kd(toff−t)(−1+ekdton)kh„
−1+e

kd(toff +ton)
«

kd

(−1+z)

× ekh/kd(1−e−kd(t−toff ))(z−1) = eλon(t)(z−1), (S-33)

Therefore, the distribution at any time t is given by a Poisson distribution with rate parameter λi(t) (equal to the average
mRNA copy number at time t), changing throughout the transcription cycle. The complete mRNA copy number distribution
is given as the time average over the Poisson distributions with λ(t):

PmRNA(n) =
1

ton + toff

(∫ toff

s=0

λoff (s)ne−λoff (s)

n!
ds+

∫ ton

u=0

λon(u)ne−λon(u)

n!
du

)
(S-34)

D.4 Comparison of the different switch models

Since the exponential and deterministic switch models are opposing limits to models with Erlang (or gamma) distributions
for the durations of the on and off -states, the steady-state mRNA distribution of any Erlang switch model can be expected
to be an intermediate between the two distributions for the exponential and deterministic switch models, that have the same
average life time for each state as well as the same rate constants for transcription initiation and mRNA degradation. For
three different Erlang switch models, each with a total of Ng + Nf = 10 steps and eight different combinations of ton and
toff that exemplify the different possible shapes of mRNA distributions (Fig. S-6), the steady-state mRNA distributions
were obtained from simulations and compared to the distributions for the exponential and deterministic switch in terms of
the Kullback-Leibler divergence index (Table S-1).
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With at least five steps for each transition the resulting mRNA distribution is more similar to the distribution generated by
a system with deterministic switching times than that of a system with exponential switching times. If one of the transitions
occurs in only one step, the resulting distribution is much better described by an exponential than by a deterministic system.
Similar results were obtained with other measures for the similarity of distributions then the KL-divergence index (results
not shown).

D.5 Detailed analysis of Figure S-6B

As can be seen from figure S-6B, the differences between the two mRNA distributions are smallest if either ton is much
larger than toff (the system is almost continuously in the on-state) or if ton and toff are of comparable size and both larger
than the average time for degradation. The former case can be understood intuitively, this parameter combination leads to
a distribution that is very similar to a Poisson distribution; the infrequent and short excursions to the off -state have only
a small effect on the distribution and the effect of whether these switches to and from the off -state occur in more or less
regular time intervals is also rather small.

An increase in the life time of off -state leads to a bimodal distribution. For the switch with exponential waiting times,
the first peak of the bimodal distribution always lies at zero mRNA molecules. This is not the case for the deterministic
switch in the region of large ton and intermediate toff . Accordingly, the Kullback-Leibler divergence index is relatively high
in this region. A further increase of the life times of off -state also causes the deterministic switch to have its first peak at zero
mRNA molecules, which is why in this regime the distributions for deterministic and exponential switch become more similar
again (Fig S-6B). The regularity of the timing of switching between the states has a minor effect on the mRNA distribution
in this regime. If the average time of the on-state is smaller than that for degradation, the distributions of the exponential
and the deterministic switch are dissimilar for a large range of values of 〈toff 〉. For 〈toff 〉 ≤ 1/kd the mRNA distribution is
a single-peaked distribution. In this regime, the noise in the waiting time distributions for the on and off -state have a large
effect on the steady state mRNA distribution; the distribution for the exponential switch is much broader than that for the
deterministic switch (Figure S-6B; see Fig. S-7 for example distributions). Greater durations of the off -state while keeping
〈ton〉 smaller than 1/kd makes the two distributions even more dissimilar. While the distribution for the exponential switch
is now in a regime that can be described with a power law (21), the distribution of the deterministic switch still has its
maximum at n > 0. Increasing toff even more, i.e., increasing the burst-size, leads to a regime where also the deterministic
switch has a distribution with its maximum at zero mRNA molecules. Nevertheless, the two distributions are still clearly
distinguishable over a wide range of values for 〈toff 〉.

E Comparison to Experimental Data

The mRNA distributions measured by Zenklusen et al. (22) were fit to different Erlang switch models (Ng = 1, Nf = 1:
red, Ng = 1, Nf = 10: blue, Ng = 5, Nf = 5: green, Ng = 10, Nf = 1: magenta, Ng = 10, Nf = 10: orange) by calculating
setting kd = 1 and choosing kh, kf , and kg to give rise to a steady-state mRNA distribution with the first three moments
equal to the experimentally observed distribution. The full mRNA distributions at steady-state were then obtained for
these models through simulations. The parameters used for these simulations can be retrieved from Tables S-2 and S-3
(kf = Nf (1 + 〈ton〉)/〈toff 〉(〈ton〉 + 〈toff 〉), kg = Ng〈ton〉, kh = 〈b〉/〈ton〉). Even though the steady-state distributions are
remarkably similar for all models, the underlying mechanisms, burst-sizes and time traces differ significantly.

Figure S-8 demonstrates, that for genes that display significant bursting, the waiting time distributions of the underlying
mechanism could in principle be determined from data on the times of synthesis events (as would be observed during a
mRNA-counting experiment). The simulated synthesis times from Figure 6c (Ng = 1, Nf = 10) were used to determine the
average burst-size (〈b〉) and duration (τb) from the sequence size function (23). The sequence size function can be used to
determine the mean burst-size from a time series. All synthesis events separated by a period longer than the mean burst
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Figure S-6: Timescale separation in the model with genetic switch, transcription and degradation largely
determines the shape of the steady-state mRNA distribution. The Kullback-Leibler divergence index (in bits)
between the steady state mRNA distributions of the deterministic and the exponential switch shows that the effect of
the precision of the duration of the states has the largest effect on the mRNA distribution in an intermediate regime of
〈ton〉/〈tdeg〉 vs. 〈toff 〉/〈tdeg〉. In the exponential switching model: kf = 〈toff 〉−1 and kg = 〈ton〉−1. Contours are shown for
0.01, 0.02, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3 and 0.35. The mean mRNA level, 〈n〉, was kept at 10 by adjusting the rate
for transcription initiation, kh. The degradation rate constant only changes the scaling of the plot and was therefore set to
1. Usage of other indices than the Kullback-Leibler index gave qualitatively similar results.

duration, τb, were scored as different on-phases. As shown in Figure S-8a, this classification of on and off -states based on
the burst duration is correct more than 95% of the time. Estimates of the distribution functions g and f (describing the
durations of on and off -states, respectively) are very similar to the actual distributions used to simulate the time-traces
(shown in Figure S-8c and d).

The advantage of using the sequence size function (23) to identify the on-phases from the time-trace data is that no
assumptions are made about the shape of g, f and h. Once the on and off -phases are identified, estimates for these
distributions can then directly be obtained from the time-trace data. Since on-phases which do not lead to initiation events
can not be detected and since the beginning and end of an on-phase are assigned to the time of the first and the last initiation
event of the phase, this methods tends to a slight underestimate of the duration of on-phases and the mean burst-size and
an overestimate of the duration of the off -phase. However, these effects are negligible if on-phases lead to many initiation
events.
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Table S-1: KL-divergence indices for the steady state mRNA distributions shown in figure S-7 and either a system with
deterministic switching times (det) or one with exponential switching times (exp). The total number of steps for both
transitions equals ten for all three systems.

〈ton〉/〈toff 〉 0.5/0.5 0.5/2.5 0.5/5.0 0.5/8.0 4.0/0.5 4.0/2.5 4.0/5.0 4.0/8.0

DKL(Ng = 1, Nf = 9, exp) 0.04 0.11 0.07 0.04 0.01 0.05 0.04 0.02

DKL(Ng = 1, Nf = 9, det) 0.20 0.67 0.56 0.49 0.01 0.04 0.03 0.01

DKL(Ng = 9, Nf = 1, exp) 0.03 0.06 0.04 0.04 0.00 0.01 0.01 0.01

DKL(Ng = 9, Nf = 1, det) 0.24 0.72 0.33 0.15 0.03 0.16 0.07 0.04

DKL(Ng = 5, Nf = 5, exp) 0.15 0.23 0.14 0.07 0.01 0.07 0.05 0.03

DKL(Ng = 5, Nf = 5, det) 0.04 0.19 0.11 0.07 0.00 0.02 0.01 0.00

Table S-2: Comparison of models with different numbers of steps in the transition between on and off states (Ng,Nf ) for
PDR5 and MDN1.

PDR5 MDN1
Ng Nf 〈b〉 〈ton〉

〈toff 〉
〈ton〉+〈toff 〉
〈tdeg〉 〈b〉 〈ton〉

〈toff 〉
〈ton〉+〈toff 〉
〈tdeg〉

1 1 4.8 0.0215 0.36 1.6 2.1 0.28
1 10 12.4 0.2364 0.93 5.2 3.0 0.86
5 5 16.2 0.0007 1.20 6.4 2.2 1.05
10 1 8.6 0.0009 0.64 1.8 1.4 0.32
10 10 21.4 0.0005 1.60 9.0 2.3 1.48

Table S-3: Comparison of models with different numbers of steps in the transition between on and off states (Ng,Nf ) for
POL1, DOA1 and KAP104.

POL1 DOA1 KAP104
Ng Nf 〈b〉 〈ton〉

〈toff 〉
〈ton〉+〈toff 〉
〈tdeg〉 〈b〉 〈ton〉

〈toff 〉
〈ton〉+〈toff 〉
〈tdeg〉 〈b〉 〈ton〉

〈toff 〉
〈ton〉+〈toff 〉
〈tdeg〉

1 1 5.7 0.20 1.81 0.14 0.010 0.0620 13.6 6.7 2.84
1 10 10.1 0.29 3.23 0.24 0.0010 1.0 35.2 8.3 7.32
5 5 11.4 0.14 3.61 0.62 0.0004 2.6 34.1 7.5 7.08
10 1 6.4 0.05 2.05 0.25 0.0012 1.1 13.4 5.6 2.79
10 10 11.9 0.09 3.77 0.99 0.00002 4.1 40.3 7.9 8.38
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(b) 〈ton〉/〈tdeg〉 = 4, 〈toff 〉/〈tdeg〉 = 0.5
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(c) 〈ton〉/〈tdeg〉 = 0.5, 〈toff 〉/〈tdeg〉 = 4
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Figure S-7: Steady state mRNA distribution for different parameter regimes and different waiting time distributions for
switching: BLUE: exponential waiting times, GREEN: deterministic waiting times, BLACK: Ng : 5, Nf : 5. 〈n〉 = 10,
kd = 1, 〈ton〉 and 〈toff 〉 as indicated for each plot, kf and kg were adjusted accordingly.
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Figure S-8: The life-time statistics of the switch can be obtained from time-trace data of mRNA. A) The
sequence size function of the stochastic time trace (blue) and the fraction of time that is correctly classified as belonging
to an on or off -phase where the classification is based on the time scale (υ; dimensionless time as unit) (green). B-D:
Distributions obtained from a classification into on and off -states based on τb (blue) and the exact distributions (red). B)
burst-size distribution. C) First-passage-time pdf of the on-state duration, g(t). D) First-passage-time pdf of the off -state
duration, f(t).

17



References

[1] Drysdale, C. M., B. M. Jackson, R. McVeigh, E. R. Klebanow, Y. Bai, T. Kokubo, M. Swanson, Y. Nakatani, P. A.
Weil, A. G. Hinnebusch, 1998. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II
holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol. Cell. Biol., 18:1711–1724.

[2] Larschan, E., F. Winston, 2005. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex
during Gal4-activated transcription. Mol. Cell. Biol., 25:114–123.

[3] Herbig, E., L. Warfield, L. Fish, J. Fishburn, B. A. Knutson, B. Moorefield, D. Pacheco, S. Hahn, 2010. Mechanism of
Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains. Mol. Cell. Biol.,
30:2376–2390.

[4] Mitarai, N., K. Sneppen, S. Pedersen, 2008. Ribosome collisions and translation efficiency: optimization by codon usage
and mRNA destabilization. J. Mol. Biol., 382:236–245.

[5] Chandy, M., J. L. Gutierrez, P. Prochasson, J. L. Workman, 2006. SWI/SNF displaces SAGA-acetylated nucleosomes.
Eukaryotic Cell, 5:1738–1747.

[6] Durant, M., B. F. Pugh, 2006. Genome-wide relationships between TAF1 and histone acetyltransferases in Saccha-
romyces cerevisiae. Mol. Cell. Biol., 26:2791–2802.

[7] Moreira, J. M., S. Holmberg, 1998. Nucleosome structure of the yeast cha1 promoter: analysis of activation-dependent
chromatin remodeling of an rna-polymerase-ii-transcribed gene in tbp and rna pol ii mutants defective in vivo in response
to acidic activators. The EMBO Journal, 17:6028 – 6038.

[8] Gerber, M., A. Shilatifard, 2003. Transcriptional Elongation by RNA Polymerase II and Histone Methylation. Journal
of Biological Chemistry, 278:26303–26306. doi:10.1074/jbc.R300014200.

[9] Kim, T., S. Buratowski, 2009. Dimethylation of h3k4 by set1 recruits the set3 histone deacetylase complex to 5’
transcribed regions. Cell, 137:259 – 272. ISSN 0092-8674. doi:DOI: 10.1016/j.cell.2009.02.045.

[10] Wang, A., S. K. Kurdistani, M. Grunstein, 2002. Requirement of Hos2 Histone Deacetylase for Gene Activity in Yeast.
Science, 298:1412–1414. doi:10.1126/science.1077790.

[11] Santos-Rosa, H., R. Schneider, B. E. Bernstein, N. Karabetsou, A. Morillon, C. Weise, S. L. Schreiber, J. Mellor,
T. Kouzarides, 2003. Methylation of histone h3 k4 mediates association of the isw1p atpase with chromatin. Molecular
Cell, 12:1325 – 1332. ISSN 1097-2765. doi:DOI: 10.1016/S1097-2765(03)00438-6.

[12] Ingvarsdottir, K., C. Edwards, M. G. Lee, J. S. Lee, D. C. Schultz, A. Shilatifard, R. Shiekhattar, S. L. Berger, 2007.
Histone H3 K4 Demethylation during Activation and Attenuation of GAL1 Transcription in Saccharomyces cerevisiae .
Mol. Cell. Biol., 27:7856–7864. doi:10.1128/MCB.00801-07.

[13] Cinlar, E., 1975. Introduction to stochastic processes. Prentice-Hall, Englewood Cliffs, NJ. ISBN 0134980891.

[14] Parzen, E., 1962. Stochastic Processes. Holden-Day, San Francisco.

[15] Heyman, D., M. Sobel, 1982. Stochastic Models in Operations Research. McGraw-Hill, New York.

[16] Singh, A., J. P. Hespanha, 2009. Optimal feedback strength for noise suppression in autoregulatory gene networks.
Biophys. J., 96:4013–4023.

18



[17] Pedraza, J. M., J. Paulsson, 2008. Effects of molecular memory and bursting on fluctuations in gene expression. Science,
319:339–343.

[18] Liu, L., B. Kashyap, G. Templeton, 1990. On the GIX/G/∞ system. Journal of Applied Probability, 27:671–683.

[19] Lam, L. T., O. K. Pickeral, A. C. Peng, A. Rosenwald, E. M. Hurt, J. M. Giltnane, L. M. Averett, H. Zhao, R. E.
Davis, M. Sathyamoorthy, L. M. Wahl, E. D. Harris, J. A. Mikovits, A. P. Monks, M. G. Hollingshead, E. A. Sausville,
L. M. Staudt, 2001. Genomic-scale measurement of mrna turnover and the mechanisms of action of the anti-cancer drug
flavopiridol. Genome Biol, 2:RESEARCH0041.

[20] Hemberg, M., M. Barahona, 2007. Perfect sampling of the master equation for gene regulatory networks. Biophys J,
93:401–10. doi:10.1529/biophysj.106.099390.

[21] Iyer-Biswas, S., F. Hayot, C. Jayaprakash, 2009. Stochasticity of gene products from transcriptional pulsing. Phys. Rev.
E, 79:9. doi:10.1103/PhysRevE.79.031911.

[22] Zenklusen, D., D. R. Larson, R. H. Singer, 2008. Single-RNA counting reveals alternative modes of gene expression in
yeast. Nat. Struct. Mol. Biol., 15:1263–1271.

[23] Dobrzynski, M., F. J. Bruggeman, 2009. Elongation dynamics shape bursty transcription and translation. Proc Natl
Acad Sci USA, 106:2583–8. doi:10.1073/pnas.0803507106.

19


