Nomenclature S1

Abbreviations

FBA	Flux Balance Analysis
GMA	Generalized Mass Action
LB	Lower Bound
LP	Linear Programming problem
MCDM	Multi-criteria decision-making
MILP	Mixed-Integer Linear Programming problem
MOO	Multiobjective Optimization
moNLP	Multiobjective Non-Linear Programming problem
NLP	Non-Linear Programming problem
OG	Optimality gap
UB	Upper Bound

Indices

- e subintervals in the epsilon-constraint method
- i dependent (internal) metabolites
- j metabolites (dependent + independent)
- r flows
- b objectives

Sets/Subsets

- FP set of metabolites *i* that are regarded as final products
- FP_i set of processes r contributing to the synthesis of metabolite i
- SOC set of candidate solutions s
- SOR set of rejected solutions s
- SOS set of normalized Pareto solutions s

Parameters

Parameters			
NO	total number of objectives b		
E	total number of subintervals \boldsymbol{e} in the epsilon-constraint method		
f_{rj}	kinetic order of metabolite j in process r		
K_r^{LB}	Lower bound on fold-change in the activity of enzyme r		
K_r^{UB}	Upper bound on fold-change in the activity of enzyme \boldsymbol{r}		
m	total number of independent (external) metabolites \boldsymbol{j}		
n	total number of dependent (internal) metabolites \boldsymbol{i}		
NS	total numbr of normalized Pareto solutions s		
p	total number of flows r		
Q	order of efficiency of a Pareto optimal solution s		
X_i^{LB}	lower bound on the concentration of metabolite \boldsymbol{i}		
X_i^{UB}	upper bound on the concentration of metabolite i		
Δt	tolerance control parameter for Smart Pareto filter		
ϵ^e_b	lower bound of subinterval \boldsymbol{e} of objective \boldsymbol{b} in epsilon-constraint method		
γ_r	basal state activity of enzyme governing process r		
μ_{ir}	stoichiometric coefficient of metabolite i in reation \boldsymbol{r}		
Varial	Variables		

Variables

f_b	value of individual objective b
$f_{s,b}$	value of individual objective b in solution s
$fn_{s,b}$	normalized value of individual objective b in solution s
FN_s	vector containing the normalized values of all objectives in solution \boldsymbol{s}
K_r	fold-change over the basal activity of enzyme r
X_i	concentration of metabolite i
t	time
v_r	velocity of process r