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Proof of Relation between HD Expansion Rate and Leaflet Velocities, dRhd/dt =

(∆v)r=Rhd

As the HD grows mass conservation at its rim determines a relationship between the HD

growth rate, the leaflet velocity difference ∆v = vout − vin and the leaflet densities at the

rim. Now eq. 7 shows that ρ̄ = ρ0 to leading order in the small quantity γ0/K. Since

∆ρ is first order in ftherm (and in Aeqhd/Aves) to leading order the leaflet densities equal the

initial density, ρin = ρout = ρ0. This simplifies mass conservation since only velocities need

be considered. Consider the HD expanding with speed dRhd/dt. Now as the HD grows the

inner leaflets are brought into contact to form new HD area (see fig. 2). This requires that

the inner leaflet velocity at the HD rim be vin = dRhd/dt (1 − cos θ , − sin θ) where the

two components of this vector are with respect to the HD radial direction and the direction

normal to the HD, respectively. Meanwhile the outer leaflets move outward with the HD

rim, vout = dRhd/dt (1 , 0) (see fig. 2). Taking the difference of these two vectors gives

∆v = dRhd/dt (cos θ , sin θ) which is tangent to the non-HD surface at the rim as it must

be. Hence the magnitudes are equal, dRhd/dt = (∆v)r=Rhd
, as stated in the “Model” section

of the main text.

Hemifusion with Vesicle-Substrate Adhesion: Decay of Bilayer Tension during

HD Growth (eq. 9 of main text)

In the experiments of ref. [1] to which we compared detailed model predictions the

hemifusing vesicles were adhered to a substrate. In this case the decay of tension during

HD growth is buffered somewhat by vesicle-substrate adhesion and the linear relationship

between tension and HD area of eq. 8 in the main text is no longer valid. This vesicle

tension features in the boundary condition eq. S3 for the diffusive-like dynamics governing

evolution of the density difference field ∆ρ. Let us now calculate the decay in this case.

Now the bilayer tension decays with mean lipid density ρ̄ according to eq. 7. ρ̄ can be

expressed as ρ̄ = ρ̂in + ∆̂ρ/2 where hat symbols denote spatial averages over the non-HD

regions. This relation allows ρ̄ to be obtained without need for detailed knowledge of the

spatial variations of ρin.

Now in the absence of substrate adhesion the decrease of ρ̂in would be only second order

in Ahd/Aves since the inner leaflet is not displaced by HD growth. Hence the origin of its
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change is primarily increase in vesicle area resulting from adhesion with the substrate. Using

the geometrically determined relation between surface area and substrate contact angle θs [2]

leads to

ρ̂in = ρ0

(
1 −

θ4s
16

)
(S1)

with second order corrections in the small quantity Ahd/Aves and sixth order corrections in θs.

Using this expression in the relation ρ̄ = ρ̂in+ ∆̂ρ/2 together with the ∆̂ρ values determined

directly from the ∆ρ profile tracked by our numerical calculations allows ρ̄ to be expressed as

a function of substrate contact angle. But the contact angle in turn is a function of bilayer

tension and adhesion energy W through Young’s equation which implies θs = cos−1(1−W/γ).

This gives ρ̄ = ρ0[1− (cos−1(1−W/γ))4/16+ (cos−1(1−W/γ0))4/16] + ∆̂ρ/2. Inserting this

result into the bilayer tension relation, eq. 7, gives the equation determining bilayer tension

during HD growth,

γ = γ0 +K

{
1

16
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W

γ(t)
)

)4
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1

16
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W

γ0
)

)4
−

∆̂ρ

2ρ0

}
(S2)

Note this result applies to each vesicle. In our numerical calculations ∆̂ρ was determined

for each vesicle after each time step and eq. S2 was then solved for the bilayer tension value

of each vesicle. The boundary conditions of eq. S3 were thus updated.

Now eq. S2 above is general and applicable regardless of vesicle symmetry. In the

symmetric case, there is no net flow of outer leaflet lipids between the vesicles, and the

situation is somewhat simpler. The mean density difference is ∆̂ρ = Ahd/Aves to leading

order and thus density fields need not be calculated to determine the boundary condition of

eq. 5 of the main text. Inserting this into eq. S2 give eq. 9 of the main text.

HD Growth Kinetics for Asymmetric Hemifusion

Here we generalize the kinetic equations for symmetric hemifusion, 4 and 5 of the main

text, to the case of hemifusing vesicles with different areas and tensions. The diffusion-

like equation, 4, remains applicable in each of the two non-HD regions, one in each vesicle.

However, the boundary condition and HD growth velocity condition of eq. 5 are different.

Boundary conditions at HD rim. The boundary conditions for the density differences

∆ρ1 and ∆ρ2 in vesicles 1 and 2 are determined by the condition of local equilibrium at the

HD rim and eq. 5 applies for each vesicle (see ref. [3]):
(
∆ρ1
ρ0

)

r=Rhd(t)

=
γ1
2k∆

+ εcation ,

(
∆ρ2
ρ0

)

r=Rhd(t)

=
γ2
2k∆

+ εcation . (S3)
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Relation between HD growth rate and density gradient. As for the symmetric

case (see “Proof of Relation between HD Expansion Rate and Leaflet Velocities, dRhd/dt =

(∆v)r=Rhd
” above) the HD expansion rate dRhd/dt is related to leaflet velocities by mass

conservation, again simplified by the fact that leaflet densities equal ρ0 to leading order.

Now HD growth entails the non-HD region inner leaflets being pinched together at the HD

rim. Thus, using the same coordinate system as in the analogous symmetric discussion we

have

vin1 =
dRhd
dt

(1− cos θ1 , − sin θ1) , vin2 =
dRhd
dt

(1− cos θ2 , sin θ2) , (S4)

where the leaflets make contact angles θ1 and θ2 to the HD tangent surface at the rim.

Whereas in the symmetric case the outer leaflet velocity matched the HD boundary

velocity, in the asymmetric situation the outer leaflets have differing velocities vout1 and vout2

and lipids flow between outer leaflets. The condition of no outer leaflet lipid flux across the

HD rim demands that the sum of their velocity components in the radial direction equals

2 dRhd/dt. The definition of interleaflet velocity difference is used to relate outer and inner

leaflet velocities, vout1 = vin1 +∆v1 and v
out
2 = vin2 +∆v2. Using these relationships we sum

the radial components of outer velocities using eq. S4 for inner velocities and the fact that

interleaflet velocities must be tangent to their respective membrane surfaces to obtain

2
dRhd
dt

=
dRhd
dt

(1− cos θ1) + ∆v1 cos θ1 +
dRhd
dt

(1− cos θ2) + ∆v2 cos θ2 . (S5)

From this we obtain dRhd/dt = (∆v1 cos θ1 + ∆v2 cos θ2)/(cos θ1 + cos θ2). For small HDs

we use cos θ1 ≈ cos θ2 ≈ 1 giving

dRhd
dt

=
1

2
(∆v1 +∆v2) . (S6)

Using this with eq. 4 of the main text relating ∆v to gradients of the density difference

yields
dRhd
dt

= −
D

2

[
∇

(
∆ρ1
ρ0

)
+∇

(
∆ρ2
ρ0

)]

r=Rhd(t)

. (S7)

Thus, for asymmetric hemifusion our procedure was to solve the diffusion-like dynamics of

eq. 4 on the vesicle surfaces using the boundary conditions of eq. S3 and use eq. S7 to

continuously update the HD boundary location.

Tension release by vesicle leakage in experiments of Nikolaus et al, ref. [1]

Here we present evidence that vesicle leakage is not an important effect over the short

timescales followed in ref. [1] and thus presumably the other experiments of Table 1 under

similar conditions. We tracked leakage in the three kinetic data sets of fig. 3 by measuring
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vesicle dimensions in Figs. 1,S1 of ref. [1]. Vesicle pair 1 (blue in Fig. 3) and pair 2 (red)

showed no leakage before fusion. However the smaller vesicle of pair 3 (green) did show

significant leakage during HD extension. This is consistent with our kinetic analysis which

suggested that pair 3 had higher bilayer tensions than pairs 1 and 2 (see Fig. 3D,E,F). This

is also consistent with the fact that pair 3 ruptured during HD growth, likely from very high

tension able to cause leakage and rupture.

Consistent with this, other experiments at similar conditions appear to be unaffected by

leakage. In micropipette manipulations of aspirated PG/PC and PA/PC GUVs in 10 µM

Ca2+ , linear stress-strain relationships were reported up to GUV rupture at tensions 8 mN/m

and negligible hysteresis was found between cycles of increasing and decreasing aspiration

pressure [4]. This suggests these GUVs were not leaky under tension conditions similar to

those in Nikolaus et al. Rand and Reese [5] noted that in electron microscopy DOPS LUV

sizes were indistinguishably different with and without 5 mM Ca2+ ; this suggests leakage was

not severe in their experiments even at these cation levels which exceed the 2 mM Mg2+ used

in the equilibrium studies by Nikolaus et al.

Estimation of Cation Shrinkage Factors and Bilayer Tension for the Experiments

of Ref. [1]

Cation shrinkage factors. In ref. [1] Nikolaus et al hemifused and fused GUVs of

lipid composition 60% DOPC, 20% DOPS, 20% DOPE. Let us estimate the cation shrinkage

factor εcation for the studies at 6 mM Ca2+ . (The procedure is the same as that in ref. [3]).

We name the shrinkage factors for one-component membranes of each lipid species εPC , εPS

and εPE respectively. DPPC bilayers contract by 6.4% in 6 mM Ca2+ [6] and DOPC may

be expected to respond similarly to cations as they possess the same headgroup, that part

of the lipid interacting with solution cations. Thus we take εPC ≈ 6.4%. We estimate the

DOPS shrinkage factor at 6 mM Ca2+ is the monolayer tension 9.5 mN/m induced in these

conditions [7] divided by the monolayer stretch modulus (taken as half the bilayer stretch

modulus K = 265 mN/m of DOPC [8]). This gives εPS ≈ 7.1%. Since pure DOPE does

not form vesicles and DOPE data to the best of our knowledge are not available we take

εPE = εPC . Assuming linear composition dependence the weighted sum of these values yields

the overall shrinkage factor εcation = 6.5%.

Bilayer tension before hemifusion. To estimate the initially induced bilayer tension

when only one leaflet contacts cations as in ref. [1] we use the monolayer tension under similar

conditions. DOPS monolayer tension increased by 9.5 mN/m when 6 mM Ca2+was added

[7]. Estimating the DOPC monolayer modulus as half the value of 265 mN/m measured for
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bilayers [8] and using εPC = 6.4% (see above) yields a tension 8.4 mN/m per pure DOPC

monolayer in 6 mM Ca2+ . Approximating again DOPE properties by those of DOPC and

assuming linear composition dependence yields pre-hemifused tension γ0 =8.7 mN/m for the

experiments of ref. [1]. Note this value though larger than the rupture tension 8 mN/m but

it is known that GUVs can withstand such tensions for a few seconds [9].

Procedure for Fitting Experimental Data of Ref. [1] for the Interleaflet Friction

Coefficient λ

In the experiments of Nikolaus et al, HDs were nucleated in the time interval between

camera exposures, tframe=250 ms. Thus HD area had already grown of order ∼ 5µm2 in the

delay time tdelay before it was detected. Note the delay time is an experimental parameter

relating to the finite time resolution of the camera and is not a model parameter. In our

fitting procedure we allowed each vesicle pair data set to shift by a delay time tdelay in the

range 0 < tdelay < tframe. The best fit for tdelay for each data set was used in Fig. 3 of the

main text.

Our fitting procedure was as follows. For the red and blue vesicle pairs, the model

equations were solved to produce Ahd(t) curves. Many curves were produced over a wide

range of λ values and delay times tdelay in the range 0 < tdelay < tframe. The best fit value

for λ reported in the main text was that which minimized the sum of the errors between the

predicted curve Ahd(t) and the experimental measurements. The best fits for the delay times

for the blue and red pairs were 0.15 s and 0.20 s, respectively.

For the green vesicle pair, we used a similar procedure but instead fit for the initial tension

γ0 reported in the main text which was significantly higher than the other pairs. The best

fit delay time for the green pair was 0.225 s.
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