
Supplementary Figure 1: Capturing spatial aspects with particle- or concentration-
based approaches 
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a) Non-spatial reaction network representation of a system of two receptors R1 and R2 and cytoplasmic 
components C1 and C2. 
b) Spatial representation of the two-receptor system from (a). The cytoplasm of cell 1 is indicated in green, 
the cytoplasm of cell 2 in purple and the intercellular space in blue. 
c) In a representation that tracks individual molecular complexes, the interaction possibilities are 
determined by spatial proximity: intercellular complexes can form at those locations where receptors from 
both cells are close enough to establish bonds. Discretization of the cells’ surfaces using a grid-like 
structure permits representing molecular complexes in terms of their local concentrations as depicted in (d). 
The concentration-based approach is in most cases more efficient than tracking individual complexes but 
has to simulate reactions without knowing the locations of such complexes.  
d) An approach that simulates the dynamics of a reaction network based on local concentrations of 
molecular complexes within the elements of a grid-like representation of cellular surfaces has to keep track 
of the interdependencies between those concentrations in cases where they are coupled by molecular 
interactions (inter-membrane) and diffusion (intra-membrane). The two red squares correspond to the red 
surface grid elements in (c). 
 
 
 
 



Supplementary Figure 2: The main simulation loop of Simmune 
 
 

 
 
 
The flow diagram shows how Simmune performs the time integration. Note that multiple events could 
occur at the same time without integration of the biochemistry between the different events. Possible events 
other than performing a Potts update are updates of the user interface, export of the simulation state or other 
user-defined changes to the simulation. The order of simultaneous events is determined by assigning a 
unique priority to each type of event (see the documentation of the Simmune API for details). 
 



Supplementary Figure 3: Changing the balance between contact growth rate and E-
cadherin diffusivity towards the latter leads to accumulation of the receptors at the 
periphery of the cell-cell contacts. 

 
 



E-cadherin concentration profile (lower panels) at the dynamically grown contact interface (middle panels, 
with color-coded density of E-cadherin molecules: red (high concentration) to blue (low concentration)) 
between two cells (upper panels). The red lines across the cuts through the interfaces show the line profile 
paths used to generate the plots showing the concentration of E-cadherin as a function of the distance along 
the interface. 
a) For this simulation, the diffusion coefficient of E-cadherin was set to 0.001 square microns s-1, a value 
that is ten-fold lower than the experimentally reported value. Due to the slow diffusion, E-cadherin 
accumulated at a later stage in the contact formation and could therefore become trapped at the periphery of 
the contact, in contrast to the simulations with a physiological value for the diffusion coefficient of E-
cadherin that led to central accumulation expanding with the growing contact region  (see Fig. 4d in the 
main text). The contact zone E-cadherin profile was generated at 1.5 h simulated biological time. 
b) The Potts parameters for this simulation were set to perform updates of all volume elements at every 
time point (in contrast to a fraction of 0.1 used in all other Potts model simulation reported here). In 
addition, the volume conservation constraint was released from 1 to 0.5. This led to the formation of a 
broad (> cell diameter) cell-cell contact within less than 20 minutes simulated biological time. The contact 
growth rate was thus increased ~ five-fold. The early formation of a broad contact then allowed the edges 
of the contact to act as diffusional traps for E-cadherin molecules becoming ligated to binding partners on 
the adjacent membrane. 
 



Supplementary Figure 4: A model that does not include shmoo tip localized Fus3 
interaction partners other than Ste5 and Ste7 cannot generate a sufficiently steep 
Fus3/pFus3 gradient while at the same time phosphorylating 40% of the cellular 
Fus3 pool  

 
Intracellular gradient (difference between tip and body) and total production of phosphorylated Fus3 
(expressed as fraction of the total pool, shown as diameter of line-end markers) as a function of Ste7 kinase 
activity (kcat), Msg5 phosphatase activity (kcat) and Ste5 recruitment to the tip (expressed as ratio of Fus3 
and Ste5, color-coded blue to orange) in a model that does not include pFus3 interaction partners (other 
than Ste5) at the tip. With increasing phosphatase activity, the intracellular activity gradient becomes 
steeper. At the same time, however, the total production of pFus3 decreases. Very strong accumulations of 
Ste5 at the tip can generate steep gradients (4:1 and higher) and lead to almost 40% phosphorylated Fus3 
but such accumulations of Ste5 relative to Fus3 (Fus3:Ste5=0.65) were ruled out by experimental 
measurements showing that the concentration of Fus3 in the tip is 1.7 fold higher than that of Ste5. The 
parameter scan for which the results are shown here can be performed using the files provided in the 
‘YeastScan_Kinase_Phosphatase_Recruitment’ folder. 
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Supplementary Figure 5: Calculation of the pFus3 concentration profile from 
multiple simulation runs with varying nuclear position 

 
 
The intracellular concentration profile of phosphorylated Fus3 is strongly modulated by 
the position of the nucleus that accumulates a high concentration of this activated kinase. 
The limited resolution of an optical microscope is mimicked by sampling volume elements perpendicular to 
the section using a gaussian weight distribution with a FWHM of 1.37 microns. Within the section we 
assume a better resolution corresponding to a FWHM of 0.82 microns. Since the position of the nucleus 
varies among different cells (see Fig. 5d and reference 21),  our simulations had to simulate yeast cells with 
varying nuclear positions. The results from those simulations were then combined (a uniform probability 
distribution for the nuclear position was assumed) to generate the pFus3 profile for comparison with 
experimental data. 
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Supplementary Figure 6: Assessing performance and accuracy of Simmune when 
compared to other approaches 
 

 
a) Comparison of the times needed to generate networks of various complexity based on the multi-site 
phosphorylation model suggested by Sneddon et al. (Nat. Meth. 2011 Feb;8(2):177-83). The number of 
different molecular complexes that need to be built for a model with n phosphorylation sites is 4n+2. For 
the tested model sizes (up to eight phosphorylation sites corresponding to up to 65538 automatically built 
complexes) Simmune is consistently faster (up to 20 times) but scales less well than BioNetGen. 
b) Comparison of the times needed to generate and simulate (for 200 seconds) networks of various 
complexity based on the multi-site phosphorylation model suggested by Sneddon et al. Only for large 
networks and low particle numbers is NFSim as fast or faster than BioNetGen or Simmune. 
c) Assessment of the relative differences between the numerical solutions calculated for a set of molecule 
complex patterns of the four-site phosphorylation model when simulated with BioNetGen or Simmune.  
The differences correspond to solver tolerances, suggesting that both approaches correctly generate and 
simulate the model network. 



 
Supplementary Figure 7: Details of the calculation of effective surface geometries 
 

 
 
a) Illustration of the iteration over element edges to find distant neighbors. The four elements shown in 
green are at a distance of Δk=4 steps from the central element highlighted in orange. The paths leading to 
the distant elements are indicated in beige. 
b) Determination of the arc lengths using the circumcircle. The surface element under consideration is 
shown in red. The other two vertices of the triangle spanning the circumcircle are Δk=3 steps from the 
central element. The arc lengths are given by the length of the section of the circumcircle between the 
center of the element shown in red and intersection of the radius of the circumcircle going through the 
centers the neighboring elements (shown in blue). 
c) Illustration of the stepping algorithm wrapping around a small detail. Numbers show the number of steps 
taken from element under consideration. After four steps the algorithm encounters the same element.  
d) Example of a situation where the stepping algorithm encountering a small detail. 



Supplementary Figure 8: Effects of the different redistribution algorithms of 
membrane molecules 

 
a) Surface elements used for the redistribution of membrane molecules when extending a volume element 
with the scheme conserving the number of molecules, using the neighbors of changing elements. 
b) Surface elements used for the redistribution of membrane molecules when retracting a volume element 
with the scheme conserving the number of molecules, using the neighbors of changing elements. 
c) Surface elements used for the redistribution of membrane molecules when extending a volume element 
with the scheme conserving the number of molecules, using only changing elements. 
d) Surface elements used for the redistribution of membrane molecules when retracting a volume element 
with the scheme conserving the number of molecules, using only changing elements. 
e) Surface elements used for calculating the concentration average when conserving concentrations. 
f) Neighbors of changing surface elements, for which the concentration instead of particle number is 
conserved, when the concentration conservation is enabled for an extended neighborhood. 
 
 
 
 



 
Supplementary Note 1 
 
Comparison of features among different modeling approaches and tools  

 
Features Tools that implement them 
(a) Automated network generation (1)(2)(4)(7)(8)(12) 
(b) Spatially-resolved simulation (1)(5)(6)(9)(10)(11)(12)(13)(14) 
(c) Spatially-resolved automated network generation (1)(12 *see explanation of features) 
(d) Stochastic simulation possibility (2)(3)(4)(5)(6)(8)(9)(10)(11)(12)(13)(14) 
(e) Stochastic spatially-resolved simulation (3)(5)(6)(9)(10)(11)(12)(13) 
(f) Particle-based simulations (3)(4)(5)(6)(8)(10)(11)(12) 
(g) (Deterministic) differential equations (1)(2)(3)(7) 
(h) Automatic dynamic adaptation of networks to changing 
geometry 

(1) 

(i) GUI for defining reaction rules as components for 
automated network generation 

(1)(2)(4) 

(j) GUI for defining spatial aspects of reaction rules (1) 
(k) SBML export of automatically generated networks (1)(2)(4)(7) 

 
(1) Simmune 2.0 (this manuscript); (2) BioNetGen 1; (3) E-cell 2; (4) Kappa 3; (5) MCell 
4; (6) Meredys 5; (7) Moleculizer 6; (8) NFSim 7; (9) Smart Cell 8; (10) Smoldyn 9; (11) 
Spatiocyte 10; (12) SRSim 11; (13) STEPS 12; (14) Virtual Cell 13.  
 
Explanation of the features: 
 
(a) Automated network generation: ability to generate the resulting network of (multi-
molecular) complexes and their reactions (associations, dissociations, transformations 
(enzyme-dependent or spontaneous)) based on the definition of interactions between pairs 
of molecules. In many cases, the results of molecular interactions or even whether the 
interactions take place or not depend on the properties of the interacting molecules. For 
example, the binding of an enzyme to its substrate may only happen if this substrate has 
the right phosphorylations and is in an ‘open’ configuration, allowing access to the 
binding sites used by the enzyme. Such conditional interactions are frequently referred to 
as ‘interaction rules’. 
(b) Spatially-resolved simulation: ability to simulate reaction-diffusion of interacting 
molecular complexes using a 2D or 3D computational representation of the simulated 
geometry of the biological system being modeled. Note that this is different from far 
simpler compartmental representations that use, for instance, one cytosolic compartment 
and one nuclear compartment and simulated exchange between the two but does not 
actually simulate diffusion of molecules. 
(c) Spatially-resolved automated network generation: ability to use the combination of 
interaction rules and simulated geometry to generate reaction-diffusion networks that take 
into account the influence of local features of the simulated geometry (e.g., the presence 
of membranes) on the reaction-diffusion network. *The SRSim approach has a different 
focus: it allows the modeler to include information about how the spatial structures of 



molecules influence their interaction behaviors by imposing constraints on possible 
relative orientations of interacting molecules. 
(d) Stochastic simulation possibility: ability to calculate the time evolution of the 
simulated biological system using stochastic techniques. 
(e) Stochastic spatially-resolved simulations: ability to combine stochastic simulation and 
spatial resolution of the simulated system. 
(f) Particle-based simulations simulate the motion and interactions of discrete, individual 
particle representations of the modeled biochemistry as opposed to local concentrations. 
(g) Deterministic differential equations can be used as opposed to stochastic approaches. 
(h) Automatic dynamic adaptation of networks to changing geometry: ability to simulate 
reaction-diffusion processes under conditions in which the simulated space (e.g., the 
shape of a cell) changes over time. 
(i) GUI for defining reaction rules as components for automated network generation: 
users don’t have to write scripts when specifying the molecular interactions in the 
simulated system. 
(j) GUI for defining spatial aspects of reaction rules: users can employ graphical symbols 
when defining how molecular interactions are influenced by, for instance, the position of 
molecular components relative to a membrane. 
(k) SBML export of automatically generated networks: ability to generate a reaction 
network automatically, based on the specification of molecular interactions, and then 
create a representation of the network as SBML file. 
 
When does a modeling project need which features? 
 
Systems with molecular interactions that can lead to large complicated networks are 
difficult to translate into quantitative simulations using ‘hand-written’ equations 3, 14 In 
those cases, the ability of a modeling program to create the reactions networks 
automatically (feature (a)) can be very helpful. For projects that aim at modeling 
biological systems in which the assumption of a well-stirred homogeneous biochemistry 
is unrealistic, for instance because of the formation of concentration gradients or the 
existence of membranes, the simulation approach has to be able to represent the spatial 
structure of the underlying biological system (feature (b)). The inclusion of this spatial 
aspect into the model may require defining molecular properties and interaction modes 
that go beyond conventional interaction rules. As is illustrated in the E-cadherin example 
system, switching from a non-spatial to a spatial representation of a signaling network 
can introduce considerable complexity. A modeling tool implementing feature (c) can 
reduce the error potential when transitioning from a non-spatial to a spatial network. In 
particular for large reaction networks, the translation of their dynamics into spatially-
resolved simulations may become prohibitively difficult. Note that simulations that 
include changing geometries necessarily need the ability to generate such networks 
automatically to be able to adjust to such changes (feature (h)).  
 
All biochemical processes in a living cell are stochastic at the single-molecular level. In 
systems whose behavior is governed by processes that involve very low molecular 
concentrations, stochastic effects play an important role and modeling such systems 
requires tools capable of simulating these effects (feature (d)). Feature (e) permits 



stochastic simulations of systems that have spatial characteristics that need to be 
accounted for while stochastic effects involving high inhomogeneity with regard to the 
localization of molecules and the clusters they may form in addition may require single-
particle representations (feature (f)). However, many biological processes involve 
molecular concentrations that permit neglecting the underlying stochasticity because the 
stochastic effects average out at high particle numbers. Since stochastic simulations are 
typically orders of magnitude slower than deterministic simulations (see Supplementary 
Note 3b), simulation tools can, in those cases, take advantage of the ability to perform 
deterministic simulations (feature (g)). 
 
For large models that contain many molecule types with interactions depending on 
specific states of these molecules and involving reaction-induced state changes, even just 
writing down the definition of all the interactions can be very time consuming and error 
prone. In those cases a graphical user interface (GUI) (feature (i)) can be helpful since it 
avoids errors that may occur when interaction rules are formulated as computer scripts 
and because graphical representations of molecules and their interactions are more 
intuitive than textual code.    
 
Supplementary Note 2 
 
a) Generating reaction networks based on local molecular interaction 
possibilities 
 
Local reaction networks are built incrementally by assembling complexes with increasing 
numbers of molecular components based on the user-defined interaction possibilities 
between molecules or multi-molecular complexes. The interaction possibilities (rules) 
defined by the user specify (1) the interacting molecules (or complexes), (2) the states the 
interaction partners are in when performing the interaction and (3) the states the resulting 
complex(es) are in after the interaction. The states of the complexes can encode 
properties such as phosphorylation, steric conformations, etc. A prototypical example of a 
binding-induced state change is the activation of a receptor’s intracellular domain as a 
result of the interaction of its extracellular domain with its ligand. The interaction 
between the receptor and the ligand, in turn, may be modulated by the state of the 
receptor. Intracellular ligation (‘inside-out signaling’) or phosphorylation may have an 
influence on the kinetics of the receptor ectodomain-ligand interaction. In this case, 
multiple rules for the different initial states of the receptor have to be specified. Once all 
the interaction rules for a system of interacting molecules and complexes have been 
specified the resulting complexes can be generated. Ligand-bound receptors (two 
molecular components: receptor and ligand), for instance, may bind to intracellular 
adaptors thereby generating three component complexes that then could ‘recruit’ 
additional binding partners. 
 
One fundamental challenge for algorithms implementing such incremental complex 
building cascades is the unique identification of the complexes. The problem arises from 
the fact that complexes frequently can be generated in multiple ways. For instance, the 



adaptor:receptor:ligand complex could in principle (unless the interaction rules suppress 
one or the other possibility) be built by the receptor:ligand complex binding to the 
adaptor or by the adaptor:receptor complex binding to the ligand. If the results of these 
two reactions are equivalent in terms of binding structure and state, the algorithm 
building the complexes has to be able to identify them as being equivalent and assign to 
both reactions the same result complex before continuing to build larger complexes 
involving the adaptor:receptor:ligand complex. For situations in which components of 
multi-molecular complexes differ not with regard to their biochemical identity but only 
with regard to their location of origin, this task is more difficult than for reaction 
networks that do not take into account spatial aspects. Consider the E-cadherin example 
discussed in the main text: here, the interaction partners all have the same biochemical 
identity: ‘E-cadherin’. However, for the simulation of the reaction kinetics and the 
associated concentration changes in two adjacent membrane regions with inter-cellular 
complexes, it is important to keep track of the location of the components. Consider, for 
instance, the E-cadherin trimer consisting of two trans-bound monomers with one 
additionally cis-bound to another E-cadherin located in the same membrane for which the 
creation process is discussed in Fig. 3 of the main text. When this trimer decays – 
whether along a trans or a cis interaction – the resulting concentration changes for the 
two membranes involved depend on in which of the two membranes the two cis-bound 
molecules of the trimer are located. A trans dissociation will increase the concentration 
of cis-dimers in that membrane, whereas the other membrane will experience an increase 
in the concentration of its monomers.  
After all complex reactions in the volume and membrane elements have been identified 
in this way, the simulation can use this information to determine how the local 
concentrations of the different complexes in the volume element change over time by 
constructing the equivalents of an ODE right-hand side and Jacobian.  
 
b) System of differential equations describing E-cadherin complex 
formation for two adjacent locations 
 
To illustrate the complexity arising from the simple case of two adjacent membrane 
locations with E-cadherin, the molecule species on the two sides are called E1 and E2, 
respectively. This makes it possible to create a ‘human-readable’ representation of the 
differential equations describing the reactions resulting from cis and trans associations 
between E-cadherin monomers and multimers. In this example, E-cadherin has only one 
interface for trans and one for cis interactions. Therefore, the system does not include 
complexes such as cis trimers. 
 
E1 and E2 (equations (1) and (2)) are E-cadherin monomers, E1E1 and E2E2 are cis 
dimers, E1E2 is a trans dimer, E1E1E2 consists of an E1 cis dimer trans-bound to E2 
(E1E2E2 vice versa). corresponds to complex V from Fig. 2b with the 
closed cis bond on the 1-side. Complexes VI and VII are depicted in Fig. 2b as well. Note 
that, in contrast to the simulated models in the main text (that permit the formation of cis 
bonds only within complexes possessing trans bonds), the reactions below incorporate 
the direct formation of cis dimers for didactical purposes. 



It should be emphasized that the simple strategy of hand-assigning indices (or labels) to 
molecules or complexes in order to encode their spatial location quickly becomes 
unwieldy in cases with many interacting membrane elements and/or cells and impossible 
in cases that involve dynamic self-interactions of membranes (for instance in models of 
endocytosis). 
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Adding diffusion terms to equation (9) would yield: 
 

 

 
 
 



Below is the output generated by the simulator application in response to a user request to 
provide information about the local reaction networks at the interface of two cells 
expressing either E1 or E2 from the reaction system specified above.  
The application first lists all complexes with information about the binding state of their 
molecular constituents. The selected membrane element belongs to the cell expressing 
E1.  For the ‘Trans Dimer’ E1 is therefore listed as a molecule with location ‘on 
membrane’ and bound via its first binding site to E2 ‘on contact membrane’. The binding 
code  ‘0:0:1/_:_:_’ for E1 specifies that the binding that involves the first binding site 
binds to binding site 0 (= first binding site, indices start at 0) of component 0 of molecule 
1 in the complex (E2 is molecule 1 in the complex; E1 is molecule 0). The part of the 
binding code describing ‘_:_:_’ the binding for the second binding site simply states that 
this site is not bound in the complex. 
After the complexes are listed and numbered the reactions are described using these 
numbers to identify the complexes. For reactions that involve reaction partners that are 
entirely located on the contact membrane a brief structure description is provided instead 
of a number. The simulator lists reactions with the numerical value of the reaction rates. 
To facilitate reading the automated output the following rates were used for this 
illustration only: 

 
 
 
************************* 
*** Membrane network: *** 
************************* 
 
********** 
Complexes: 
********** 
(0): Cis Dimer 1{E1<>(on membrane)/_:_:_/1:0:1 | E1<>(on 
membrane)/_:_:_/1:0:0}  
concentration: 0.000103797 per square micron. 
(1): E1{E1<>(on membrane)/_:_:_/_:_:_} 
concentration: 50.0069 per square micron. 
(2): Trans Dimer{E1<>(on membrane)/0:0:1/_:_:_ | E2<>(on contact 
membrane)/0:0:0/_:_:_} 
concentration: 1.97712e-05 per square micron. 
(3): {E1<>(on membrane)/0:0:2/_:_:_ | E1<>(on membrane)/0:0:3/_:_:_ | 
E2<>(on contact membrane)/0:0:0/1:0:3 | E2<>(on contact 
membrane)/0:0:1/1:0:2} 
concentration: 1.22622e-10 per square micron. 
(4): {E1<>(on membrane)/0:0:2/_:_:_ | E2<>(on contact 
membrane)/_:_:_/1:0:2 | E2<>(on contact membrane)/0:0:0/1:0:1} 
concentration: 0 per square micron. 
(5): {E1<>(on membrane)/0:0:3/1:0:1 | E1<>(on membrane)/0:0:2/1:0:0 | 
E2<>(on contact membrane)/0:0:1/1:0:3 | E2<>(on contact 
membrane)/0:0:0/1:0:2} 
concentration: 1.50264e-12 per square micron. 
(6): {E1<>(on membrane)/0:0:3/1:0:1 | E1<>(on membrane)/0:0:2/1:0:0 | 
E2<>(on contact membrane)/0:0:1/_:_:_ | E2<>(on contact 
membrane)/0:0:0/_:_:_} 



concentration: 0 per square micron. 
(7): {E1<>(on membrane)/_:_:_/1:0:1 | E1<>(on membrane)/0:0:2/1:0:0 | 
E2<>(on contact membrane)/0:0:1/_:_:_} 
concentration: 1.43465e-10 per square micron. 
(8): {E1<>(on membrane)/_:_:_/1:0:1 | E1<>(on membrane)/0:0:3/1:0:0 | 
E2<>(on contact membrane)/_:_:_/1:0:3 | E2<>(on contact 
membrane)/0:0:1/1:0:2} 
concentration: 0 per square micron. 
 
In the following, we use a color code to map between the differential equation for the 
concentration of the Ecad monomer (E1) on the first membrane and the output generated 
by the simulator application. 
 

 

 
********** 
Reactions: 
********** 
(0): Cis Dimer 1{E1<>(on membrane)/_:_:_/1:0:1 | E1<>(on 
membrane)/_:_:_/1:0:0} 
concentration: 0.000103797 per square micron. 
binds to complex on contact membrane: E2{E2<>} to form (7). Rate: 1. 
(7) shared with contact membrane. 
binds to complex on contact membrane: E2{E2<>} to form (7). Rate: 1. 
(7) shared with contact membrane. 
binds to complex on contact membrane: Cis Dimer 2{E2<>|E2<>} to form 
(8). Rate: 1. (8) shared with contact membrane. 
binds to complex on contact membrane: Cis Dimer 2{E2<>|E2<>} to form 
(8). Rate: 1. (8) shared with contact membrane. 
binds to complex on contact membrane: Cis Dimer 2{E2<>|E2<>} to form 
(8). Rate: 1. (8) shared with contact membrane. 
binds to complex on contact membrane: Cis Dimer 2{E2<>|E2<>} to form 
(8). Rate: 1. (8) shared with contact membrane. 
decay into: (1) and (1). Rate: 8 
 
(1): E1{E1<>(on membrane)/_:_:_/_:_:_} 
concentration: 50.0069 per square micron. 
binds to: (1) to form (0). Rate: 2 
binds to: (2) to form (7). Rate: 2. Complexes (2) and (7) shared with 
contact membrane. 
binds to: (4) to form (3). Rate: 1. Complexes (4) and (3) shared with 
contact membrane. 
binds to: (4) to form (8). Rate: 2. Complexes (4) and (8) shared with 
contact membrane. 
binds to complex on contact membrane: E2{E2<>} to form (2). Rate: 1. 
(2) shared with contact membrane. 
binds to complex on contact membrane: Cis Dimer 2{E2<>|E2<>} to form 
(4). Rate: 1. (4) shared with contact membrane. 
binds to complex on contact membrane: Cis Dimer 2{E2<>|E2<>} to form 
(4). Rate: 1. (4) shared with contact membrane. 
 
(2): Trans Dimer{E1<>(on membrane)/0:0:1/_:_:_ | E2<>(on contact 
membrane)/0:0:0/_:_:_} 



concentration: 1.97712e-05 per square micron. 
binds to: (1) to form (7). Rate: 2. Complexes (2) and (7) shared with 
contact membrane. 
binds to: (2) to form (6). Rate: 2. All complexes shared with contact 
membrane. 
binds to: (2) to form (3). Rate: 5. All complexes shared with contact 
membrane. 
binds to complex on contact membrane: E2{E2<>} to form (4). Rate: 5. 
Startcomplex and (4) shared with contact membrane. 
decay into: (1) and complex on contact membrane: E2{E2<>} rate: 7 
 
(3): {E1<>(on membrane)/0:0:2/_:_:_ | E1<>(on membrane)/0:0:3/_:_:_ | 
E2<>(on contact membrane)/0:0:0/1:0:3 | E2<>(on contact 
membrane)/0:0:1/1:0:2} 
concentration: 1.22622e-10 per square micron. 
transforms into: (5). Rate: 4. Start- and Resultcomplex shared with 
contact membrane. 
decay into: (2) and (2) rate: 11. All complexes shared with contact 
membrane. 
decay into: (4) and (1) rate: 7. The startcomplex and (4) shared with 
contact membrane. 
decay into: (4) and (1) rate: 7. The startcomplex and (4) shared with 
contact membrane. 
 
(4): {E1<>(on membrane)/0:0:2/_:_:_ | E2<>(on contact 
membrane)/_:_:_/1:0:2 | E2<>(on contact membrane)/0:0:0/1:0:1} 
concentration: 0 per square micron. 
binds to: (1) to form (3). Rate: 1. Complexes (4) and (3) shared with 
contact membrane. 
binds to: (1) to form (8). Rate: 2. Complexes (4) and (8) shared with 
contact membrane. 
decay into: (1) and complex on contact membrane: Cis Dimer 2{E2<>|E2<>} 
rate: 7 
decay into: (2) and complex on contact membrane: E2{E2<>}. Rate: 11. 
The startcomplex and (2) shared with contact membrane. 
 
(5): {E1<>(on membrane)/0:0:3/1:0:1 | E1<>(on membrane)/0:0:2/1:0:0 | 
E2<>(on contact membrane)/0:0:1/1:0:3 | E2<>(on contact 
membrane)/0:0:0/1:0:2} 
concentration: 1.50264e-12 per square micron. 
transforms into: (8). Rate: 9. Start- and Resultcomplex shared with 
contact membrane. 
transforms into: (3). Rate: 10. Start- and Resultcomplex shared with 
contact membrane. 
transforms into: (8). Rate: 9. Start- and Resultcomplex shared with 
contact membrane. 
transforms into: (6). Rate: 12. Start- and Resultcomplex shared with 
contact membrane. 
 
(6): {E1<>(on membrane)/0:0:3/1:0:1 | E1<>(on membrane)/0:0:2/1:0:0 | 
E2<>(on contact membrane)/0:0:1/_:_:_ | E2<>(on contact 
membrane)/0:0:0/_:_:_} 
concentration: 0 per square micron. 
transforms into: (5). Rate: 6. Start- and Resultcomplex shared with 
contact membrane. 
decay into: (2) and (2) rate: 8. All complexes shared with contact 
membrane. 



decay into: (7) and complex on contact membrane: E2{E2<>}. Rate: 7. The 
startcomplex and (7) shared with contact membrane. 
decay into: (7) and complex on contact membrane: E2{E2<>}. Rate: 7. The 
startcomplex and (7) shared with contact membrane. 
 
(7): {E1<>(on membrane)/_:_:_/1:0:1 | E1<>(on membrane)/0:0:2/1:0:0 | 
E2<>(on contact membrane)/0:0:1/_:_:_} 
concentration: 1.43465e-10 per square micron. 
binds to complex on contact membrane: E2{E2<>} to form (6). Rate: 1. 
Startcomplex and (6) shared with contact membrane. 
binds to complex on contact membrane: E2{E2<>} to form (8). Rate: 5. 
Startcomplex and (8) shared with contact membrane. 
decay into: (0) and complex on contact membrane: E2{E2<>} rate: 7 
decay into: (2) and (1) rate: 8. The startcomplex and (2) shared with 
contact membrane. 
 
(8): {E1<>(on membrane)/_:_:_/1:0:1 | E1<>(on membrane)/0:0:3/1:0:0 | 
E2<>(on contact membrane)/_:_:_/1:0:3 | E2<>(on contact 
membrane)/0:0:1/1:0:2} 
concentration: 0 per square micron. 
transforms into: (5). Rate: 3. Start- and Resultcomplex shared with 
contact membrane. 
decay into: (0) and complex on contact membrane: Cis Dimer 2{E2<>|E2<>} 
rate: 7 
decay into: (4) and (1) rate: 8. The startcomplex and (4) shared with 
contact membrane. 
decay into: (7) and complex on contact membrane: E2{E2<>}. Rate: 11. 
The startcomplex and (7) shared with contact membrane. 



Supplementary Note 3  
 
a) Technical overview: How Simmune 2.0 operates; comparison with 
other approaches  
 
Note: Reading this note is not necessary for using Simmune. It provides ‘under the hood’ 
technical details. 
 
Defining and simulating a model with Simmune involves four steps:  
 

(1) Defining the molecular interactions that will determine the network topology and 
dynamics of the biochemistry in the simulated system. 

(2) Defining the geometry (shape and size of the cells and extracellular space) of the 
simulated system. 

(3) Defining the initial molecular concentrations and their spatial distributions and the 
mechanisms (Potts rules) determining the morphological dynamics of cells. 

(4) Running the simulation. 
 
(1) Defining the molecular interactions  
 
Instead of using a scripting language (such as BNGL1 or Kappa3), the Simmune Modeler 
has a graphical interface that represents molecules, molecular components, and binding 
sites as well as the multi-molecular complexes resulting from associations between 
molecules as iconographic symbols. Interactions between molecular binding sites can be 
defined by drawing connections between the sites and then specifying the conditions for 
the interactions and specifying the modifications of the molecules that result from the 
interaction. These steps are explained in great detail in the tutorials provided in the 
supplementary material. The graphical interface was chosen instead of a scripting 
approach because of its ease of use and because capturing spatial aspects of molecular 
interactions requires a greater spectrum of properties (such as the orientation of molecular 
components relative to membranes) than existing languages for ‘rule-based’ modeling 
currently offer. The resulting models are stored in an SQL (Structured Query Language) 
database to allow for flexible and efficient organization and for detailed queries about 
molecular properties and interactions. The database communicates with the simulation 
software through an API (Application Programming Interface) that can directly be 
accessed by computational modelers/programmers who want to implement their own 
simulation engines, or supply programmatically generated models to the simulator. 
Model databases are stored as SQLite dbf files that can easily exchanged between 
researchers. 
Currently, Simmune does not support reactions that involve de novo creation of 
molecules or their destruction. In principle, transformations – into a ‘degraded’ state – 
could be used as a work-around. But we will add functionality for 0th order reaction in the 
very near future.  
 
(2) Defining the geometry of the simulated system 
 



The geometry of the simulated system (shape of the cells, intracellular organelles, 
extracellular space) can be defined independently of specification of the molecular 
interactions. This means that a given biochemical model can be used with different 
geometries and different models can be simulated on the same geometry. We provide a 
tool, called ‘SimCelldesigner’, with a graphical user interface that can be used to specify 
geometries. It is most suitable for geometries of simple to medium complexity, including 
compartments containing multiple interacting cells. The cell design process is based on 
the concept of ‘blobs’ or ‘meta-balls’ (see: James F. Blinn. 1982. A Generalization of 
Algebraic Surface Drawing. ACM Trans. Graph. 1, 3 (July 1982), 235-256. 
http://doi.acm.org/10.1145/357306.357310). Each blob or meta-ball is a source of a 
spherical building block (or a sphere of influence) that can add its influence field to the 
final shape consisting of the sum of all building blocks with a smooth transition between 
blocks. 

 
Illustration of the meta-ball concept. Each of the colored objects is composed of two 

meta-balls. The distance between the meta-balls within one object increases from left to 
right. Note the smooth transition between the meta-balls. 

In biological terms, a collection of meta-balls could be a cell or an intracellular organelle. 
Each meta-ball by itself could be interpreted as a protrusion of a cell. Geometries are 
stored in an XML-based format that can be imported by the simulation GUI. More 
complex geometries based on meta-balls can be created by using the API provided by the 
cell designer. Furthermore a low-level programmatic access to individual volume 
elements is possible through the API of the simulator. 
  



(3) Defining the initial molecular concentrations and their spatial distributions and the 
mechanisms (Potts rules) determining the morphological dynamics of cells. 
 
When the simulator starts it prompts the user for a molecular interaction model definition 
(generated in step 1) and a geometry (generated in step 2). Based on the specifications 
provided by those two components, the simulator interface allows the user to specify 
initial molecular concentrations and their spatial distribution over the geometry of the 
simulated system. For instance, membrane-bound molecules can be inserted into cellular 
or subcellular membranes with spatially inhomogeneous concentrations. The simulation 
startup windows also permit the specification of rules for the implementation of Potts 
model morphological dynamics. These rules determine how receptor signals influence the 
shape changes the cells experience during a simulation. Details can be found in the 
Methods section. 
The specified initial concentrations and Potts rules can be saved so the simulation can 
easily be restarted with the same initial conditions.  
 
(4) Running the simulation 
 
After the initial conditions for the simulation are specified, the simulation GUI appears. 
Its functionality is explained in detail in the tutorial. Here, we focus on the technical 
aspects of the operation of the simulator.  
Based on the molecular interaction model definition and the molecular complexes used in 
the specification of the initial biochemistry the simulator first generates a ‘template 
network’ that does not yet incorporate spatial aspects. The generation of this network is 
similar to the operation of other automated network generators such as implemented in 
BioNetGen1, Kappa3 or Moleculizer6. Using the example of the Ecad network from the 
main text, the input specifications from step 1 correspond to Fig. 2a and the template 
network corresponds to the non-spatial network depicted in Fig. 2b. However, in contrast 
to approaches that do not simulate spatial aspects through differential equations, the 
network generator here has to keep track of how interacting molecules become mapped 
onto resulting complexes. This information is needed, for example, for the simulation of 
adjacent membranes with interacting receptors; when the local reaction networks are 
generated the components of multi-molecular complexes linking two adjacent 
membranes have to carry with them information that permits their redistribution back 
onto the membranes hosting them when the dissociation process is configured. This 
renders the network generation more expensive than for non-spatial purposes. In spite of 
this considerable extra cost, the network generation of Simmune compares favorably with 
other approaches (see Supplementary Note 3b, below).   
When types of molecular complexes are added to the simulation – for instance as 
extracellular stimuli – that were not part of the initial biochemistry, the ‘template 
network’ is expanded accordingly while the simulation is running. Then the local 
networks extract the new information from the global ‘template network’ and adjust 
themselves to the new reaction possibilities. This may sometimes cause a noticeable 
delay in the response of the system after a new molecular complex has been added to a 
simulated system. Supplementary Fig. 6a gives a rough estimate of the delay: networks 
in systems with 5 phosphorylation sites consist of 45 + 2 = 1026 complexes required less 



than a second building time on our test computer whereas the next larger network (4098 
complexes) would cause the simulation to be unresponsive for a couple of seconds. 
Based on the geometry specifications generated in step 2, the simulated space is divided 
into volume elements (currently, only cubic volume elements are supported). The total 
number of volume elements can be as low as 1 (no spatial resolution) or as high as 
100x100x100 (the ratio of the side lengths does not need to be 1: 1x100x30 would be 
possible as well), with the upper limit essentially depending on the biochemical 
complexity of the simulated model and the performance and memory (RAM) of the 
computer used for the simulation. Within this spatial discretization the user-defined 
structures are generated (cells, intracellular domains, extracellular space and the 
membranes separating them).  
 
Using these structures, the initial molecule distributions, as specified by the user, are 
applied. The initial molecule distributions assign a set (that can be empty for some 
volume and membrane elements) of molecular complexes with specific concentrations to 
each volume element and membrane element. Each volume/membrane element then 
selects the reaction patterns of the template network that can be applied to its 
biochemistry based on the molecular complexes that it hosts. For instance, a volume 
element will not select any reactions that involve membrane-bound species whereas a 
membrane element will not generate reaction that can only take place between non-
membrane-bound molecular complexes. The selected reaction patterns will then be used 
to generate local networks in each volume/membrane element that take into account the 
spatial aspects of the reactions. For volume elements, these aspects simply involve 
diffusional exchange between neighboring elements. This means that a volume element 
in contact with another element that contains molecular complexes that differ from its 
own biochemistry will also generate representations of those complexes to be able to 
simulate the result of diffusion from the neighbor element into its own space – and vice 
versa. Diffusional exchange between neighbor volume or membrane elements is 
implemented as Finite Volume scheme. Note that cubic discretizations of the Laplacian 
on cell surfaces will lead to severe artifacts unless locally calculated adaptive membrane 
curvatures are employed. This is discussed further below whereas Supplementary Note 8 
also validates the precision of the bulk diffusion for various resolutions of the simple 
cubic spatial discretization performed by Simmune for intracellular regions.  
 
For membrane elements, the generation of the local reaction-diffusion networks is much 
more complicated than for volume elements because membrane elements can be in 
contact with other membrane elements, leading to the formation of inter-membrane 
complexes. The challenges resulting from such structures are discussed in Fig. 3 and 
Supplementary Note 2a: inter-membrane complexes are no longer uniquely specified by 
their composition in terms of component molecules. Note that a simple tagging approach 
(for two interacting cells one cell receives tag A while the other receives tag B) that for a 
static situation could in principle be implemented using non-spatial network generators is 
not sufficient since a cell could have self-interactions, for instance through adhesion 
receptors as part of a model for endocytosis.  
 



The generation of these local networks is computationally rather expensive since they are 
typically far more complicated than non-spatial networks. This is illustrated, for the 
simple Ecad network, in the comparison of Fig. 2b and 2c and discussed for one complex 
in Fig. 3. To render this process more efficient local networks, once generated, are stored 
in buffers in a manner that allows the software to re-implement them in locations that 
have the same biochemistry. Without these buffers, generating all local networks for a 
spatially highly-resolved cell with non-trivial biochemistry would take a very long time. 
This would effectively render simulations with dynamic morphology impossible.  
The local networks are coded in a way that optimizes the generation of ‘right-hand side’ 
(RHS) and the product (JV) of a concentration test vector with the Jacobian of the total 
system. Each molecule complex has a list of reaction channel descriptors corresponding 
to the various interactions or transformations the complex can participate in based on its 
local biochemical environment. These descriptors contain direct pointers to the 
concentration entries of all complexes affected by the respective reactions. Note that this 
is non-trivial for reactions involving trans-membrane complexes since such reactions 
affect concentrations in multiple spatial regions (see Supplementary Note 2a).  

(i) Associations ‘know’ which other complex concentration they have to be 
multiplied with to render a concentration change entry and have pointers to 
the concentration entries of reactants and the product. 

(ii) Dissociations have pointers to the concentration entries of their fragment 
complexes. 

(iii) Transformations have pointers to the concentration entries of the result 
complexes. 

 
Such data structures are somewhat expensive to generate and expensive to adjust when 
the biochemical compositions of the cells change, for instance when adjacent membrane 
elements with trans-membrane inter-cellular complexes are separated and these 
complexes have to be removed from the local biochemistry. But they permit very rapid 
construction of the RHS and JV arrays that are repeatedly needed by the integrator for its 
internal time steps. 
 
The rates of association reactions that happen at membranes can be provided as 3D mass-
action rates in L/(mol*s) (in which case Simmune calculates an effective reaction volume 
using a reaction volume depth of 10 nanometers) or as 2D reaction rates in units 
(micron^2*s)-1. Users who wish to use 3D rates but with different reaction volume depth 
can implement those by adjusting the interaction rate. 
 
Simmune uses the matrix-free (no explicit Jacobian) solver ROWMAP, a Rosenbrock-
type code of order 4 with Krylov techniques for large stiff ODEs15. The code has proven 
efficient for stiff systems with more than 10 million degrees of freedom, allowing us to 
put all local concentrations into a single concentration array even for systems with 
several interacting cells with medium spatial resolution and non-trivial biochemistry. A 
GPU parallelization is in preparation. Due to the memory constraints of GPU cards this 
will, however, mainly increase the performance, not the maximally possible size (degrees 
of freedom) of simulated systems. The overall structure of the simulation loop is shown 
in Supplementary Fig. 2. 



 
Technically the most challenging situation is the adaptation of the local reaction networks 
to changing cellular morphologies. Several aspects have to be taken into account: 

(i) redistribution of molecular contents when cellular volume elements disappear 
(the cell shrinks locally); 

(ii) redistribution of molecular contents when cellular volume elements are added 
(the cell expands locally); 

(iii) when membrane elements that are in contact with other membrane elements 
are retracted (removed): breaking of membrane-membrane receptor bonds and 
redistribution of the fragments over the neighbor membrane elements; 

(iv) generation of updated local reaction networks. 
 
Points (i) and (ii) are mainly a question of the assumed time scale of the changes in 
cellular morphology relative to the rates of diffusional exchange or active molecular 
transport. For instance, when biological cells produce lamellipodial or filopodial 
protrusions the newly extended membrane regions may become populated with receptor 
complexes that diffuse in from the membrane regions surrounding the base of the 
protrusions or they may come from sub-membrane reservoirs that allow the cell to retain 
a more or less homogeneous membrane biochemistry in the face of morphological 
changes, or they may be brought into the protrusions through active transports. The exact 
mechanisms will depend on the type of cell and the nature of the protrusions. For most 
biological phenomena delineating these mechanisms is still an open problem. Choosing 
the appropriate mechanism in a simulation is thus part of the biological model being 
investigated and, consequently, user specifiable in Simmune. The available options are 
explained in detail below in section c). It should be noted that the examples we provide 
here update morphology and cellular biochemistry separately: when a morphological 
update has been performed, the reaction networks are adapted and the simulation 
continues. If, for instance, the chosen redistribution mode ((i)/(ii) above) leaves new 
volume elements empty, they will subsequently be filled by diffusion.  The generation of 
updated local reaction networks (point (iv), above) proceeds similarly to the de novo 
generation of networks but with increased efficiency thanks to the network buffers. 
 
Point (iii) is somewhat subtle since the most straightforward method of simply breaking 
inter-membrane bonds and putting the molecular components of membrane-membrane 
receptor complexes back into the membranes that host them may introduce unwanted side 
effects. Consider, for instance, a receptor that undergoes a conformational transformation 
when binding to a receptor on an adjacent membrane and loses this conformation (returns 
to the previous state) when the binding is lost. Just cutting the bond and leaving the 
receptor in the ‘bound’ conformation would create an orphan receptor in a ‘bound’ state – 
in most cases this would be an unwanted effect. Therefore, membrane-membrane 
receptor complexes are dissolved along the user-specified decay reactions when 
Simmune breaks a membrane-membrane contact. Note that models that do, in fact, want 
to include receptors that keep the memory of the bound state after a contact has been 
broken can define state transformations that are not reverted through dissociation.    
   



Simmune offers user defined tolerances to permit rapid, low precision simulations to 
explore the behavior of large systems without having to pay with small time steps for 
high precision. Relative and absolute error tolerances, rtol and atol, are based on 
ROWMAP’s tolerances: ROWMAP uses a weighted root-mean-square norm to measure 
the size of error vectors. It is defined by wrms=sqrt(sum[(err(i)/scal(i))^2, i=1,n]/n), 
where scal(i)=atol+rtol*abs(u(i)) and err(i) is the error vector, u(i) the solution and i the 
global index counting the concentration entries of the entire simulated system. 
 
b) Performance comparisons for network generation and simulation 
 
Assessment of Simmune’s speed/efficiency 
 
As an ODE-based simulation tool, Simmune has to generate the reaction network of a 
modeled system before integrating the equations that determine its time evolution. Since 
no other tool currently can automatically generate networks with spatial resolution we 
compared the performance of the first, non-spatial network generation step of Simmune 
with that of the network generators of other approaches. We used the multi-site 
phosphorylation model suggested by Sneddon et al.7 as a benchmark to compare 
Simmune's performance in this regard with BioNetGen. A comparison of the network 
generation step with Nfsim cannot be performed, since NFSim generates reactions 
between molecular complexes ‘on-demand’ as they occur within the particle-based 
simulation. 
 
We rebuilt the multi site phosphorylation model with the Simmune modeler for s=1 to 
s=8 phosphorylation sites, and measured the CPU time spent on creating the network by 
both BioNetGen and Simmune. Supplementary Fig. 6a shows the median of five 
timings for each simulation. Simmune compares favorably with BioNetGen, performing 
between 5 and 20 times faster, where reliable measurements could be made. Simmune’s 
timings for one and two phosphorylation sites are unreliable because the network 
generation times were shorter than the resolution of the system timer, causing the timer to 
report zero execution times. The figure shows that Simmune has inferior scaling behavior 
to BioNetGen. This leads us to expect that BioNetGen will eventually outperform 
Simmune when generating even larger networks (the network generated by the rule-set 
with eight phosphorylation sites contains 65538 complexes and 786432 reactions); 
however, creating networks of the multi-site model from Sneddon et al.7 with 9 or more 
phosphorylation sites would be infeasible on a computer with 16 GB memory with 
BioNetGen. 
 
The total time required by Simmune, BioNetGen, and NFSim to simulate the multi site 
phosphorylation model is shown in Supplementary Fig. 6b. For Simmune and 
BioNetGen, these simulations involve full network generation and integration of the 
resulting set of ODEs. The time evolution of the system was simulated for 200 seconds 
(simulated system evolution time, not CPU time). Again, each point represents the 
median of five simulations. The simulations were repeated with ten- and hundred-fold 
increased particle numbers, while decreasing the on-rates in the model by the same 
factor, to keep the steady states comparable. 



 
Supplementary Fig. 6b illustrates the similar behavior of Simmune and BioNetGen. 
Overall, Simmune performs slightly better than BioNetGen, owing to the faster network 
generation (see Supplementary Fig. 6a). BioNetGen has a shorter initialization time of 
the ODE solver as can be seen from the better performance for the 1 site model. 
Comparing both BioNetGen and Simmune with NFsim highlights the fundamental 
difference between ODE/network-based and particle-based simulators. The particle-based 
simulator NFSim that creates reactions ‘on-demand’ and without symmetry checks 
outperformed the network-based simulators for simulations that involve very large 
networks but only require few particles to be simulated. In contrast, the ODE-based 
simulators performed better if the particle numbers of at least some of the reactants are in 
the range of 100,000 particles. Note that in many cellular signaling networks relative 
concentrations of pathway components differ by three or more orders of magnitude (for 
example due to high concentrations of MAP kinases and phospholipids in contrast to low 
concentrations of receptors and adaptors/scaffolds). A particle-based simulation 
representing the components with lowest abundance through 100 particles thus needs to 
represent the highest concentrations with particle numbers in the order of 105.  
 
The particle numbers of the substrate of the multi-site model correspond to a 
concentration of approximately 5 nMol/l for the unscaled model with 3000 substrate 
molecules, assuming a cytoplasmic volume of 1 pL. In the high concentration setting 
with ~0.5 μMol/l substrate Simmune's performance for the largest network (8 
phosphoryation sites) is comparable to Nfsim's while being considerably better for the 
smaller networks. Putting this network-size and concentration dependent performance 
comparison into the context of the yeast MAPK model in this manuscript with roughly 
200 biochemical species and total particle numbers well beyond 105 particles, simulations 
with NFSim would take at least 1000 times longer than with Simmune, comparing just 
the non-spatial reaction aspects (NFSim cannot perform spatial simulations). This is 
obviously the result of the different scaling behavior of ODE/network-based simulators. 
If we disregard changing stiffness of the system’s differential equations and changing 
occupation of particle states with changing system size and concentrations, we see that 
ODE/network based simulators -at best- scale linearly with the network size, but are 
independent of the simulated particle number, whereas on-demand-reacting particle-
based simulators scale linearly with the particle number, but can be almost independent 
of the network size. We wish to point out, however, that performance comparisons 
between particle-based and ODE/PDE based simulations are of only rather limited value 
since particle-based simulations typically are not chosen because of performance (for 
most cell-wide biologically relevant networks and concentration ranges they are greatly 
outperformed by ODE techniques) but because they offer researchers the ability to 
investigate particular stochastic effects that ODE techniques cannot reproduce.  
 
Assessment of the accuracy of Simmune's solver  
 
We assessed the accuracy of Simmune's solver (and network generation) by comparing 
the simulated time courses of an extended set of observables in the four-site 
phosphorylation model to those obtained with BioNetGen. In addition to the free kinase 



(Efree), free phosphatase (Ffree) and the set of substrate molecules that are 
phosphorylated at the first site (S1P), regardless of the phosphorylation states of the other 
sites we also defined observables for sets of substrate molecules requiring the first two 
three and all sites to be phosphorylated (S1P2P, S1P2P3P, S1P2P3P4P). Supplementary 
Fig. 6c shows the absolute value of the relative difference between the solutions 
produced by Simmune and BioNetGen. All differences are below 10-6. The relative 
tolerances of the solvers were set to 10-4. Therefore, the differences are consistent with 
the differences expected from the numerical inaccuracies of the solvers. Since BioNetGen 
and Simmune were developed completely independently of each other and use different 
network generation techniques as well as different ODE solvers the fact that the results 
obtained with the two approaches are identical (up to integrator tolerances) for a variety 
of different complex species patterns (‘observables’ in BioNetGen) suggests that both 
methods work correctly here. 
 
c) Redistribution of membrane molecules during morphological changes 
 
Performing simulations with dynamic morphologies raises a question that has to our 
knowledge so far not been discussed extensively: How are the concentrations of 
membrane molecules affected by changes of the morphology? The answer to this 
question will depend on several factors such as the time scales of the biochemical, 
diffusive and morphological processes as well as which phenomena are actually modeled 
in which detail.  
 
The lipid bilayer of cellular membranes strongly resists changes of its area (in other 
words: it is not very elastic), yet cells can significantly change their apparent surface 
when producing membrane protrusion during processes such as migration. Thus there 
have to be mechanisms capable of adding lipid bilayer material to the apparent cell 
surface. The details of these mechanisms and their regulation are cell type dependent and 
not yet well understood16, 17. 
 
We implement four different algorithms for updating surface concentrations following 
changes of the membrane morphology. Two of the algorithms conserve the number of 
molecules on the membrane by redistributing molecules; the other two conserve the local 
concentrations. The number-conserving algorithms could be used when the lipid bilayer 
is modeled with high resolution having a one-to-one correspondence to the discretized 
cell surface. The model could then follow the molecular replenishment of the newly 
extended membrane regions through diffusion or active processes in detail. The 
concentration-conserving algorithms model an effective membrane which has structures 
below the resolution of light microscopy and thus are experimentally not accessible as is 
typically the case when data from live cell imaging is used as experimental reference. 
The model then assumes that such unresolved structures contain membrane-bound 
molecules that become available for signaling when surface wrinkles unfold and become 
part of the effective cell surface.  
 
Whenever a volume element is added to or removed from a simulated cell, membrane 
elements have to be removed from the old and added to the new surface that results from 



the applied changes to the cellular structure. As discussed above, there is no generally 
valid biological cellular mechanism that could motivate a particular choice of mapping 
between old and new elements for all types of models. The redistribution schemes take 
molecules from the old elements and redistribute them into the new ones. The schemes 
differ in their locality (are only membrane elements affected that are replaced or added, 
or do the redistribution schemes affect more elements?), handling neighboring 
(unchanging) elements differently. They represent different phenomenological models of 
convective and/or unzipping processes in the membrane in response to morphological 
changes. Supplementary Figs. 8a-f illustrate how molecules in the cell membrane are 
affected by the different schemes. 
 
The molecule-number conserving algorithm that only affects the changing membrane 
elements first determines whether there is a membrane element that will be removed that 
has no neighbors that will not be removed (e.g. the membrane element at the top of the 
protrusion in Supplementary Fig. 8b). Its contents will be distributed equally amongst 
its neighbors. The remaining membrane elements are now guaranteed to have a neighbor 
that is not removed. Their molecular content is redistributed into their corresponding new 
membrane elements. A new membrane element has a corresponding old element if the 
old and new share a neighboring unchanging membrane element. If a new membrane 
element has no unchanging neighbors (e.g. the membrane element at the top of the 
protrusion in Supplemenary Fig. 8a) it will draw one fourth of the concentration of each 
of its neighbors. This scheme represents local redistribution with minimal convection and 
no membrane reservoirs. 
 
The molecule-number conserving algorithm that includes the neighbors in the 
concentration update is essentially using the same three steps except that in the second 
step, when the concentration is mapped between old and new membrane elements that 
have unchanging neighbors, the molecules are not only distributed into the newly created 
membrane elements but also their unchanging neighbors. 
 
Instead of keeping the number of molecules constant concentration-conserving 
algorithms preserve the average concentration between surface elements incident on a 
volume element that has been added or removed from the cell volume. In other words, 
the concentration in the new membrane elements is set to the average concentration of the 
removed membrane elements. The difference between the concentration-conserving 
algorithms lies in how local changes of the surface area (stemming from the 
approximation of a smooth membrane) induced by changes of the geometry in the 
neighborhood of an element are handled. By default, changes of the area of a surface 
element would lead to a change of the concentration to conserve molecule numbers. 
However, we can alternatively attribute these changes to the change of the approximated 
membrane instead and therefore conserve the concentration instead of the particle 
number.  
 
d) Calculation of effective surface geometries 
 



The surface of a cubic grid that approximates a cell does not provide a faithful 
approximation of the cell's surface. Therefore, the surface geometry has to be adapted to 
allow for a correct treatment of membrane diffusion.  
 
We adapt the surface geometry by taking into account a neighborhood of each surface 
element instead of only the surface element itself for calculating gradients and the 
interface lengths that are used by the finite volume method discretizing membrane 
diffusion. The larger neighborhood permits a better estimation of the local tangents, 
curvatures, and distances. 
 
We follow a previously suggested approach 18 to inscribe two circles into the surface and 
use their arc-lengths to define the adapted surface. This is achieved by finding a pair of 
surface elements separated by Δk steps along the grid (cf. Supplementary Fig. 7a) from 
the element under consideration and constructing the circle circumscribing the center of 
the three surface elements.  
 
We define the distance to the direct neighbors as the arc length of the section of the 
circumcircle connecting the center of the surface element and the center of the direct 
neighbors (cf. Supplementary Fig. 7b). 
 
However, instead of using the normals derived from the inscribed circumcircles to 
construct a Voronoi discretization as previously proposed 18, we avoid this time 
consuming step and use the distances to neighboring elements to derive the side lengths 
and the surface area of the surface elements and the distances entering the finite volume 
scheme for solving the diffusion equation. First, we define a side length of a surface 
element as one half of the sum of the distances to its opposing neighbors. The surface 
area is the product of the side lengths. The interface lengths and distances used for the 
finite volume scheme need to take into account that the distance from one element to its 
neighbor will differ from the reverse distance from the neighbor to the element. This is a 
result of the fact that the neighbor considers a different set of surface elements for 
estimating the radius of the circumcircle. We therefore define the distance between the 
centers of two surface elements and the length of the interface between these as the mean 
of their distances or side lengths, respectively. 
 
There are situations in which this approach fails. The prescribed number of steps to the 
distant neighbors used for the construction of the circumcircle may ignore small 
membrane features. Or, the surface may be flat and thus the radius of the circumcircle 
infinite. In other situations, the center of the direct neighbor of a surface element lies 
close to the line passing through the center of the circumcircle and the center of the 
surface element resulting in a unrealistically small or vanishing distance. These situations 
are avoided by checking for these special cases: 
 

• Stepping from neighbor to neighbor in opposite directions from the surface 
element under consideration reaches the same surface element. This occurs if the 
stepping algorithm wraps around a small detail (cf. Supplementary Fig. 7c). 



• Stepping from neighbor to neighbor encounters more than two consecutive 
surface elements belonging to the same volume element. This occurs if a 
membrane has a thin protrusion (cf. Supplementary Fig. 7d). 

• The cosine of the angle between vectors from the center of the circumcircle to two 
neighboring surface elements is larger than 0.995. This may occur for small 
values of Δk and "L" shaped surface features. 

 
The first two cases indicate that the prescribed step number Δk is too large. In the first 
case the number of steps is reduced by a factor of two in order to reduce the angle 
spanned by the section of the circumcircle to approximately 180 degrees. In the second 
case a region with small membrane protrusions would have been encountered; the step 
number Δk is therefore reduced by two steps to exclude the protrusions from the 
estimation of the surface properties. The last case is handled calculating the length of the 
arc between the surface element and the element Δk steps away, normalizing it by the 
distance measured in steps Δk. If this approach fails too due to near co-linear vectors the 
distance is assigned by constructing a new circumcircle from the surface element and its 
direct neighbors. 
 
As discussed in Supplementary Note 8 we can reproduce previously published results 18 
finding the optimal value of Δk= h-2/3 where h is the grid constant when sampling a 
sphere with radius 1. Note that Δk is of course independent of the physical size of the 
grid – only the ratio of the physical radius of the sphere and the grid constant are relevant. 
Therefore all calculations with respect to Δk are carried out in units of grid constants. 
Simmune uses the following heuristics to estimate an optimal value for Δk for a 
simulation. 

• Calculate the mean volume of all cells in units of volume elements. 
• Calculate the radius of a sphere enclosing the mean volume in units of grid 

constants 
• Use the inverse of this radius to calculate Δk= h-2/3 

 
 
Supplementary Note 4: Numerical parameters and settings used in the 
simulations 
 
a) E-cadherin model 
Cell diameter: 30 microns 
Density of E-cadherin molecules: 50 per square micron (ref. 19) 
Diffusion coefficient of E-cadherin: 10-14 m2 s-1 (0.01 square microns s-1) (ref. 19) 
E-cadherin trans-association rate: 9.0x104 l/(mol s). This value is based on 
experimentally reported numbers (KD ~ 100 micromole) 19, 20 and references therein and 
then adjusted to take into account the smaller interaction volume containing the E-
cadherin adhesive sites. In the simulations reported here, the membranes of two adjacent 
cells have a distance of 30 nm but the layer containing the interactive sites is only 10 nm 
wide. Multiplication of both concentrations with a factor 3 would yield an overall factor 9 
that is absorbed here into the association rate. 
E-cadherin trans-dissociation rate: 1 s-1 



E-cadherin trans-association rate (intra complex): 100 s-1 
E-cadherin trans-dissociation rate (intra complex): 0.01 s-1 
 
E-cadherin cis-association rate: 9.0x103 l/(mol s) (See above remarks on E-cadherin 
trans-association rate.) 
E-cadherin cis-dissociation rate: 1 s-1 
E-cadherin cis-association rate (intra complex): 100 s-1 
E-cadherin cis-dissociation rate (intra complex): 0.01, 0.033, 0.1, 0.33, 1 s-1 (see main 
text and Fig. 4d for a discussion of the variation of the lifetime of intra-complex cis 
bond). Intra-complex associations are reactions that create additional bonds within 
existing complexes. The usual rate units of l/(mol s) do, therefore, not apply here and are 
replaced by transition rates (with unit s-1). Intra-complex dissociations are reactions that 
break bonds within complexes without causing the complex to disintegrate (i.e., the 
complex is still held together by other bonds).  
 
b) Yeast model 
Cell length: 8 microns. 
Cell width (max.): 4.2 microns. 
Cell volume: 38.7 cubic microns. 
 
Molecule abundances of main signaling components (per cell): 
Fus3: 17,360 molecules (concentration measured in ref. 21, see also Suppl. Note 6) 
Ste11: 700 molecules (concentration measured in ref. 21, see also Suppl. Note 6) 
Ste7: 1930 molecules (concentration measured in ref. 21, see also Suppl. Note 6) 
Ste5: 1290 molecules (concentration measured in ref. 21, see also Suppl. Note 6) 
Msg5: 3200 molecules (concentration measured in ref. 21, see also Suppl. Note 6) 
Cdc14: 1280 molecules (estimated): same cytoplasmic concentration as its substrate, Ste7 
(a significant fraction of Ste7 is membrane bound). 
MP2C: 640 molecules (estimated): same cytoplasmic concentration as its substrate, Ste11 
(a significant fraction of Ste11 is membrane bound). 
Ste20: 2140 molecules (estimated). 
The complete list of all concentrations/abundances as well as of all reaction rates can be 
accessed by opening the model files with the modeler application and opening the 
simulation description with the simulator. Both applications run on Linux, Mac, and 
Windows operating systems and can be downloaded from 
www.niaid.nih.gov/LabsAndResources/labs/aboutlabs/lsb/Pages/simmuneproject.aspx. 
 
In the polarized ‘shmooing’ yeast cell, membrane-bound adaptors such as Gβγ and Spa2p 
as well phospholipids (PIP2) are concentrated in the shmoo tip to recruit Ste5, Ste7, and 
Ste20 21, 22. The tip location of these molecules is maintained through actin-dependent 
mechanisms. Since our model focuses on the polarized steady state, we do not model the 
process of accumulation of these anchors. Instead, we position them in the shmoo tip and 
set their diffusion coefficient to 0. The anchor for pFus3 we discuss in Supplementary 
Note 6 is an exception: this membrane anchor becomes activated in the tip through 
interaction with Gβγ but can diffuse away from the tip with a diffusion coefficient of 0.03 



square microns s-1 while it becomes deactivated with a rate of 0.01 s-1. Only in the active 
state it can tag pFus3 to the membrane. 
 
Molecular concentrations of all species differ strongly between cytoplasm and nucleus 
due to selective import/export through nuclear pores and the presence of binding partners 
(such as Dig1,2 for Fus3) in the nucleus. The cytoplasmic and nuclear concentrations of 
Fus3 and Msg5 are reported in Maeder et al. 21. To reproduce those, we defined nuclear 
pores with the corresponding import/export ratio (3:1 for Fus3, 2:3 for Msg5). The 
concentration of Dig (representing Dig1 and/or Dig2), which is assumed to interact with 
pFus3, is adjusted so as to reproduce the nuclear part of the pFus3 concentration profile. 
Note that due to the exclusion of Ste7 from the nucleus 21 nuclear pFus3 is exposed to 
Msg5 to a much higher degree than its cytoplasmic counterpart. Without the presence of 
nuclear pFus3 binding partners (in the simulation: Dig), the level of pFus3 in the nucleus 
would be far lower than experimentally reported. 
 
Global simulation conventions/parameters 
 
a) Diffusion coefficients 
The simulation application calculates the diffusion coefficients of multi-molecular 
complexes based on the assumption that they are proportional to the cubic root of the 
total mass of the complex. For example, the diffusion coefficient for a bimolecular 
complex AB consisting of two molecules A and B with diffusion coefficients DA and DB 
is calculated according to . 
 
b) 3D vs. 2D reaction rates 
For the interactions between membrane-bound complexes it is assumed that their 
effective interaction volume is reduced compared to freely diffusing cytosolic 
components, thereby increasing their effective local concentrations. The effective 
interaction volume is 10 nm x membrane surface. Note that this convention (that amounts 
to using higher association rates for membrane-bound complexes) still allows the user of 
the modeler application to choose specific reaction rates by adjusting the 3D association 
rate in the model. Moreover, the modeler application permits the definition of 2D rates 
(in square microns s-1) for interactions between membrane-bound complexes. 
 
c) Membrane-membrane interactions 
Adjacent membranes of cells in contact are assumed to have a distance of 30 nm. This 
distance also defines the intercellular volume for extracellular molecules diffusing 
between the cells.  
 
Supplementary Note 5: A step-by-step guide to building and simulating 
the E-cadherin model is provided as an HTML document. 
 
Supplementary Note 6: Discussion of the modeling constraints provided 
by experimental data on Yeast Pheromone Signaling 
 



Experimentally determined numerical parameters used in the simulation were taken from 
Maeder et al.21 and, partially, from Good et al.23. Maeder et al. measured the 
concentrations of Ste5, Ste11, Ste7, Fus3, and Msg5, the phosphatase that 
dephosphorylates pFus3. In addition, fluorescence intensity measurements of the relative 
concentrations of Ste5, Ste11, Ste7, and Fus3 at the shmoo tip were performed in that 
study and the fractions of Ste5 in complex with Ste11, Ste7, or Fus3 were measured using 
FCS and translated into effective dissociation constants for all pairwise interactions 
within the MAPK scaffold. 
 
We will now discuss the implications that the measured parameters had for the modeling 
process and the conclusions that can be drawn from the combination of experimental and 
simulated data.  We will also point out the degrees of freedom that remain in spite of the 
stringent constraints provided by the numerous measurements in Maeder et al. 
 
All of the experimentally measured parameters (concentrations, fractions of Ste5 in 
complex with the kinases Ste11, Ste7, Fus3) have equivalents in the simulation that are 
not given by a single species concentration but by sums of concentrations of multiple 
molecular complexes. To determine, for instance, the fraction of Ste7 bound to Ste5 one 
first has to determine the sum of the concentrations of complexes containing Ste5 (in our 
model: 50 different complexes in the cytoplasm and even more at the membrane) and 
then the total concentration of complexes containing Ste7 bound to Ste5 (40 different 
complexes in the cytoplasm). The modeling approach (with automated generation of 
complexes and reactions) used here allows us to query these complex families by using a 
pattern matching mechanism. The complexes in our models can carry tags specifying 
states, for instance whether a molecule in the complex is phosphorylated or not. In the 
yeast pheromone model we defined (among others) a complex pattern “Ste5_all” that 
carries ‘wildcards’ (“don’t care”) for all tags of this complex species, meaning that any 
complex containing Ste5 in any state would match the pattern “Ste5_all”. Instead of 
summing up concentrations of all 50 complexes containing Ste5 we can thus ask the 
simulation to display the concentration profile of the pattern “Ste5_all”. Similarly, we can 
use the pattern “Ste5_Ste7_all” that matches all complexes in which Ste7 is bound to 
Ste5. Note, that a pattern corresponds to a specific binding structure of the complex. If 
Ste5 had two binding sites for Ste7 we would have to add the concentrations of the two 
corresponding patterns. For more details on complexes and states please see the 
documentation of the modeler application or the step-by-step guides and tutorials. 
 
a) Experimentally measured cytoplasmic concentrations after stimulation with 
pheromone: 29 nM Ste5, 28 nM Ste11, 63 nM Ste7, 571 nM Fus3. 
 
Since these concentrations do not include the membrane-bound fractions of the 
molecules, the simulation has to be initialized with higher concentrations to account for 
direct (Ste5 via Gβγ, Ste7 via Spa2p) or indirect (Ste11, Ste7, Fus3 via Ste5) membrane 
recruitment (see also Supplementary Note 4).  
 
b) Measured fractions of Ste5 in complex with Ste11, Ste7, or Fus3:  
fraction(Ste5:Ste11 in Ste5) = 0.33, fraction(Ste5:Ste7 in Ste5) = 0.27,  



fraction(Ste5:Fus3 in Ste5) = 0.19. 
 
Since these measurements were performed using a technique (Fluorescence Cross 
Correlation Spectroscopy, FCCS) that cannot easily distinguish between components that 
are directly bound to Ste5 vs. indirectly bound ones, the fraction(Ste5:Fus3 in Ste5) 
contains complexes in which Fus3 is bound directly to Ste5 and such complexes in which 
Ste7 links Ste5 and Fus3, i.e., Fus3 is indirectly bound to Ste5 (see Fig. 5a,b). Adopting 
the KD from Good et al. for the interaction between scaffold-bound Ste7 and Fus3 (80 
nM) resulted in a considerable fraction of the measured Ste5-bound Fus3 bound to Ste5 
indirectly, via Ste7. This, in turn, means that the affinity for the direct association of Fus3 
to Ste5 has to be even lower than estimated in the Maeder et al. publication (see 
Supplementary Note 6). 
 
c) Measured relative concentrations of Ste5, Ste11, Ste7 and Fus3 at the shmoo tip:  
ratio(Ste11/Ste5) = 0.15, ratio(Ste7/Ste5) = 1.0, ratio(Fus3/Ste5) = 1.7. 
 
The concentration of Ste11 relative to that of Ste5 at the shmoo tip (0.15) is, interestingly, 
lower than the fraction of Ste5 bound to Ste11 in the cytoplasm. This may indicate that 
the off-rate for the release of pSte11 from Ste5 is higher than the off-rate for the 
dissociation of unphosphorylated Ste11. Since pSte11 has a much higher concentration at 
the tip than in the cytoplasm, this has only a minor effect on the total fraction of 
cytoplasmic Ste5 in complex with Ste11 and pSte11. 
 
As discussed in Maeder et al., the fact that Ste7 has the same concentration at the tip as 
Ste5 means that Ste7 has to be recruited in a secondary mechanism in addition to the 
recruitment via the Gβγ:Ste5 complex. As suggested by Maeder et al. we incorporated 
Spa2p as a component that is concentrated at the membrane in the shmoo tip in a 
concentration that is adjusted relative to the concentration of Gβγ that recruits Ste5. 
 
The concentration of Fus3 at the shmoo tip is 1.7 fold higher than the concentration of 
Ste5. As Maeder et al. pointed out, this may mean that Fus3 is retained at the tip by 
binding partners other than Ste5. For a model that does not include such binding partners, 
Supplementary Fig. 4 shows a how the total production of phosphorylated Fus3 and the 
concentration difference between shmoo tip and shmoo-distant region of the cell vary 
with varying concentrations of Ste5 at the tip and varying activities (kcat) of Ste7 
phosphorylating Fus3 and Msg5 dephosphorylating pFus3. Even though it is possible to 
increase the phosphorylation rate of Fus3 (and/or decrease the rate of its 
dephosphorylation by Msg5) to compensate for the loss of pFus3 production caused by 
weak accumulation of Ste5 at the tip, adjusting those rates cannot reproduce the 
combination of 40% pFus3 production and strong intracellular gradients of Fus3/pFus3. 
In the original reaction-diffusion model developed in Maeder et al. this led to a fraction 
of phosphorylated Fus3 of 25%, a number that is confirmed by our simulations 
(Supplementary Fig. 4).  The parameter scan for which the results are shown in 
Supplementary Fig. 4 can be performed using the files provided in the 
‘YeastScan_Kinase_Phosphatase_Recruitment’ folder.  



Following the suggestion from the publication by Maeder et al., we therefore modified 
the model in such a way that some pFus3 is retained at the tip through interactions with 
other molecules besides Ste5 (in the model “YeastMAPK.dbf” the name of the molecule 
representing those ‘anchors’ is simply “Fus3_anchor”). Note that, in addition to 
reconciling the simulated relative concentrations of Fus3 and Ste5 at the tip with the 
experimental observations, this also shifts the balance between the concentration of 
Fus3/pFus3 at the tip and in the tip-distal parts of the cell towards the tip, thus making the 
intracellular gradient steeper. Remarkably, a constraint about the relative concentrations 
of two components (Fus3, Ste5) at the tip led to a model that turned out to solve another 
problem: the previous inability to combine a strong gradient with a large fraction of the 
Fus3 pool becoming phosphorylated. Since part of the pFus3 gradient (that is steeper than 
that of the total Fus3) is now due to pFus3 being retained at the tip (as opposed to being 
due only to dephosphorylation by Msg5 as it leaves the tip), the activity of the 
phosphatase Msg5 can be weaker, thereby allowing a higher total production of pFus3. 
However, since we cannot resolve the relative contributions from the two sources of 
pFus3 accumulation at the tip, we are left with a degree of freedom, an unknown that 
requires additional experimental investigation beyond the scope of this methodological 
report. 
Supplementary Fig. 4 also shows that in the presence of significant Msg5 phosphatase 
activity on pFus3, the activity (kcat) of Ste7 phosphorylating Fus3, in our simulations, has 
to be significantly higher than the experimentally determined value (4.3x10-3 s-1) reported 
in ref. 23. The maximum number of complexes producing pFus3 with scaffold support is 
given by the amount of Ste5 bound to Ste7, which is approximately 400 complexes per 
cell (30% of Ste5 is bound to Ste7 according to ref. 21). This would yield a max. 
production rate of approx. 100 pFus3 molecules per minute which could, interestingly, 
result in the phosphorylation of a major part (>30%) of the approx. 17000 Fus3 
molecules (in the cell size we used for our simulations) within an hour (40% had been 
reported 21) if the phosphatase Msg5 (and all other phosphatases targeting pFus3) are 
switched off. If, however, Msg5 actively contributes to the pFus3 gradient one would 
have to suggest that the activity of scaffold bound Ste7 on Fus3 is much higher in vivo 
than reported in ref. 23. In our simulations, we were able to reproduce experimentally 
observed pFus3 gradients and total amounts with kcat values ranging from 3 s-1 to 10 s-1 
for scaffold bound Ste7 phosphorylating Fus3. Note that for the classical ‘in-scaffold’ 
activation scheme (Fig. 5a main text), according to which Fus3 has to be bound to Ste5 
directly, we would obtain (assuming a KD of 1 micromole of the Ste5:Fus3 interaction 
and 570 nM of cytoplasmic Fus3) only about a third (145) of the max. number of pFus3 
producing complexes.   
 
Note: Supplementary Note 6 is provided as a separate document. 
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